当前位置:文档之家› 含参量反常积分的一致收敛性

含参量反常积分的一致收敛性

含参量反常积分的一致收敛性
含参量反常积分的一致收敛性

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

习题反常积分的收敛判别法

页脚内容278 习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞+a dx x )(?和?∞+a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞+a dx x )(?收敛时?∞+a dx x f )(也收敛; 当?∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε?< ?')(. 于是 ≤ ?'A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是

页脚内容279 ≥?'A A dx x )(?0)(1ε≥?'A A dx x f K , 所以?∞+a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0)()(lim =+∞→x x f x ?.则当?∞+a dx x f )(发散时,?∞+a dx x )(?也发散;但当?∞+a dx x f )(收敛时,?∞+a dx x )(?可能收敛,也可能发散. 例如21)(x x f =,)20(1)(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有 ?∞+1)(dx x f 收敛,而对于?∞+1)(dx x ?,则当21<

=p x x p ?,则+∞=+∞→)()(lim x x f x ?.显然有 ?∞+1)(dx x f 发散,而对于?∞+1)(dx x ?,则当12 1≤

p 时收敛. ⒉ 证明Cauchy 判别法及其极限形式(定理8.2.3). 证 定理8.2.3(Cauchy 判别法) 设在[,)a +∞?+∞(,)0上恒有f x ()≥0,K 是正常数. ⑴ 若f x K x p ()≤,且p >1,则?∞+a dx x f )(收敛;

积分敛散性的判断

目录 摘要........................................................................................... (2) 引言........................................................................................... . (3) 1无穷积分........................................................................................... .. (5) 1.1无穷积分的概念........................................................................................... .. (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分........................................................................................... .. (8) 2.1瑕积分的定义........................................................................................... . (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结........................................................................................... ......... .. (13) 参考文献........................................................................................... ... .. (14)

含参量积分汇总

第十九章含参量积分 一.填空题 1.若在矩形区域上_________,则 2.含参量反常积分 在____________上一致收敛. 3.设在上连续,若含参量反常积分 在上___________,则在上连续. 4. 5.在中如令, 则 6. 对于任何正实数函数与B函数之间的关系为 7. 在上不一致收敛是指______________. 8. 9. 设, 则 10. 利用函数定义, 二.证明题 1. 证明在上一致收敛. 2. 证明在上一致收敛. 3.证明若函数在连续, 则, 有

4.证明在上非一致收敛. 5.证明 6.证明在上一致收敛. 7. 证明在上不一致收敛. 8. 证明 9. 证明 10. 证明在R上连续. 计算题1. 求 2. 求 3.设. 求 4. 求 5.用函数与B函数求积分 6.用函数与B函数求积分 7.求积分 8.从等式出发, 计算积分 9.设. 求

10.求 填空题答案 1. 连续. 2. R 3. 一致收敛. 4. 5.. 6. . 7. , 有 8. 1 9. . 10. . 证明题答案: 1. 证明: , 有 , 而收敛, 则 在上一致收敛. 2. 证: , 有, 而, 则 在上一致收敛. 3证: 已知在连续, 使. 设, 有 于是,

4.证: , 有 . 即在上非一致收敛. 5.证: 设有 . 6.证: 由于反常积分收敛,函数对每个单调, 且对任何, 都有. 故由阿贝耳判别法可知 在上一致收敛. 7. 证: 因在处不连续, 而在 内连续, 由连续性定理知, 在上不一致收敛. 8. 证: 令, 则. 9. 证: 令则, . 10. 证:

