当前位置:文档之家› 专题弹簧能量问题

专题弹簧能量问题

专题弹簧能量问题
专题弹簧能量问题

专题---弹簧能量问题

————————————————————————————————作者:————————————————————————————————日期:

弹簧的能量问题

细节决定成败 成败决定命运 1 第六章 机械能 第八节 弹簧中的能量问题 【学习要求】 1、知道弹性势能的决定因素及弹性势能与弹力做功的关系; 2、能综合利用动量守恒定律和功能关系解决弹簧问题; 【学习过程】 一、知识要点: 1、物体的弹性势能与 和 有关,弹性形变量越大,弹性势能越 。弹簧的劲度系数越大,弹性势能越 。弹簧的伸长量与压缩量相同时,弹簧的弹性势能 。 2、弹力势能弹力做功的关系:弹力做正功,弹性势能 ,其数值相等;弹力做负功,弹性势能 ,其数值相等;即: 。 二、典型问题引路 (一)弹簧中的能量守恒问题 例1、 如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。现在挂钩上升一质量为3m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。若将C 换成另一个质量为13()m m +的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。【k m m g m m m v )2()(2312 211++=】 【方法总结】 【误区提示】

细节决定成败 成败决定命运 2 (二)弹簧问题中的动量与能量综合问题 例2、在光滑水平导轨上放置着质量均为m 滑块B 和C ,B 和C 用轻质弹簧拴接,且都处于静止状态。在B 的右端有一质量也为m 的滑块A 以速度0v 向左运动,与滑块B 碰撞的碰撞时间极短,碰后粘连在一起,如图4所示,求(1)弹簧可能具有的最大弹性势能;(2)滑块C 可能达到的最大速度和滑块B 可能达到的最小速度。【2 0112 m v , 023 v , 016 v 】 【变式1】若滑块C 的质量为2m ,则情况又如何? 【变式2】若滑块C 的质量为3m ,则情况又如何? 【方法总结】 【误区提示】 B A 图4 0v P C

弹簧问题中的能量与动量培训资料

弹簧问题中的能量与动量 教学目的: 1.学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况; 2.物理答题规范的培养与指导; 3.与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。 教学重难点: 1.物理情景的分析方法 2.分析过程中突出的物理问题中的“三变” 教学方法: 讲授、讨论、多媒体演示 教学过程: 在今年的高考物理试卷中,力学和电学知识所占比例高达85%,越来越突出对物理的主干知识的考查。在力学主干知识的考查中,能量与动量又永远是考查的重中之重。 一.弹簧基础知识 弹簧类弹力: 大小:F=kx (在弹性限度以内); 方向:沿弹簧轴线而指向弹簧的恢复原状的方向 二.弹簧问题中的能量与动量分析 请学生看物理教材(必修加选修)第二册第10页“思考与讨论”: 在如图1所示的装置中,木块B 与水平桌面间的接触 是光滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。 若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒?机械能是否守恒?说明理由。 例1:如图1所示,若木块的质量为M ,子弹的质量为m ,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。求弹簧可能具有的最大弹性势能。 分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。 运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。 对子弹A 和木块B 构成的系统,在子弹A 射入木块B 的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有: 10)(v m M mv += ① 对子弹A 、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有: ()21max 2 1 v m M E P += ② 图1

弹簧问题中的能量与动量

弹簧问题中的能量与动量 教学目的: 1. 学会在物理问题的分析中重视物理情景的分析,明确每一物体的运动情况; 2. 物理答题规范的培养与指导; 3. 与弹簧连接类物体的运动情景的分析,动量、能量相关知识在解题中的应用。 教学重难 点: 1. 物理情景的分析方法 2. 分析过程中突出的物理问题中的“三变” 教学方法: 讲授、讨论、多媒体演示 教学过程: 在今年的高考物理试卷中,力学和电学知识所占比例高达 85%,越来越突出对物理的主 干知识的考查。在力学主干知识的考查中,能量与动量又永远是考查的重中之重。 一.弹簧基础知识 弹簧类弹力: 大小: F=kx (在弹性限度以内) ; 方向:沿弹簧轴线而指向弹簧的恢复原状的方向 二.弹簧问题中的能量与动量分析 请学生看物理教材 (必修加选修) 第二册第 10 页“思 考与讨论”: 在如图 1 所示的装置中,木块 B 与水平桌面间的接触 是光滑的,子弹 A 沿水平方向射入木块后,留在木块内,将弹簧压缩到最短。 若将子弹、木块和弹簧合在一起作为研究对象(系统) ,此系统从子弹开始射入木块到 弹簧压缩到最短的整个过程中,动量是否守恒机械能是否守恒说明理由。 例 1: 如图 1 所示,若木块的质量为 M ,子弹的质量为 m ,弹簧为轻质弹簧,子弹以速 度 v 0 射入木块 B 后能在极短时间内达到共同速度。求弹簧可能具有的最大弹性势能。 v B A B 图1

