当前位置:文档之家› 通信总线

通信总线

通信总线
通信总线

QAD:quadrature encoding,正交编码。

正交编码器(又名增量式编码器或光电式编码器),用于检测旋转运动系统的位置和速度。正交编码器可以对多种电机控制应用实现闭环控制,诸如开关磁阻(SR)电机和交流感应电机(ACIM)。典型的增量式编码器包括一个放置在电机传动轴上的开槽的轮子和一个用于检测该轮上槽口的发射器/检测器模块。通常,有三个输出,分别为:A相、B相和索引(INDEX),所提供的信息可被解码,用以提供有关电机轴的运动信息,包括距离和方向。

A相(QEA)和B相(QEB)这两个通道间的关系是惟一的。如果A相超前B相,那么电机的旋转方向被认为是正向的。如果A相落后B相,那么电机的旋转方向则被认为是反向的。第三个通道称为索引脉冲,每转一圈产生一个脉冲,作为基准用来确定绝对位置。这三个信号的相关时序图,参见图16-1。

编码器产生的正交信号可以有四种各不相同的状态。这些状态在图16-1中用一个计数周期表示。请注意,当旋转的方向改变时,这些状态的顺序与此相反。正交解码器捕捉相位信号和索引脉冲,并将信息转换为位置脉冲的数字计数值。通常,当传动轴向某一个方向旋转时,该计数值将递增计数;而当传动轴向另一个方向旋转时,则递减计数。

SPI:SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。SPI有三个寄存器分别为:控制寄存器SPCR,状态寄存器SPSR,数据寄存器SPDR。外围设备包括FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCLK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOSI和低电平有效的从机选择线NSS(有的SPI接口芯片带有中断信号线INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。

SPI接口是在CPU和外围低速器件之间进行同步串行数据传输,在主器件的移位脉冲下,数据按位传输,高位在前,低位在后,为全双工通信,数据传输速度总体来说比I2C总线要快,速度可达到几Mbps。

SPI,就是高速同步串行口。3~4线接口,收发独立、可同步进行.

SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,如今越来越多的芯片集成了这种通信协议,比如AT91RM9200.

SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。

I2C:I2C(Inter-Integrated Circuit)总线是由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。是微电子通信控制领域广泛采用的一种总线标准。它是同步通信的一种特殊形式,具有接口线少,控制方式简单,器件封装形式小,通信速率较高等优点。

I2C 总线支持任何IC 生产过程(CMOS、双极性)。通过串行数据(SDA)线和串行时钟SCL)线在连接到总线的器件间传递信息。每个器件都有一个唯一的地址识别(无论是微控制器——MCU、LCD 驱动器、存储器或键盘接口),而且都可以作为一个发送器或接收器(由器件的功能决定)。LCD 驱动器只能作为接收器,而存储器则既可以接收又可以发送数据。除了发送器和接收器外,器件在执行数据传输时也可以被看作是主机或从机(见表1)。主机是初始化总线的数据传输并产生允许传输的时钟信号的器件。此时,任何被寻址的器件都被

认为是从机。

SSI:同步串行接口(英文:Synchronous Serial Interface,SSI)是一种常用的工业用通信接口。ARM、飞思卡尔、德州仪器、美国国家半导体等公司都支持这种接口。在这种接口协议下,每一响应数据帧的长度可在4-16位之间变化,数据帧总长度可达25位。

扩展知识:同步串行通信必须以相同的时钟频率进行,大多数串口都是采用的同步方式进行通信的,与其相对应的为:异步串行接口。

同步串行接口:Synchronous Serial Interface,是各类DSP处理器中的常见接口。工作在网络模式下的SSI端口在某些应用场合非常重要。

SSI接口通信协议是一种带有帧同步信号的串行数据协议;

全双工的串行接口,允许芯片与多种串行设备通信;

高精度绝对值角度编码器中较常用的接口方式

SSI采用主机主动式读出方式,即在主控者发出的时钟脉冲的控制下,从最高有效位(MSB)开始同步传输。其数据传输时序图如下:

EnDat:EnDat接口是HEIDENHAIN(海德汉)专为编码器设计的数字式、全双工同步串行的数据传输协议具有传输速度快、功能强大、连线简单、抗干扰能力强等优点 是编码器、光栅尺数据传输的通用接口。

绝对式编码器利用自然二进制、循环二进制(格雷码)或PRC码对码盘上的物理刻线进行光电转换,将连接轴的转动角度量转换成相应的电脉冲序列并以数字量输出。它具有体积小、精度高、接口数字化及绝对定位等优点,被广泛应用于雷达、转台、机器人、数控机床和高精度伺服系统等诸多领域。绝对式编码器的数据输出以同步串行输出为主,EnDat接口是海

德汉专为编码器设计的数字式、全双工同步串行接口。它不仅能为增量式和绝对式编码器传输位置值,同时也够传输或更新存储在编码器中的信息,或保存新的信息。由于使用了串行传输方式,所以只需四条信号线,在后续电子设备的时钟激励下,数据信息被同步传输。数据类型(位置值、参数、诊断信息等)由后续电子设备发送给编码器的模式指令选择决定。接口信号可选:SSI或EnDatSSI接口(RS422模式)绝对的位置值由时钟信号触发,从高位(MSB)开始输出与时钟信号同步的串行信号,SSI标准的信号单转为13位(串行),多转为25位(13+12位串行).当不传送信号时,时钟和数据位均是高位,在时钟信号的第一个下降延,当前值开始贮存,从时钟信号上升延开始,数据信号开始传送.t3为恢复信号,等待下次传送.直接PROFIBUS-DP输出接口可选.T=0.9—11us,t1>0.45us,t2≤0.4us,t3=12—35us。