含参量反常积分的一致收敛发判别法及推广汇总

含参量反常积分的一致收敛判别法及推广 作者:蒋碧希 指导老师:张海 摘要 本文主要介绍了含参量反常积分(含参量无穷限反常积分、含参量瑕积分)的基本概念、性 质.然后参照无穷限反常积分的方法建立了相应的含参量瑕积分的一致收敛性.最后结合例题说明其在解题中的应用. 关键词 含参量无穷限反常积分 含参量瑕积分 一致收敛 1 引言 对于含参量无穷限反常积分的基本概念、性质、一致收敛性判别法大部分教材都有详细论述.而忽视了含参量瑕积分的一致收敛性的判定,其实两者之间是同中有异的.本文主要参照无穷限反常积分的方法建立相应的含参量瑕积分的一致收敛判别法,并探究其在解题中的应用. 2 含参量无穷限反常积分的一致收敛判别法 2.1 含参量无穷限反常积分的定义 设函数(,)f x y 定义在无界区域{(,)|,}R x y a x b c y =≤≤≤≤+∞上,若对每一个固定的[,]x a b ∈,反常积分 (,)c f x y dy +∞ ? (1) 都收敛,则它的值是x 在[,]a b 上取值的函数,当这个函数为()I x 时,则有 ()(,),[,],c I x f x y dy x a b +∞ =∈? (2) 称(1)式为定义在[,]a b 上的含参量x 的无穷限反常积分,或简称含参量反常积分. 2.2 含参量反常积分的一致收敛概念 若含参量反常积分(1)与()I x 对任给的正数ε,总存在某一实数N c >,使得当M N >时,对一切[,]x a b ∈,都有 (,)()M c f x y dy I x ε-

(,)M f x y dy ε+∞ ,使得当M A A >21,时,对一切],[b a x ∈,都有 2 1 (,)A A f x y dy ε?ε,0>?M ,M A A >?21,时,使得],[b a x ∈?时,有 1 (,)2A f x y dy ε+∞ ?>?M ε,当M A A >21,时, 有 2 1 (,)A A f x y dy ε,总存在某一实数c M >,使得M A A >21,时,对一切 ],[b a x ∈,都有 2 1 (,)A A f x y dy ε

反常积分的收敛判别法

反常积分的收敛判别法 阿文 摘 要:掌握不同类型函数反常积分收敛性的多种判别方法,对于需要计算出其收敛值的,也可以方便的计算出其收敛的数值. 关键词:Cauchy 判别法; Abel 判别法; Dirichlet 判别法 引 言 一般情况下,只需确定一个反常积分函数的收敛性,而不一定需要求出其具体的收敛数值.因此,掌握不同类型函数的反常积分收敛判别法是极其必要的. 一 非负函数反常积分的收敛判别法 1.比较判别法 设在),[+∞a 上恒有)()(0x K x f ?≤≤,其中K 是正常数,则 (1) 当? +∞a dx x )(?收敛时?+∞a dx x f )(也收敛; (2) 当?+∞a dx x f )(发散时?+∞a dx x )(?也发散. 2.Cauchy 判别法 设在),[+∞a ),0(+∞?上恒有0)(≥x f ,K 是正常数, (1)若p x K x f ≤)(,且p>1,则dx x f a ?+∞)(收敛; (2)若p x x f K ≥)(,且p 1≤,则?+∞a dx x f )(发散. 二 一般函数反常积分的收敛判别法 1.Abel 判别法 dx x f a ? +∞)(收敛,)(x g 在),[+∞a 单调有界,则dx x g x f a )()(?+∞收敛;