分析: 学生在分析过程中, 最容易怱略的就是的在 A 、B 的碰撞过程中存在能量的损失。 运动情景分析: 过程一: 子弹 A 射入木块 B 的过程;过程二: 子弹 A 和木块 B 一起压缩 弹簧,做加速度越来越大的变减速直线运动。 对子弹 A 和木块 B 构成的系统, 在子弹 A 射入木块 B 的过程中, 内力远大于外力, 系统 动量守恒,设子弹射入木块后的共同速度为 v 1 , 由动量守恒定律,有: mv 0 (M m)v 1 对子弹 A 、木块 B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中, 系统能量守恒,有: 12 E Pmax M m v 12 ② Pmax 2 1 联立①②两式得:弹簧具有的最大弹性势能为 小结: 例 2: 如图 2 所示,轻弹簧的一端固定,另一端与 滑块 B 相连, B 静止在水平导轨上,弹簧处在原长状态。 另一质量与 B 相同滑块 A ,从导轨上的 P 点以某一初速 度向 B 滑行,当 A 滑过距离 l 1 时,与 B 相碰,碰撞时间极短,碰后 B 紧贴在一起运动,但互 不粘连。已知最后 A 恰好返回出发点 P 并停止。滑块 A 和 B 与导轨的滑动摩擦因数都为 运动过程中弹簧最大形变量为 l 2,求 A 从P 出发时的初速度 v 0 。(2004 年广东卷 ) 分析: 此变式的物理情景较复杂, 注意分析物理过程, 再针对不同的过程选择恰当的规 律列式。 过程一:对滑块 A ,从 P 到与 B 碰撞之前做匀减速直线运动,设滑块 A 与 B 碰撞前瞬间 的速度为 v 1 ,由动能定理得 1 2 1 2 mgl 1 mv 1 mv 0 ① 1212 过程二:滑块 A 与滑块 B 发生碰撞,由于碰撞时间极短,内力远大于外力, A 、B 构成 的系统动量守恒,设 A 、 B 碰撞后的速度为 v 2 ,由动量守恒定律,得 Pmax 22 m v 0 2 M m 图2

弹簧类问题

常见弹簧类问题分析 一、与物体平衡相关的弹簧问题 1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数 分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现 缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( ) A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2 此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g /k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g/k2=m l g/k2. 此题若求m l移动的距离又当如何求解? 参考答案:C 2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S1在上,A在上 B.S1在上,B在上 C.S2在上,A在上 D.S2在上,B在上 参考答案:D 3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别 为多少? (参考答案k1=100N/m k2=200N/m) 4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端

专题6.11 与弹簧相关的能量问题(提高篇)-2020高考物理100考点最新模拟题千题(必修部分)