绝对式编码器利用自然二进制、循环二进制(格雷码)或"#$码对码盘上的物理刻线进行光电转换,将连接轴的转动角度量转换成相应的电脉冲序列并以数字量输出。它具有体积小、精度高、接口数字化及绝对定位等优点,被广泛应用于雷达、转台、机器人、数控机床和高精度伺服系统等诸多领域。绝对式编码器的数据输出以同步串行输出为主,%&’()接口是海德汉专为编码器设计的数字式、全双工同步串行接口。它不仅能为增量式和绝对式编码器传输位置值,同时也能够传输或更新存储在编码器中的信息,或保存新的信息。由于使用了串行传输方式,所以只需*条信号线,在后续电子设备的时钟激励下,数据信息被同步传输。数据类型(位置值、参数、诊断信息等)由后续电子设备发送给编码器的模式指令选择决定。BISS:BiSS全数字双向传感器接口是一个开源且无需授权费用的通信标准,它允许传感器数据被同步、安全、及高速的读取,BiSS接口具有高传输速率以及严格的错误检测机制。

这些优势使得BiSS编码器接口尤其适用于高性能要求的场合,例如大内径全数字中空轴编码器,或是高速运动下要求高鲁棒性、绝对值的直线运动测量。

(完整word版)通信基础知识题库091230

综合基础知识 共140题 (包括计算机、电子、电路、软件、网络等知识) 一、单选题:共60题 1.N个节点完全互联的网型网需要的传输电路数为(D) A.N(N-1) B.N C.N-1 D.N(N-1)/2 2.衡量数字通信系统传输质量的指标是(A) A.误码率 B.信噪比 C.噪声功率 D.话音清晰度 3.ATM信元的交换方式为(C) A、电路交换; B、分组交换; C、电路交换和分组交换相结合; D、与电路交换和分组交换方式毫无关系 4.光纤通信的光波波长在( A )之间。 A.0.8μm~1.8μm B.1.8μm~2.8μm C.2.8μm~3.8μm D.3.8μm~4.8μm 5.光纤通信系统上由( B )组成。 A.光端机、电端机 B. 光发射机、光纤和光接收机 C. 光配线架、光纤 D.电端机、光纤 6.光纤通信系统按传输信号不同可分为( C )两类。 A.波分和时分光纤通信系统 B.波分和频分光纤通信系统 C. 模拟和数字光纤通信系统 D.频分和时分光纤通信系统 7.光纤通信的短波长窗口的光波波长为( )。 ( A ) A.0.85μm B.1.31μm C. 1.55μm D. 1.80μm 8.模拟信号的幅度取值随时间变化是( )的。(C) A.离散 B.固定 C.连续 D.累计 9.数字信号的幅度取值随时间是( )变化的。(A) A.离散 B.固定 C.连续 D.累计 10.在信道上传输的是()的通信系统称为模拟通信系统。(B) A.数字信号 B.模拟信号 C.任何信号 11.在信道上传输的是()的通信系统称为数字信号系统。(A) A.数字信号 B.模拟信号 C.任何信号 12.时分多路复用使各路信号在()的时间占用同一条信道进行传输。( D) A.相同 B.随机 C.任何 D.不同 13.数字通信方式可做到无()。(C) A.信噪比 B.干扰 C.噪声累积 D.噪声 14.数字通信()。(B) A.不能加密处理 B.便于加密处理 C.没有可靠性 D.没有安全性 15.数字通信利用数字信号时间离散性实现()。(B) A.频分多路复用 B.时分多路复用 C.波分多路复用 D.单路复用 16.信息传输速率的单位是()。(B) A.任意进制码元/秒 B.比特/秒 C.字节/秒

总线型运动控制系统

总线型运动控制系统 传统运动控制系统中常以脉冲和模拟量作为控制信号,并将控制信号发送到电机驱动器中,再由电机驱动器驱动电机运行。得益于总线技术的发展,运动控制器厂家将总线技术应用运动控制器中。上位机通过总线将运动参数传送至电机驱动器,再由电机驱动器驱动电机运行。常见的总线技术有ProfiNet,ProfiBus,EhertCA T,RTEX,CCLINK等等。 总线型运动控制系统相对传统的运动控制系统有诸多优点。 1.接线简化。 在传统运动控制系统中,上位机与电机驱动器通过大量的数字量或者模拟量IO连接,以发送控制信号和接受反馈信号。这样会使接线数量增加,接线出错的几率比较大,线材成本上升,布线时间长而复杂。在总线型运动控制系统中,上位机的总线通讯接口可以通过线性拓扑方式连接多个支持总线通讯的电机驱动器。 2.拥有故障自诊断特性。 传统型运动控制系统中的上位机与电机控制器的信息交换是通过有限的IO进行的。能获取的信息是极有限。总线型运动控制系统拥有多种诊断功能。可以实时监控电机的运行状态,实时获取运行状态的信息。如果电机运行有异常,其相应的电机驱动器可通过总线向上位机发送异常信息。如线缆短路或短路、接头接触不良,电压异常等物理层诊断。 3.方便调试。 总线型运动控制系统,可以通过上位应用软件监控和调整各电机驱动器节点的参数。不用通过各电机驱动器的显示面板调整参数。 4.可靠性高 传统运动控制系统的中脉冲信号和模拟量信号,容易受到电磁干扰,可导致信号失真。总线型运动控制系统数字式通讯方式,无信号漂移问题。 总线型运动控制系统应用示例:3S总线控制系统通过EherCAT总线控制7轴运动。3S 总线系统可以控制多达128个轴,支持复杂插补运算;可控制多达10台不同类型的机器人;提供多达8192点数字量或模拟扩展功能;可接入视觉系统实现定位功能。