2.Dirichlet 判别法 F(A)=dx x f A a ?)(在[),+∞a 上有界,)(x g 在[),+∞a 上单调且+∞→x lim 0)(=x g ,则dx x g x f a )()(?+∞ 收敛. 三 无界函数反常积分的收敛判别法 1.Cauchy 判别法 设在[),b a 上恒有0)(≥x f ,当x 属于b 的某个领域),[0b b η-时,存在正常数K ,使得 (1) ,) ()(p x b K x f -≤且p<1,则?b a dx x f )(收敛; (2) ,)()(p x b K x f -≥且p 1≥则?b a dx x f )(发散. 2.Abel 判别法 ?b a dx x f )(收敛,)(x g 在),[ b a 上单调有界,则?b a dx x g x f )()(收敛. 3.Dirichlet 判别法 ? -=ηηb a dx x f F )()(在],0(a b -上有界,)(x g 在),[b a 上单调且0)(lim =-→x g b x , 则?b a dx x g x f )()(收敛. 总 结 函数的类型不同,其相应的反常积分收敛判别法也就不同. 熟练掌握多种判别法可以对不同类型函数的敛散性做出正确的估计及计算.一般的,同一类函数也可用不同的方法来计算,既省时间,正确度又高. 参考文献 [1]陈纪修,於崇华,金路.数学分析(第二版)[M],北京:高等教育出版社,2004.6.

含参变量反常积分的几种计算方法

含参变量反常积分的几种计算方法 摘 要:含参变量反常积分是一类比较特殊的积分,由于它是函数又是以积分形式给出,所以它在积分计算中起着桥梁作用,并且计算难度较大,本文主要总结含参变量反常积分的几种方法,利用这几种方法,可以进行一系列的积分运算,这样可使含参变量反常积分运算更易理解和掌握。 关键词:含参变量反常积分 积分号下积分法 积分号下微分法 收敛因子 留数定理 在进行含参变量反常积分的运算时,首先要验证条件(包括确定含参变量及其变化范围,把问题归结为能利用含参变量反常积分运算性质的某一种,还要验证所用性质应满足的条件),在验证条件时,判别一致收敛至关重要,判别法通常采用魏尔斯特拉斯判别法、狄利克雷判别法、阿贝尔判别法、柯西判别准则或用定义判别,然而在验证一致收敛时并不简单,这使得含参变量反常积分的计算有一定的难度,经过验证后,就可以利用含参变量反常积分的性质具体进行运算。本人在学习过程中,通过大量的、不断的练习,进行探索和归纳,总结出几种含参变量反常积分的计算方法,这几种方法运算技巧强,便于理解和掌握,下面分述于后。 一 积分号下积分法 要对含参变量反常积分()(),y a g f x y dx +∞=? 实现积分号下求积分,须验证以下条件: (1) (),f x y 在,x a y c ≥≥上连续; (2) (),a f x y dx +∞? 在[),y c ∈+∞上内闭一致收敛,(),c f x y dx +∞ ? 在[),x a ∈+∞上内闭一致收敛; (3) (,)c a dy f x y dx +∞ +∞?? 及(),a c dx f x y dy +∞+∞ ?? 至少有一个收敛, 则 ()(),,a c c a dx f x y dy dy f x y dx +∞+∞ +∞ +∞ =?? ?? 例1 利用2 u e du +∞ -?u=x α令2 ()0 (0)x e dx ααα+∞ -?>?,求2 e d αα+∞ -?的值。 分析:2 x e dx +∞ -?这个积分在概率论中非常有用,它的值可以用多种方法求出,但在这里利用积 分号下积分法求解,是很值得借鉴的,而且须验证的条件又显然成立。 解:由已知,得()g α=2 ()0 x e dx αα+∞ -?是取常值的函数,记I=2 e d αα+∞ -?, 则 I 2=I 2 e d αα+∞ -?=2 Ie d αα+∞ -? =22 ()0 ()x e dx e d αααα+∞+∞ --??=2 2(1) x d e dx α αα+∞+∞ -+?? =2 2(1) x dx e d α αα+∞+∞ -+??= 201121dx x +∞+?=4π 故 二 积分号下微分法

含参量反常积分一致收敛的判别法

题目含参量反常积分一致收敛的判别法学生姓名 学号 系别数学系 年级2010级 专业数学与应用数学 指导教师 职称 完成日期

摘要 含参变量的反常积分是研究和表达函数的的有力工具。要更好的研究含参量反常积分所表达的函数,关键问题在于判断他的一致收敛性。本文通过研究判断含参量反常积分一致收敛的判别法,以帮助研究含参量反常积分所表达的函数。关键词:含参量反常积分;一致收敛;判别法