2020年高考物理100考点最新模拟题千题精练 第六部分机械能 专题6.11与弹簧相关的能量问题(提高篇) 一.选择题 1. (2019高三考试大纲调研卷10)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在光滑竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C 处的速度为零,重力加速度为g,则下列说法不正确的是() A. 由A到C的过程中,圆环的加速度先减小后增大 B. 由A到C的过程中,圆环的动能与重力势能之和先增大后减少 C. 由A到B的过程中,圆环动能的增加量小于重力势能的减少量 D. 在C处时,弹簧的弹性势能为mgh 【参考答案】B 【名师解析】圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,所以圆环先做加速运动,再做减速运动,经过B处的速度最大,所以经过B处的加速度为零,所以加速度先减小,后增大,故A正确。圆环的动能、重力势能和弹性势能之和守恒,因由A到C的过程中,弹性势能逐渐变大,则圆环的动能与重力势能之和逐渐减少,选项B错误;由A到B的过程中,因圆环的动能、重力势能和弹性势能之和守恒,则弹性势能和动能增加量之和等于重力势能的减小量,则圆环动能的增加量小于重力势能的减少量,选项C正确;研究圆环从A处由静止开始下滑到C过程,由动能定理得:mgh -W弹=0-0=0,则W 弹=mgh,故D正确;故选B. 2.(2019高考大纲调研卷2)把质量是0.2kg的小球放在竖立的弹簧上,并把球往下按至A的位置,如图甲所示;迅速松手后,弹簧把球弹起,球升至最高位置C(图丙)途中经过位置B时弹簧正好处于自由状态(图乙).已知B、A的高度差为0.1m,C、B的高度差为0.2m,弹簧的质量和空气阻力均忽略不计.重力加速度g=10m/s2,则有()

弹簧的动量和能量问题

弹簧的动量和能量问题

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种:①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余

各处的摩擦不计,重力加速度为g,求: (1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原 长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g =10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

弹簧类问题分析方法专题

弹簧类问题分析方法专题

弹簧类问题分析方法专题 江西省广丰中学周小勇 高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视. 弹簧类命题突破要点 1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化. 2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变. 3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,

也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12 ),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2 ,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 弹簧类问题多为综合性问题,涉及的知识面 广,要求的能力较高,是高考的难点之一. 在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本专题此类问题作一归类分析。 案例探究 一、最大、最小拉力问题 例1. 一个劲度系数为k =600N/m 的轻弹 簧,两端分别连接着质量均为m =15kg 的物体A 、B ,将它们竖直静止地放在水平地面上,

专题58弹簧能量问题

专题5-7 弹簧能量问题 例1.如图所示,轻弹簧下端固定,竖立在水平面上。其正上方A位置有一只小球。小球从静止开始下落,在B位置接触弹簧的上端,在C位置小球所受弹力大小等于重力,在D 位置小球速度减小到零。小球下降阶段下列判断中正确的是 A .在B位置小球动能最大 B.在C位置小球加速度最大 C.从A→C位置小球重力势能的减少等于小球动能的增加 D.从B→D位置小球重力势能的减少小于弹簧弹性势能的增加 例2如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了多少?物块1的重力势能增加了多少? 例3. A、B两木块叠放在竖直轻弹簧上,如图所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值; (2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功. 4.如图所示,一弹簧振子.物块质量为m,它与水平桌面动摩擦因数为μ,开始用手按住物块,弹簧 处于伸状态,然后放手,当弹簧回到原长时物块速度为v1,当弹簧再次回到原长时物块速度为v2,求这两次为原长运动过程中弹簧的最大弹性势能. 5.如图,水平弹簧一端固定,另一端系一质量为m的小球,弹簧的劲度系数为k,小球与水平面之间的摩擦系数为μ,当弹簧为原长时小球位于O点,开始时小球位于O点右方的A点,O与A之间的距离为l0,从静止释放小球。 1.为使小球能通过O点,而且只能通过O点一次,试问μ值应在什么范围? 2.在上述条件下,小球在O点左方的停住点B点与O点的最大距离l1是多少? 例6.如图所示,质量均为m的木块A、B用轻弹簧相连,竖直放置在水平面上,静止时弹簧的压缩量为l。现用竖直向下的力F缓慢将弹簧再向下压缩一段距离后,系统再次处于静止。此时突然撤去压力F,当A上升到最高点时,B对水平面的压力恰好为零。求:压力F在压缩弹簧过程中做的功W。 (提示:利用形变量相同时弹性势能相同。) 例7.如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地面时D的速度的大小是多少? 8.质量m A=10kg的物块A与质量m B=2kg的物块B放在倾角θ=300的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定档板连接,弹簧的劲度系数k=400N/m,现给物块A施加一个平行于斜面向上的F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求:(g=10m/s2) (1)力F的最大值与最小值 (2)力F由最小值到最大值的过程中,物块A所增加的重力势能。 8.(1)60N 100N (2)5J A B C D

弹簧的动量和能量问题#(精选.)