利用51单片机实现SPI总线通信

利用51单片机实现SPI总线通信 一:题目及要求 1:基本内容 1.1:理解51单片机和SPI总线通信的特性和工作原理; 1.2:以51单片机为核心分别设计SPI总线通信发送及接收电路; 1.3:熟练应用C语言或汇编语言编写程序; 1.4:应用Protues软件完成仿真,仿真结果需包括示波器波形,通过一定的 方式(如LED灯、LED显示器等)显示发送和接受数据结果; 1.5:下载程序到开发板,实现串口通信功能(选做); 1.6:提交设计报告。 2:基本要求 本设计采用三线式SPI总线,一条时钟线SCK,一条数据输入线MOSI,一条数据输出线MISO。时钟极性CPOL=0,时钟相位CPHA=0。 二:设计思路 1:掌握51单片机和SPI总线通信的工作原理; 2:利用1中的原理设计SPI总线通信发送和接受电路; 3:编程模拟SPI时序,包括串行时钟、数据输入和输出; 4:利用Protues软件仿真,观察结果; 5:顺利仿真后,下载到开发板实现串行通信功能。 三:设计过程及内容 1:SPI总线简介 SPI ( Serial Peripheral Interface ——串行外设接口) 总线是Motorola公司推出的一种同步串行接口技术。SPI总线系统是一种同步串行外设接口,允许MCU(微控制器)与各种外围设备以串行方式进行通信、数据交换。外围设备包括FLASHRAM、A/ D 转换器、网络控制器、MCU 等。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现

1553B总线通信技术的应用与发展

●通讯与电视  1553B 总线通信技术的应用与发展 北京航空航天大学(100083) 熊华钢 摘 要:介绍了1553B 总线技术的产生及特点,说明了总线通信系统的组成、开发方法及仿真技术,分析了1553B 总线系统发展前景和方向。 关键词:总线通信 电子综合 网络 车辆、舰船、飞机等机动平台上电子设备越来越多,并且越来越复杂。将电子设备加以有效的综合,使之达到资源和功能共享已成为必然的要求。电子综合的支撑技术是连网技术,机动平台上的连网技术不同一般的局域网络技术,它特别强调网络的可靠性和实时性。1553B 总线最初是在七十年代末为适应飞机的发展由美国提出的飞机内部电子系统连网标准。其后由于它的高可靠性和灵活性而在其他的机动平台上得到广泛的应用。 1 1553B 总线通信系统及其特点 一个综合系统通常由若干子系统通过嵌入式总线接口并经过总线介质互连而成,各个子系统操作独立,资源和功能则可通过网络共享。从通信系统的角度看,在所有的子系统中有一个作为总线控制器(BC ),其他的子系统都是远程终端(RT )。以一个飞机综合系统为例,1553B 通信系统的组成如图1 所示。 图1 总线通信系统构成 由于1553B 总线在减少电子设备的体积、重量、复杂性以及电子系统综合费用诸方面的优点,成为了机动平台电子系统的主要工作支柱。它具有不同于一般电子网络的鲜明特点。 ?1553B 总线是一种广播式分布处理的计算机网络,网络上可挂接32个终端,所有的终端(节点)共享一条消息通路,任一时刻网络中至多只有一个终端在发送消息,传送中的消息可以被所有终端接收,实际接收的终端通过地址来识别。网络结构简单,终端的扩展 十分方便,任一终端(除总线控制器外)的故障都不会造成整个网络的故障,总线控制器则可以通过备份来提高可靠性。但是网络对总线本身的故障比较敏感,因此通常采用双余度总线。 ?强调了实时性,1553B 总线的传输码速率为1M bps ,每条消息最多包含32个字(每个字十六位),因此传输一条消息的时间比较短。 ?1553B 总线按指令/响应的方式异步操作,即总线上的所有消息传输都由总线控制器发出的指令来控制,相关终端对指令应给予回答(响应)并执行操作。这种方式非常适合集中控制的分布式处理系统。?兼顾实时性的条件下,采用了合理的差错控制措施,即反馈重传方法。 2 总线系统的开发和仿真 电子综合系统是一个集中控制的分布式处理系统,系统中每一个子系统(终端)都通过总线发送和获取消息,因此子系统的操作离不开总线接口。由于综合系统中各个子系统相互关联,总线接口的开发需要有必要的仿真和测试环境。2.1 总线接口 目前子系统大多采用嵌入式计算机结构,总线接口被做成一块插件嵌入到子系统机箱中。由于子系统主机各式各样,主机内总线也不尽相同,通常要为子系统专门开发总线接口。一个好的总线接口应该包括总 线收发器、通信协议处理器、双口RA M 存储器和主机 接口仲裁等部分。市场上已经有面向电子系统综合的1553B 总线组件和集成芯片货架产品,美国D DC 公司的BU -61850系列芯片由于将总线收发器、通信协议处理器和4~8K 字双口R AM 存储器集成一体而被广泛应用。采用这类芯片只需根据主处理器的特性设计相应的主机接口仲裁电路,总线接口的设计比较简单,如图2所示。2.2 通信软件 通信软件是子系统中组织消息传输的软件,对于

电气设备采用总线控制方式分析

电气设备采用总线控制方式分析 为了真正实现火电厂数字化和信息化,逐步推行现场总线技术与DCS系统的集成是火电厂工业控制及自动化水平发展的趋势。随着电气智能自动化的发展,电气设备及系统完全能够实现总线控制,一般情况下电气就地智能设备通过现场总线方式接入电气厂用电监控系统的主控单元,经过前置层主控单元经协议转换后与DCS电气系统进行通讯,电气厂用电系统中的6kV开关柜、6KV电动机、380V PC各段电源馈线、380V低压电动机各个控制回路的I/O控制信息,测量量等,经由各个回路的微机保护测控装置通过现场总线方式进入电气主控单元,经过协议转换后与DCS系统电气处理单元进行通讯,使得在DCS 控制器所看到的从现场总线传输来的信息如同来自一个传统的DCS设备卡一样,这样便实现了在I/O总线上的现场总线技术集成。根据6kV 电动机在系统中的重要性保留重要的硬接线接口(如启停信号),保留紧急情况下的后备手段。因此在我们工程上应该在电气系统上有针对性的采用总线控制方式,尤其对一些智能电气系统。 下面从两个方面对电气设备采用总线控制方式进行分析,为我们将来采用总线控制做好充分准备 一 .安全性 为适应现场总线技术的发展趋势,世界上各电气制造商纷纷推出智