Abstract Improper integral with variable is the study and expression tool function. To better function of parameter improper integral expression of the key problem lies in the judgment, the uniform convergence of his. Through the study of judging function discriminant method of parameter improper integral converges uniformly to help the study of parameter improper integral expression. Key words: Improper integral with variable;uniform convergence; discriminant analysis

目录 1引言 (1) 2基本概念 (1) 2.1含参量反常积分 (1) 2.2含参量反常积分一致收敛 (2) 3含参量反常积分一致收敛的判别方法 (2) 3.1定义法 (2) 3.2柯西准则法 (3) 3.3变上限积分的有界性法 (3) 3.4确界法 (4) 3.5微分法 (5) 3.6级数判别法 (6) 3.7维尔斯特拉斯判别法(简称M判别法) (6) 3.8狄里克莱判别法 (8) 3.9阿贝尔判别法 (8) 4结束语 (1) 参考文献 (10) 致谢 (11)

习题8.2反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况。 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数。则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散。 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(。 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(。 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散。 (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?。则当?∞ +a dx x f )(发 散时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散。 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?。显然有 ?∞ +1 )(dx x f 收敛,而对于?∞ +1)(dx x ?,则当21<

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

反常积分的敛散性判定方法

内蒙古财经大学本科学年论文反常积分敛散性的判定方法 作者陈志强 学院统计与数学学院专业数学与应用数学年级2012 级 学号122094102 指导教师魏运 导师职称教授 最终成绩75 分

目录 摘要??????????????????.. ?? . ?. ?????..1 关键词??????????????????.. ?? . ?. ????..1 引言 ----------------------------------------------------------------------------------------2 一、预备知识?????????? .. ?? . ?. ????? . 2 1.无穷限反常积分??????????..??.?.?????..2 2.瑕积分????????..??.?.????3 3.反常积分的性质???????? .. ?? . ?. ????3 二、反常积分的收敛判别法????????????.. ?? . ?. 4 1 无穷积分的收敛判别????????.. ?? . ? . ?????4 (1). 定义判别法 (2). 比较判别法 (3).柯西判别法??????? .. ?? . ?. ?????..?? 4??????? .. ?? . ?. ?????..?? 4??????? .. ?? . ?. ?????..?? 5 (4)阿贝尔判别法 . ???????..??.?.?????.6 (5).狄利克雷判别法???????..??.?.?????7 2 瑕积分的收敛判别???????..??.?.?????. .?8 (1). 定义判别法???????..??.?.?????..??8 (2). 定理判别法???????????..??.?.?????.9. (3). 比较判别法?????????????.. ?? . ?. ????9 (4).柯西判别法???????????..??.?.?????9 (5).阿贝尔判别法???????????..??.?.???.10 (6).狄利克雷判别法????????..??.?.?????10.

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

含参量反常积分答案

§2 含参量反常积分 一 一致收敛性及其判别法 设函数(,)f x y 定义在无界区域{(,)|,}R x y x I c y =∈≤<+∞上,其中I 为一区间,若对固定的x I ∈,反常积分 (,)c f x y dy +∞ ? (1) 都收敛,则它的值是x 在I 上取值的函数,当记这个函数为()x φ时,则有 ()(,),c x f x y dy x I φ+∞ =∈? , (2) 称(1)式为定义在I 上的含参量x 的无穷限反常积分,或简称含参量反常积分。 如同反常积分与数项级数的关系那样,含参量反常积分与函数项级数在所研究的问题与论证方法上也极为相似。 首先引入含参量反常积分的一致收敛概念及柯西准则。 定义1 若含参量反常积分(1)与函数()x φ对任何的正数ε。总存在某一实数N c >,使得当M N >时,对一切x I ∈。都有 (,)()c f x y dy x φε+∞ -,使得当1 2 ,M A A >时,对一切x I ∈, 都有 1 2 (,)A f x y dy A ε),但在()0,+∞内不一致收敛。