弹簧的动量和能量问题 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1.弹性势能的三种处理方法 弹性势能E P=?kx2,高考对此公式不作要求,因此在高中阶段出现弹性势能问题时,除非题目明确告诉了此公式,否则不需要此公式即可解决,其处理方法常有以下三种: ①功能法:根据弹簧弹力做的功等于弹性势能的变化量计算;或根据能量守恒定律计算出弹性势能; ②等值法:压缩量和伸长量相同时,弹簧对应的弹性势能相等,在此过程中弹性势能的变化量为零; ③“设而不求”法:如果两次弹簧变化量相同,则这两次弹性势能变化量相同,两次作差即可消去。 二、例题精讲 2.(2006年·天津理综)如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,一端与质量为m2的档板B相连,弹簧处于原长时,B恰位于滑道的末端O点.A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求:(1)物块A在与挡板B碰撞前瞬间速度v的大小; (2)弹簧最大压缩量为d时的弹性势能E p(设弹簧处于原长时弹性势能为零). 3.如图所示,在竖直方向上,A、B两物体通过劲度系数为k=16 N/m的轻质弹簧相连,A放在水平地面上,B、C两物体通过细线绕过轻质定滑轮相连,C放在倾角α=30°的固定光滑斜面上. 用手拿住C,使细线刚刚拉直但无拉力作用,并保证ab段的细线竖直、cd段的细线与斜面平行.已知A、B的质量均为m=0.2 kg,重力加速度取g=10 m/s2,细线与滑轮之间的摩擦不计,开始时整个系统处于静止状态.释放C后,C沿斜面下滑,A刚离开地面时,B获得最大速度,求:

高中物理弹簧类问题专题练习总结附详细答案

- v 甲 高 中物理弹簧类问题专题练习 1.图中a 、b 为两带正电的小球,带电量都是q ,质量分别为M 和m ;用一绝缘弹簧联结,弹簧的自然长度很小,可忽略不计,达到平衡时,弹簧的长度为d 0。现把一匀强电场作用于两小球,场强的方向由a 指向b ,在两小球的加速度相等的时刻,弹簧的长度为d 。( ) A .若M = m ,则d = d 0 B .若M >m ,则d >d 0 C .若M <m ,则d <d 0 D .d = d 0,与M 、m 无关 2. 如图a 所示,水平面上质量相等的两木块A 、B 态.现用一竖直向上的力F 拉动木块A ,使木块A 向上做匀加速直线运动,如图b 所示.研究从力F 刚作用在木块A 的瞬间到木块B 刚离开地面的瞬 间这个过程,并且选定这个过程中木块A 列图象中可以表示力F 和木块A 的位移x 之间关系的是( 3.如图甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得( ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 4.如图所示,绝缘弹簧的下端固定在斜面底端,弹簧与斜面平行,带电小球Q (可视为质点)固定在光滑绝缘斜面上的M 点,且在通过弹簧中心的直线ab 上。现把与Q 大小相同,带电性也相同的小球P ,从直线ab 上的N 点由静止释放,在小球P 与弹簧接触到速度变为零的过程中( ) A.小球P 的速度是先增大后减小 B.小球P 和弹簧的机械能守恒,且P 速度最大时 所受弹力与库仑力的合力最大 C.小球P 的动能、重力势能、电势能与弹簧的弹 性势能的总和不变 D.小球P 合力的冲量为零 A B C D

与弹簧有关的物理问题分析(物理)

与弹簧有关的物理问题分析 弹簧类命题突破要点 下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析。 一、与物体平衡相关的弹簧问题 1.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.m1g/k1 B.m2g/k2 C.m1g/k2 D.m2g/k2 2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ). A.S1在上,A在上 B.S1在上,B在上 C.S2在上,A在上 D.S2在上,B在上

4.如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度. (2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件 不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由. 二、与动力学相关的弹簧问题 5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( ) A.M>m B.M=m C.M

弹簧问题(能量)