能化电气前端产品。国外的ABB、Siemens(SIPROTEC系统)、ALSTOM 等均有产品;国内的北京四方、东大金智、丹东华通、苏州智能、南瑞继保等也有产品。这些智能化的前端产品为利用通讯技术构成现场总线网络创造了条件,另外这些电气智能系统在实际应用中也得到了认可。 由于现场总线设备的智能化、数字化,与模拟信号相比,它从根本上提高了测量与控制的准确度,减少了传送误差。同时,由于系统的结构简化,设备与连线减少,现场仪表内部功能加强:减少了信号的往返传输,提高了系统的工作可靠性。此外,由于它的设备标准化和功能模块化,因而还具有设计简单,易于重构等优点。 火力发电厂厂用电系统按其监控对象可以分为电气部分和工艺部分。其中电气部分又可以分为主厂房电源系统和辅助厂房电源系统。主厂房电源系统包括高压厂用电源,含高压厂用工作变压器、高压起动/备用变压器、6kV工作段等;低压厂用电源,含低压厂用工作变压器、低压公用变压器、低压检修照明变压器、保安段系统、380V PC和MCC 等;还有这些厂用电源的辅助装置,包括厂用电源快切装置、备用电源自动投入装置、同期装置、综合保护装置等。辅助厂房电源系统主要是辅助厂房公用6kV段、煤灰变、化水及水工变、翻车机变、厂前区变、辅助厂房380V PC和MCC等。 工艺部分主要是指各类电动机,包括高压电动机和低压电动机。在总线系统方案中,小型电动机采用“全通信”监控方式进DCS系统,大型电动机及其它电气设备采用“通信+硬接线后备”监控方式。由于现场总线系统与DCS系统进行了网络互联,实现了信息共享,避免了信息

FF总线的通信技术

FF总线的通信技术 通信是基金会现场总线(FF)技术的主要组成部分。首先要强调和明确指出的是,基金会现场总线是定位于重要的(missioncritical)过程控制应用,因此要求时间的确定性(timecritical),这是对它性能要求的出发点。基金会现场总线通信技术包括两个部分,即H1和HSE。各种基金会现场总线控制系统有各自的特点,但H1总线都遵守同样的规则。 H1总线应用于现场设备,我们不打算罗列它所有条文,只列举它的主要性能有: 通信速率:波特率31.25kbps(主要传输连续过程变量参数)。 传输距离:主干和分支合计1900米(满足大部分过程工厂的现状要求)。 总线供电:支持,9-32V电压,电源应冗余配置(继承原过程工厂中仪表的传统连接习惯)。 本安防爆:支持,同时推出了FISCO、FNICO等新概念(过程工厂中经常有易燃易爆环境)。 应当特别指出,H1总线的通信速率31.25kbps是连续过程控制的最佳通信速率。速率的选择要兼顾传输距离、被测参量变量周期长短、传输介质损耗、信息辐射和介质易受干扰的程度等综合因素决定。从满足需求上看,FF总线的通信周期为500mS,此速率足可以胜任通信的需求。 H1总线因为有了链路调度器功能的设置,保证了网段重要设备的冗余,因而在H1总线上不再设置线路冗余。初期人们对此总有担心。事实上H1总线重要设备的使命,在很大程度上用设备冗余代替了。基金会工程规范说,一条H1网段可以挂接6到12台设备,但对于I级关键的重要位置,一条H1总线只需挂3台设备(例如一个串级控制回路的两台变送器和一台阀门)。庆幸的是工业现场只有一小部分环节有这种高度风险性。既然有这种简单的解决方法,为什么还要去追求成本更高的电缆冗余呢?当然,在特别重要的H1和设备,HSE高速总线可以设置H1的介质冗余,能更有效的保证了通讯的正常进行。 现在许多设备有总线极性不敏感的性能(即可不分正负),但总线供电设备是分正负极的。 H1总线长达百米以上就应该按“传输长线”对待,即在“两端”连接阻抗匹配器。这样可以防止传输波沿总线反射使波形畸变。而且注意,和主系统的连接点应该在一侧匹配器距离120米以内。 应该说H1总线的布线的要求并没有什么特别困难和怪异之处。正确和物理健康的布线是良好使用的必须条件。这一点是不容让步的。不要指望存在进水、漏电、到处接地等问题,系统还是高度可 靠。 检查H1总线布线除了传统的万用表外,还应该配备示波器和电缆电容测量仪。还有专门的H1总线测量仪表,如MTL的FBT-5/6等。用示波器直接观察波形是方便和直观的方法。 图2示波器上用两种扫描速度显示的H1总线波形。看来并不像理论上那样“规矩”。当然波形也不可以任意的变差,当波形已近似正弦波时,曼彻斯特解码就可能发生相位错误。另外要通过示波器Y轴注意波