反常积分

第十一章反常积分 教学要点: 反常积分收敛和发散的概念及敛散性判别法。 教学内容: §1 反常积分的概念(4学时) 反常积分的引入,两类反常积分的定义反常积分的计算。 §2 无穷积分的性质与收敛判别(4学时) 无穷积分的性质,非负函数反常积分的比较判别法,Cauchy判别法,反常积分的Dirichlet判别法与Abel判别法。 §3 瑕积分的性质与收敛判别 瑕积分的性质,绝对收敛,条件收敛,比较法则。 教学要求: 掌握反常积分敛散性的定义,奇点,掌握一些重要的反常积分收敛和发散的例子,理解并掌握绝对收敛和条件收敛的概念,并能用反常积分的Cauchy收敛原理、非负函数反常积分的比较判别法、Cauchy判别法,以及一般函数反常积分的Abel、Dirichlet判别法判别基本的反常积分。 1.反常积分的收敛性及其收敛性的判别法是本章的重点. 2.两类反常积分的性质及其收敛性判别法有很多相似之处,应引导学生加以类比。 §1 反常积分概念 教学目标:掌握反常积分的定义与计算方法. 教学内容:无穷积分;瑕积分. 教学建议:

讲清反常积分是变限积分的极限. 教学过程: 一、 问题的提出 1、为什么要推广Riemann 积分 定积分()b a f x dx ?有两个明显的缺陷:其一,积分区间[a,b]必须是有限区间; 其二,若[,]f R a b ∈,则0M ?>,使得对于任意的[,]x a b ∈,|()|f x M ≤(即有界是可积的必要条件)。这两个缺陷限制了定积分的应用,因为在许多实际问题和理论问题中涉及到积分区间是无穷区间或被积函数出现无界的情形。 例1(第二宇宙速度问题)、在地球表面初值发射火箭,要是 火箭克服地球引力,无限远离地球,问初速度至少多大? 解: 设地球半径为 ,火箭质量为 ,地面重力加速度为,有万有引 力定理,在距地心处火箭受到的引理为 于是火箭上升到距地心处需要做到功为 当 时,其极限就是火箭无限远离地球需要作的功 在由能量守恒定律,可求得处速度至少应使 例2、 从盛满水开始打开小孔,问需多长时间才能把桶里水全部放完? 解: 由物理学知识知道,(在不计摩擦情况下),桶里水位高度为 时,水从小孔里流出的速度为

积分敛散性的判断

目录 摘要 (2) 引言 (3) 1无穷积分 (5) 1.1无穷积分的概念 (5) 1.2无穷积分敛散性的柯西准则 (5) 1.3无穷积分敛散性的比较判别法 (6) 1.4无穷积分的敛散性的狄利克雷与阿贝尔判别法 (7) 2瑕积分 (8) 2.1瑕积分的定义 (9) 2.2瑕积分的敛散性的比较判别法.................................................................... (10) 2.3.瑕积分敛散性的柯西判别法 (10) 2.4无穷积分的敛散性的狄利克雷与阿贝尔判别法.................... .. (12) 3瑕积分与无穷积分之间的关系............................................................ (13) 总结.................................................................................................... .. (13) 参考文献.............................................................................................. .. (14)

判断反常积分敛散性的方法 谢鹏数学与计算机科学学院 摘要:反常积分的收敛性是数学分析中的难点之一,本文介绍了反常积分敛散性的定义和一些重要的反常积分收敛和发散的例子,以及绝对收敛和条件收敛的概念等,让读者能够用反常积分的柯西收敛原理、非负函数反常积分的比较判别法、柯西判别法,以及一般函数反常积分的狄利克雷、阿贝尔判别法判别法判别基本的反常积分敛散性,以便更好的掌握反常积分收敛先判断的方法. 关键词:无穷积分;瑕积分;敛散性;判别方法 On Convergence of The Method of Judging Abnormal Integral Name of student, School: XiePeng,School of Mathematics & Computer Science