几种通信总线详尽总结

微处理器中常用的集成串行总线是通用异步 接收器传输总线(UART)、串行通信接口(SCI) 和通用串行总线(USB)等,这些总线在速度、 物理接口要求和通信方法学上都有所不同。本文详细介绍了嵌入式系统设计的串行总线、驱动器和物理接口的特性,并为总线最优选择提供性能比较和选择建议。 由于在消费类电子产品、计算机外设、汽车和工业应用中增加了嵌入式功能,对低成本、高速和高可靠通信介质的要求也不断增长以满足这些应用,其结果是越来越多的处理器和控制器用不同类型的总线集成在一起,实现与PC软件、开发系统(如仿真器)或网络中的其它设备进行通信。目前流行的通信一般采用串行或并行模式,而串行模式应用更广泛。 微处理器中常用的集成串行总线是通用异步接收器传输总线、串行通信接口、同步外设接口(SPI)、内部集成电路(I2C) 和通用串行总线,以及车用串行总线,包括控制器区域网(CAN)和本地互连网(LIN)。这些总线在速度、物理接口要求和通信方法学上都有所不同。本文将对嵌入式系统设计的串行总线、驱动器和物理接口这些要求提供一个总体介绍,为选择最优总线提供指导并给出一个比较图表(表1)。为了说明方便起见,本文的阐述是基于微处理器的设计。 串行与并行相比 串行相比于并行的主要优点是要求的线数较少。例如,用在汽车工业中的LIN 串行总线只需要一根线来与从属器件进行通信,Dallas公司的1-Wire总线只使用一根线来输送信号和电源。较少的线意味着所需要的控制器引脚较少。集成在一个微控制器中的并行总线一般需要8条或更多的线,线数的多少取决于设计中地址和数据的宽度,所以集成一个并行总线的芯片至少需要8个引脚来与外部器件接口,这增加了芯片的总体尺寸。相反地,使用串行总线可以将同样的芯片集成在一个较小的封装中。 另外,在PCB板设计中并行总线需要更多的线来与其它外设接口,使PCB板面积更大、更复杂,从而增加了硬件成本。此外,工程师还可以很容易地将一个新器件加到一个串行网络中去,而且不会影响网络中的其它器件。例如,可以很容易地去掉总线上旧器件并用新的来替代。

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供内部大容量宽带网 无线光通信系统能在企业、机关范围内为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带保密通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、电话网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。 2.克服天气对激光传输的影响,实现全天候通信

总线的通信协议

总线的通信协议

————————————————————————————————作者:————————————————————————————————日期:

总线的通信协议 对于总线的学习,了解其通讯协议是整个过程中最关键的一步,所有介绍总线技术的资料都会花很大的篇幅来描述其协议,特别是ISO/OSI的那七层定义。其实要了解一种总线的协议,最主要的就是去了解总线的帧数据每一位所代表的特性和意义,总线各节点间有效数据的收发都是通过各节点对帧数据位或段的判断和确信来得以实现。 如图1所示是常见的I2C总线上传输的一字节数据的数据帧,其总线形式是由数据线SDA和时钟SCL构成的双线制串行总线,并接在总线上的电路模块即可作为发送器(主机)又可作为接收器(从机)。帧数据中除了控制码(包括从机标识码和访问地址码)与数据码外还包括起始信号、结束信号和应答信号。

起始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 控制码:用来选泽操作目标与对象,即接通需要控制的电路,确定控制的种类对象。在读期间,也即SCL时钟线处于时钟脉冲高电平时,SDA上的数据位不会跳变。 数据码:是主机向从机发送的具体的有用的数据(如对比度、亮度等)和信息。在读期间,SDA上的数据位不会跳变。 应答信号:接收方收到8bit数据后,向发送方发出特定的低电平。读/写的方向与其它数据位正好相反,也即是由从机写出该低电平,主机来读取该低电平。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变表示数据帧传输结束。 当然不同的总线其数据位或段的定义肯定不同,但依据同样的原理可以更快的去了解它的协议的特性和特点。虽然其信息帧的大小不一,但具体的某一数据位或数据段都类似于本文所提及的I2C总线,会依据它的协议的要求来定义它所达标的意义和功能。

通信工程介绍概况

通信工程介绍概况 通信工程(也作电信工程,旧称远距离通信工程、弱电工程)是电子工程的一个重要分支,电子信息类子专业,同时也是其中一个基础学科。该学科关注的是通信过程中的信息传输和信号处理的原理和应用。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。 该学科是信息科学技术发展迅速并极具活力的一个领域,尤其是数字移动通信、光纤通信、Internet网络通信使人们在传递信息和获得信息方面达到了前所未有的便捷程度。通信工程具有极广阔的发展前景,也是人才严重短缺的专业之一。本专业学习通信技术、通信系统和通信网等方面的知识,能在通信领域中从事研究、设计、制造、运营及在国民经济各部门和国防工业中从事开发、应用通信技术与设备。通信工程研究的是以电磁波、声波或光波的形式把信息通过电脉冲,从发送端(信源)传输到一个或多个接受端(信宿)。接受端能否正确辨认信息,取决于传输中的损耗高低。信号处理是通信工程中一个重要环节,其包括过滤,编码和解码等。毕业后可从事无线通信、电视、大规模集成电路、智能仪器及应用电子技术领域的研究,设计和通信工程的研究、设计、技术引进和技术开发工作。 研究内容 通信工程专业主要为研究信号的产生、信息的传输、交换和处理,以及在计算机通信、数字通信、卫星通信、光纤通信、蜂窝通信、个人通信、平流层通信、多媒体技术、信息高速公路、数字程控交换等方面的理论和工程应用问题。随着19世纪美国人发明电报之日起,现代通信技术就已经产生。为了适应日益发展的技术需要,通信工程专业成为了美国大学教育中的一门学科,并随着现代技术水平的不断提高而得到迅速发展。 专业发展 通信工程专业代码:0810,分为两个学科,一个是偏向于传输的“通信与信息系统(081001)”,另一个是偏向于编解码的“信号与信息处理(081002)”。其中“通信与信息系统(081001)”的前身是电机系,北京交通大学是中国通信与信息系统研究的发祥地;“信号与信息处理(081002)”的前身是信息论系,西安电子科技大学是中国信号与信息处理的发源地。 未来展望