含参量反常积分的一致收敛性的判别方法

学年论文(本科) 学院数学与信息科学学院 专业数学与应用数学 年级2011级 姓名蒋丽 论文题目含参量反常积分的一致收敛性的判别方法指导教师胡旺职称教授 成绩 2014年 3月14日

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1.定义 (3) 2.含参量反常积分一致收敛性的判别法 (3) 结束语 (7) 参考文献 (7)

含参量反常积分的一致收敛性的判别方法 学生姓名:蒋丽 学号:20115031005 数学与信息科学学院 数学与应用数学专业 指导老师:胡旺 职称: 教授 摘 要: 本文从含参量反常积分的定义及含参量反常积分的一致收敛的定义出发,叙述 了含参量反常积分的一致收敛性的四种判别法,并且给出了一些例子. 关键词: 区域;收敛;一致收敛 The judgement methods of uniform convergence on improper integrals with paramer Abstract :This article summarizs four kinds of judgement methods of uniform convergence on improper integrals with paramer according to the definitions of improper integrals with aramer and uniform convergence on improper integrals,and give some examples. Key Words : region; convergence; uniform convergence 前言 含参量反常积分是微积分学中一类重要的积分,研究含参量反常积分及其一致收敛性,可以为分析讨论函数的性质打下坚实的基础.本文归纳了判别含参量反常积分的一致收敛性的五种方法:一致收敛定义、魏尔斯特拉斯M 判别法、狄利克雷判别法和阿贝尔判别法,并且给出了典型例子以说明每种判别法的特点. 1.定义 定义1 设函数()y x f ,定义在无界区域{}(,),R x y a x b c y =≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (),c f x y d y +∞ ? (1) 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(),c I x f x y dy +∞ = ? ,[],x a b ∈, (2)

含参量反常积分

§2 含参量反常积分 教学目的:掌握含参量反常积分的一致收敛性概念,含参量反常积分的性质,含参量反常积分 的魏尔斯特拉斯判别法,了解狄里克雷判别法和阿贝尔判别法. 教学要求: (1)掌握含参量反常积分的一致收敛性及其判别法,含参量反常积分的性质,以及含参量反 常积分的魏尔斯特拉斯判别法. (2) 掌握和应用狄里克雷判别法和阿贝尔判别法. 教学建议: (1) 本节的重点是含参量反常积分的一致收敛性及魏尔斯特拉斯判别法.要求学生会用魏尔 斯特拉斯判别法判别含参量反常积分的一致收敛性. (2) 本节的难点是狄里克雷判别法和阿贝尔判别法以及含参量反常积分的连续性,可微性与 可积性定理的证明.对较好学生在这方面提出高要求,布置有关习题;另外,由于这方面内容与函数项级数部分有类似之处,还可要求他们作比较与总结. 教学程序: 定义 设函数()y x f ,定义在无界区域R =(){}+∞<≤≤≤y c b x a y x ,,上,若对[]b a ,内每一个固定的x ,反常积分 ()?+∞ c dy y x f ,都收敛,则它的值定义了[]b a ,上一个x 的函数,记 ()x I = ()?+∞ c dy y x f ,,x ∈[]b a , (1) 称(1)式为定义在[]b a ,上的含参量x 的无穷限反常积分. 一 一致收敛概念及其判别法 1.一致收敛的定义 定义1 若含参量的反常积分(1)与函数()x I 对任给的正数ε,总存在某个实数c N >,使得当N M >时,对一切x ∈[]b a ,,都有 ()()ε<-?M c x I dy y x f , 即 ()ε,使得当M A A >21,时,对一切x ∈[]b a ,,都有 ()()ε<-?2 1 ,A A x I dy y x f 例1 证明参量的反常积分 ?+∞ sin dy y xy