计算机控制系统_总线概述

读书报告:总线技术 主要内容:计算机架构PCI总线I2C总线现场总线 一、计算机结构 1.冯·诺依曼计算机结构 冯·诺依曼计算机结构是根据冯·诺依曼提出的程序存储原理设计的,是一种将程序指令存储器和数据存储器人台并在一起存储的结构。程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同。但是,这种指令和数据共享同一总线的结构,使得信息流的传输成为限制计算机性能的翘颈,影响了数据处理速度的提高。冯·诺依曼计算机结构如下图所示,目前很多处理器仍然使用冯·诺依曼结构,如英特尔公司的8086,英特尔公司的其他中央处理器,、ARM的ARM7、MIPS公司的MIPS处理器 2.哈佛计算机结构 为了改变冯·诺依曼计算机结构的取指令与数据的读写要从同一存储空间经由一条总线传输,进而影响计算机的性能这一和不足。人们又提出了哈佛计算机结构,哈佛机构是将程序和数据存储在两个相互独立的存储器中,这样在一个机器周期就允许同时获得指令字(来自程序存储器)和操作数(来自数据存储器),从而提高了执行速度,是数据的吞吐量提高了一倍。又由于程序和数据两个相互独立的存储空间,因此取指和执行能够重叠,中央处理器从程序存储空间读取指令内容,解码之后得到数据地址,再到数据存储空间读取相应的数据,并进行下一步的操作(通常是执行),程序存储空间和数据存储空间分开,采用不同的总线,可以使程序和获据具有不同的总线宽度,从而提供较大的存储器带宽,是数据传输效率更高,尤其提高了数字信和号处理的效率。目前使用哈佛结构的中央处理器和微控制器有很多,如Microchip 公司的FIC系列世片,还有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和ARM公司的ARM9、ARM10和ARM11。哈佛结构如下图所示;

多线控制和总线控制的区别及在火灾报警系统中的各自作用

多线控制和总线控制的区别在火灾报警系统中的 各自作用? 多线控制和总线控制有相应的多线控制盘和总线控制盘。 多线控制也叫直接控制,就是利用多线模块直接放线至控制设备,一般的多线控制点控制的是消防泵、风机等等设备,多线控制模块不算编码点。 总线控制是通过接在回路里面的输入输出模块连接被控设备,主机上面有总线控制点,在软件里面可以设定控制点和相对应的设备,另外总线控制的设备,还可以参与自动联动,写进联动程序。 消防系统的总线制控制与多线制是什么意思 总线制是火灾自动报警系统信号传输线路与消防联动系统合二为一,即在一个回路中既有探测器、手动报警按钮,又有控制消防联动设施动作与接受动作回收信号的控制模块回路。也就是设备是并联在一根总线上的。采用总线制布线方式比较简单。一般情况下,如果消防联动设施数量比较多且集中,采用总线制比较经济合理。 多线制是对消防联动设施的控制是一对一、点对点的控制回路。多线控制是由主机控制室用于手动控制的!通常不受报警系统控制,由人为控制!(利用继电器,接触器完成) 多线控制是一个地址码就用一对线,直接接入中控室或控制器箱,布线量大,不好维修,但是地址故障好查找;总线控制是多点多个地址码公用一对线,每对线(或多对线)可以作为一个回路来接入

主机或控制器,施工方便,控制方便,节省材料,回路中所有点位上线以后出现故障易查找,但如果控制器读不出地址码的时候查故障可就困难了。现在大部分工程设计与产品都是总线制的,多线制已经淘汰。可以参考《电气消防》第二册 现在各厂家报警系统均采用两总线制布线方式,也就是两根线上可并联多个报警设备(烟感、温感、手报等),根据各厂家回路容量的不同可能这两根线所连接设备最大数量也不一样(例如:海湾回路容量242点,其他厂家有96点的,有256点的等)。 多线制是针对于总线制来说的,我们国家消防规范有规定,对于一些重要的设备(如:消火栓泵、喷淋泵、排烟机等)必须用多线制进行控制,也就是每台设备必须有单独的控制线与消防主机相连接,这样即使某个设备的线路出现了故障或被火烧断也不会影响其他设备的使用。 总线制布线方式的优点:布线简单,施工方便,工程造价低。缺点:一旦某处线路有问题可能会影响一段线路(也可能整个回路)上的设备不能正常工作 多线制优点:一处线路有问题不会影响其他设备的正常工作缺点:布线复杂,工程造价高 多线制控制:主要用于控制消防泵、喷淋泵、排烟风机等重要设备的启动和停止。容量:可以控制6路设备的启动和停止。Z1 Z2总线:Z1 Z2总线是一类信号线的集合,是模块间传输信息的公共通

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】带宽,又叫频宽,是数据的传输能力,指单位时间内能够传输的比特数。高带宽意味着高能力。数字设备中带宽用()表示,即每秒最高可以传输的位数。模拟设备中带宽用表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M。带宽计算公式为:带宽=时钟频率*总线位数/8 。电子学上的带宽则指电路可以保持稳定工作的频率范围。 【数据传输速率】数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒()”。其计算公式为1 。T 为传输1 比特数据所花的时间。 【波特率】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间内载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒()”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:*2 N。其中,N为进制 数。对于二进制的信号,码元速率和信息速率在数值上是相等的。

【奈奎斯特定律】奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924 年,奈奎斯特()推导出理想低通信道下的最高码元传 输速率公式:理想低通信道下的最高=2W。其中,W为理想低 通信道的带宽,单位是赫兹(),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2 个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高W ,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒 1 个码元。 符号率与信道带宽的确切关系为: (1+ a )。 其中,1/1+ a为频道利用率,a为低通滤波器的滚降系数, a取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或 码元速率)与信道带宽之间的关系。 【香农定理】香农定理是在研究信号经过一段距离后如何衰减以及一个给

通信技术专业简介

通信技术专业简介 专业代码610301 专业名称通信技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,具有遵守规范、安全生产、勇于创新等素质,掌握电路技术、通信原理、交换技术、传输理论、接入技术和项目管理知识,具备通信设备安装和调测、通信网络的组建与开通、通信系统的运行与维护、通信工程实施与项目管理能力,从事设备调试、技术服务、网络运营、系统维护、工程实施与管理工作的高素质技术技能人才。 就业面向 主要面向通信行业,在通信设备安装与测试、通信网络组建与维护、通信系统运行与管理、通信产品技术服务、通信工程施工与管理等岗位群,从事电信服务、通信设备安装、通信产品检修、通信系统运维、通信系统技术支持、通信项目实施、通信工程管理等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备通信设备安装与测试能力; 3.具备传输、交换网络运行与维护能力; 4.具备数据局域网、移动接入网的组建与管理能力; 5.具备通信系统分析与测试能力; 6.具备通信工程项目实施与管理能力; 7.掌握电子线路、数字通信和信号系统的基本原理;