含参量反常积分的一致收敛性判别法

3. 含参量的反常积分一致收敛性判别法 Weierstrass 判别法 设函数(,)f x t 定义在 {}(,):,D x t a x t T =≤<+∞∈?R 中,若 (a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的; (b ) 存在()x ?,使得 ()a x dx ?+∞ ?收敛,且 (,)(), [,)f x t x x a ?≤∈+∞; 则反常积分(,)a f x t dx +∞ ? 关于t T ∈绝对一致收敛,亦即,反常积分 (,)a f x t dx +∞ ? 关于t T ∈一致 收敛. 我们称定理中的()x ?为(,)f x t 的优函数. Abel 判别法 设函数(,)f x t 、(,)g x t 定义在 {}(,):,D x t a x t T =≤<+∞∈?R 中,若 (a ) 若反常积分 (,)a f x t dx +∞ ? 关于t T ∈一致收敛; (b ) (,)g x t 是x 的单调函数,且存在常数0L >(与[,)x a ∈+∞、t T ∈无关),使得 (,)g x t L ≤; 则反常积分 (,)(,)a f x t g x t dx +∞ ? 关于t T ∈一致收敛. Dirichlet 判别法 设函数(,)f x t 、(,)g x t 定义在 {}(,):,D x t a x t T =≤<+∞∈?R 中,若 (a ) 对于每个A a >,(,)f x t 在[,]x a A ∈上为R-可积的,且积分 (,)A a f x t dx ?关于t T ∈ 一致有界,亦即,0M ?>(与A 、t 无关),使得

关于含参量反常积分的证明.

关于含参量反常积分的证明 引言 刚开始学习数学分析这门课时,老师就说过,在数学分析这门课中,极限的)(δεN -定义和积分等知识十分重要,可以说学好了它们就学好了数学分析这门课。在第四版数学分析教材下册第十九章中向我们介绍了含参量积分的相关知识。在本文中我将对含参量积分的性质的证明做一下归纳总结,希望与大家一同分享。 一、证明过程中用到的定理 定理1(函数项级数的连续性定理)若函数项级数∑n u ()x 在区间[]b a ,上一致收敛, 且每一项都连续,则其和函数在[]b a ,上也连续。 定理 2(函数项级数的逐项求积定理)若函数项级数∑n u ()x 在区间[]b a ,上一致收敛, 且每一项()x u n 都连续,则()∑ ? b a n x u dx =()∑? x u n b a dx . 定理 3(函数项级数的逐项求导定理))若函数项级数∑n u ()x 在区间[]b a ,上每一项都 有连续的导函数,[]b a x n ,∈为∑n u ()x 的收敛点,且()∑x u n '在[]b a ,上一致收敛,则 ()()()∑∑ =??? ??x u dx d x u dx d n n . 定理4 若()y x f ,在矩形区域[][]d c b a R ,,?=上连续,则 ()()dx y x f dy dy y x f dx d c b a b a d c ? ???= ,,. 定理5 含参量反常积分()dy y x f c ? +∞ ,在I 上一致收敛的充要条件是:对任一趋于∞ +的递增数列{}n A (其中c A =1),函数项级数 ()()∑ ? ∑∞ =∞ =+= 1 1 1 ,n A A n n N N x u dy y x f 在I 上一致收敛。 二、证明思想 由于直接从含参量反常积分入手不易证明,所以我们可以利用定理5将含参量反常积分 转化为已解决的函数项级数问题,从而证得。 三、含参量反常积分性质的证明 1、连续性 设()y x f ,在[]+∞?,c I 上连续,若含参量反常积分()()? +∞ = Φc dy y x f x ,在 I 上一致收敛,则()x Φ在[]b a ,上连续。

相关主题
文本预览
相关文档 最新文档