8.了解互联网、移动接入网、光传输网、数据交换网等现代通信网络。 核心课程与实习实训 1.核心课程 电子技术、现代通信技术及应用通信原理、接入网设备安装与维护、数据网组建与维护、交换设备运行与维护、移动通信系统分析与测试、光传输网络组建与维护、通信工程项目管理等。 2.实习实训 在校内进行数据网组建、通信工程项目实务、光传输网络组建等实训。 在通信网络运营企业、通信技术服务企业、通信工程施工企业、通信工程监理企业进行实习。 职业资格证书举例 电信机务员(三级、四级)通信网络管理员(三级、四级)有线通信传输设备调试工(三级、四级)电子设备装接工(三级、四级)电源调试工(三级、四级) 衔接中职专业举例 通信技术 接续本科专业举例 通信工程

伺服控制总线方式特点

采用总线控制伺服的优点 伺服运动控制采用总线系统解决方案,具有很强的灵活性和很高性价比,与传统方案的优势如下: 1、节约布线成本,减少布线时间,减小出错机率。PLC的一个总线通讯口可以连接多 台伺服,伺服之间用简单的RJ45口插接即可,缩短施工周期。 2、信息量更大:全数字信息交互,可以双向传输很多参数、指令和状态等数据;脉冲 方式只能单向传送位置或速度信息,无法获取伺服的更多状态或参数。 3、精度高,数字式通讯方式:无信号漂移问题,指令和反馈数据精度可达32-bit 4、可靠性更高,抗干扰能力更强,不会出现丢脉冲现象。脉冲/方向控制在高速脉冲时, 会不可靠。 5、降低系统总成本,当超过两台以上伺服时,不用调整PLC配置,而传统方案需要增 加脉冲或轴控模块,伺服台数较多时甚至需要改用更高等级的PLC硬件才能满足要求。 6、可开发软件功能更强大的设备,而无需额外硬件或接线:PLC能够实时通过总线监 视伺服电机出现的故障,并在HMI上显示出来。同时PLC还可以监视伺服电机实际位置、实际速度等信息,也可以根据需要由程序自动调整伺服参数。可实现在HMI 中设定伺服参数,而不用到伺服面板修改,简捷直观不易出错。 7、采用标准的运动功能块库,提高编程调试效率:采用CAN总线系解决统方案,避免 了传统脉冲方向控制方式的编程量大、调试复杂等问题,提高了效率,节省了成本和时间。 8、可以实现远距离控制,在生产线设备很长,或伺服数量较多时十分方便、安装成本 低。 9、易扩张:当设备有可选轴或后期可能增加轴时十分方便,PLC配置不用增加硬件, 接线十分简单。 10、可维护性更强,有更多的状态信息和诊断信息。 数控和运动控制采用总线控制目前在欧美非常流行。

通信基础知识(137-147)

第三单元通信技术及公司产品知识 第一章通信网技术基础 第一节通信网概述 通信是人类社会传递信息、交流文化、传播知识的一种非常有效的手段。随着人类社会不断进步,生产力及科学技术日益发展,人们对通信的需求越来越多,通信业务已深入到社会的各个方面,渗透到生产、管理、服务、生活的各个环节,并已经成为国民经济的重要支柱产业。 从社会分工来看,通信是负责传递信息的服务行业,通信生产的不是实体产品,而是社会效益,因此在讲求竞争和效益的社会中不可能不充分使用通信手段。经济发达的国家早就看到了这一点,因此当前世界各国都在积极地建设和完善本国通信网,使之更好地满足各界需要,充分发挥社会效益。目前,我们公司的产品几乎触及了通信网的各个领域,现代通信网有一个最大的特点,就是系统性强,通信网的每个构成要素都是作为整个通信网的一部分存在并且起作用的,所以要求我们必须有一个全网的概念。 1.1通信网的基本结构 多用户通信系统互连的通信体系称之为通信网,习惯上把它分为电话通信网、数据通信网以及广播电视网等等。目前,通信网实现的基本结构形式有五种: 网型网:网型网是具有代表性的完全互连网,在每两个通信节点之间都建立一条传输链路。 星型网:增加了一个转接交换中心,完成所有节点间信息的汇集、接续和分配。 复合网:是以星型网为基础,在通信量较大的区间构成网型网结构。 环型网:节点之间由链路构成一个封闭的环状网。 总线型网:特点是传输流通的信息速率较高,它要求各节点或总线终端节点有较强的信息识别和处理能力。在计算机通信网中应用较多。 1.1通信网的构成要素 从通信网的基本结构可以看出,构成通信网的基本要素是终端设备、传输链路、转接交换设备以及新近几年引入的接入部分。 终端设备是通信网中的源点和终点。对应不同的通信业务,有不同的终端设备。 传输链路是网络节点的传输媒介,是信息和信号的传输通路。 137

各种通信总线的比较

计算机总线 1.概念:总线就是计算机各模块间进行信息传输的通道。不同的总线都是为了解决某一方面问题而产生的。 2.分类: (1)内部总线:包括片内总线、存储总线、片总线(元件级总线) (2)系统总线(I/O通道总线):包括PCI(Peripheral Component Interconnect Local Bus)总线、ISA(Industrial Standard Architecture、工业标准结构)总线、AGP(Accelerated Graphics Port,加速图形端口)总线、VME总线、MCA(微通道、PS/2)总线、Multi Bus总线、STE总线、STD总线、EISA(扩展工业标准结构)总线、SCSI(Small Computer System Interface、软盘和主机)总线、IDE(硬盘和主机)总线、VESA (提高系统视频性能)总线、VL总线、PCMCIA(个人计算机存储器卡国际协会)总线等,系统总线一般都以插槽的形式出现在主板上(3)外部总线(通信总线):分为串行和并行两大类。串行:RS232C、USB、IEEE1394、ADB(Apple desktop bus)、A.b(存取总线)、CHI(Concentration Highway Interface)、GeoPort 并行:IEEE-488、VXI 外部总线也必须通过系统总线来实现和主机的通信。比如USB是通过PCI到USB的主控制器。 选用哪一种总线技术时,应当明确各种总线的设计目的,即它的主要应用领域,然后根据自己的具体需要,选择一种总线规范来实现。 四种常用的串行通信总线比较:

通信工程专业知识点总结

交换技术 1.信网基本组成设备:终端设备、传输设备、交换设备 2.电话机的组成部分:通话设备、信令设备、转换设备 3.拨号脉冲电话各工作状态:挂机状态、振铃状态、摘机状态、拨号状态 4.交换机基本组成部分:用户电路、中继器、交换网络、信令设备、控制系统 5.呼叫处理基本过程:用户呼出阶段、数字接收及分析阶段、通话建立阶段、通话阶段、 呼叫释放阶段 6.交换机分类:人工电话交换机、机电制交换机(步进制、纵横制)、程控交换机、软交 换机、IP电话 7.交换方式:(1)电路交换:实际物理链路,不能纠正错误,预先建立,有建立时延,电 路利用率低;(2)分组交换:将信息化为分组,每个分组3~10字节的分组头,包含地址和控制信息,可能产生附加时延和数据丢失:a。虚电路:逻辑连接,同一报文的不同分组沿同一路径到达,可同时建立多个虚电路,可分为呼叫建立、数据传输、释放呼叫三个阶段;b。数据报:独立传送每个分组,同一报文可以沿不同路径,不需要有呼叫建立和释放阶段,分组可能失去顺序。 8.编号方式:(1)本地电话号码:局号+局内用户号;移动网接入码+移动网用户号码 (2)国内长途:0+长途区号+对方电话号码;同上 长途号首位为1,两位;为2,两位;为3,第二位奇,三位;偶,三四。 9.移动用户的ISDN号码:国家码+移动网号NDC+误别号+用户号SN 10.信令分类:(1)按传送区域:用户线信令、居间信令;(2)安信令信道和话音信道的关 系:随路信令、公共信道信令;(3)按功能:线路信令(监视信令)、记发器信令(选择信令);(4)按传送方向:前向信令、后向信令 11.用户话机发出的信令:(1)监视信令:反应用户电话机的摘挂机;(2)选择信令:用户 话机向交换机送出的被叫号码 12.NO.7信令功能:传送电话网的局间信号;传送电路交换数据网的局间信号;传送综合 业务数字网的局间信号;在各种运行、管理和维护中心传递有关信息;在业务交换点和业务控制点之间传送各种控制信息;传送移动通信网中与用户移动相关的各种信息13.NO.7信令四层结构:MTP层:信令数据链路功能级、信令链路功能级、信令网功能级; UP层(处理信令消息) 14.NO.7信令共有三种信令单元:消息信令单元(MSU)、链路状态单元(LSSU)、填充信 令单元(FISU) 15.信令单元各字段:标志码(F)、前向序号(FSN)、后向序号(BSN)、前向表示语比特 (FIB)、后向表示语比特(BIB)、状态字段(SF)、长度表示语(LI)、校验码(CK)、业务信息八位码组(SIO)、信令信息字段(SIF) 16.信令网的基本组成部分:信令点、信令转接点、信令链路 17.我国NO.7信令网结构:高级信令转折点(HSTP)、低级信令转折点(LSTP)、信令点 (SP) 18.事务处理能力(TC)基本结构:(1)成分子层:处理成分和作为任选的对话部分信息 单元;(2)事务处理子层:处理TC-用户之间包含成分及任选的对话信息部分的消息交换。 19.数字程控交换机硬件系统分为:话路部分(包括数字交换网络和各种外围模块)和控制 部分(完成对话录设备的控制功能) 20.采用分级控制方式的交换机的硬件组成:用户模块、远端用户模块、数字交换网络、数

移动通信基础知识培训(全)

移动通信基础知识培训

移动通信基础知识培训 一移动通信常用的专业术语 基站:即公用移动通信基站是无线电台站的一种形式,是指在一定的无线电覆盖区中,通过移动通信交换中心,与移动电话终端之间进行信息传递的无线电收发信电台。都是以主设备加基站天线的形式呈现,最直观的就是我们现实中看到的铁塔,抱杆,桅杆型的基站。 直放站:是在无线通信传输过程中起到信号增强的一种无线电发射中转设备。直放站的基本功能就是一个射频信号功率增强器。实际上基站在其覆盖范围内并不是100%的覆盖到每个角落,难免会由于某些原因而在有些地方出现信号弱,更甚者出现盲区的现象,这时候就需要直放站进行覆盖,达到消除弱信号或者盲区的目的。因此直放站就是通过各种方式将基站信号接入并进行放大,进而改善信号不良区域。 天线(Antenna)——天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。简单的理解,天线就是负责信号中转的无源器件。 室内分布系统:室内分布系统是将基站信号引入室内,解决室内盲区覆盖;它可以有效解决信号延伸和覆盖,改善室内通信质量;它将基站信号科学地分配到室内的各个房间、通道,而又不产生相互干扰。它是基站和微蜂窝的补充和延伸,有不能被基站和直放站所代替的优势,是大都市中移动通信不可缺少的组成部分。 盲区:在移动通信中,盲区表示信号覆盖不到的地区,在这样的地区移动信号非常微弱,甚至是没有。由于建筑物的隔墙、楼层等障碍对电磁波产生阻挡、衰减和屏蔽作用,使得大型建筑物的底层、地下商场、停车场、地铁隧道等环境下,移动通信信号弱,手机无法正常使用,形成了移动通信的盲区。 通话质量(RXQUAL):顾名思义,就是手机通话时的语言质量即清晰程

相关主题
文本预览
相关文档 最新文档