弹簧的能量专题 1、如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环.圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到 最大距离的过程中 A .圆环的机械能守恒 B .弹簧弹性势能变化了mgL C .圆环下滑到最大距离时.所受合力为零 D .圆环重力势能与弹簧弹性势能之和保持不变 2、如图所示,轻质弹簧一端固定,另一端与质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长。圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC=h 。圆环在C 处获得一竖直向上的速度v ,恰好能回到A ;弹簧始终在弹性限度之内,重力加速度为g ,则圆环 A .下滑过程中,加速度一直减小 B .下滑过程中,克服摩擦力做功为214 mv C .在C 处,弹簧的弹性势能为214 mv mgh D .上滑经过B 的速度大于下滑经过B 的速度 3、在倾角为θ的光滑斜面上放有两个用轻弹簧相连接的物块A 、B ,它们的质量分别为m 1、m 2(m 1<m 2),弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,如图所示.现开始用一恒力F 沿斜面方向拉物块A 使之向上运动,当物块B 刚要离开C 时,物块A 运动的距离为d ,速度为v .则( ) A .此时物块A 的加速度为F -kd m 1 B .该过程中,物块A 的速度逐渐增大

C .此时物块A 所受重力做功的功率为m 1gv D .该过程中,弹簧弹性势能的增加量为 Fd -m 1gd sin θ-12m 1v 2 4、如图5-4-7所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点。用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L 。现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点。已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求: 图5-4-7 (1)物体A 向下运动刚到C 点时的速度; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能。 5、如图所示,质量m B =3.5kg 的物体B 通过一轻弹簧固连在地面上,弹簧的劲度系数k=100N/m .一轻绳一端与物体B 连接,绕过无摩擦的两个轻质小定滑轮O 1、O 2后,另一端与套在光滑直杆顶端的、质量m A =1.6kg 的小球A 连接.已知 直杆固定,杆长L 为0.8m ,且与水平面的夹角θ=37°.初始时使 小球A 静止不动,与A 端相连的绳子保持水平,此时绳子中的 张力F 为45N .已知AO 1=0.5m ,重力加速度g 取10m/s 2 ,绳子 不可伸长.现将小球A 从静止释放,则: (1)在释放小球A 之前弹簧的形变量; (2)若直线CO 1与杆垂直,求物体A 运动到C 点的过程中绳子 拉力对物体A 所做的功; (3)求小球A 运动到底端D 点时的速度. 6、如图所示,质量为m 1的物体A 经一轻质弹簧与下方斜面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,斜面是光滑的,其倾角为θ.A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿斜面方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开挡板但不继续上升.若将C 换成另一个质量为(m 1+m 3)的物体D ,仍从上述初始位置由静止状态释放,已知重力加速度为g .求: (1)当B 刚离开挡板时物体A 的加速度 (2)当B 刚离开挡板时D 的速度大小是多少?

人教课标版高中物理选修3-5:《动量和能量综合问题》教案-新版

《动量和能量综合问题》教学设计 一、知识网络 二、基本模型 1、弹簧类模型 2、子弹打木块模型 3、车摆模型 三、例题展示 例1:如图所示,光滑水平面上,轻弹簧两端分别拴住质量均为m的小物块A 和B,B物块靠着竖直墙壁。今用水平外力缓慢推A,使A、B间弹簧压缩,当压缩到弹簧的弹性势能为E时撤去此水平外力,让A和B在水平面上运动.求:(1)当B离开墙壁时,A物块的速度大小; (2)当弹簧达到最大长度时A、B的速度大小; (3)当B离开墙壁以后的运动过程中,弹簧弹性势能的最大值.

F 练习1:如图示,在光滑的水平面上,质量为m的小球B连接着轻质弹簧,处于静止状态,质量为2m的小球A以初速度v0向右运动,接着逐渐压缩弹簧并使B 运动,过了一段时间A与弹簧分离。 (1)当弹簧被压缩到最短时,弹簧的弹性势能E P多大? (2)若开始时在B球的右侧某位置固定一块挡板,在A球与弹簧未分离前使B 球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板的碰撞时间极短,碰后B球的速度大小不变但方向相反,欲使此后弹簧被压缩到最短时,弹性势能达到第(1)问中E P的2.5倍,必须使B球在速度多大时与挡板发生碰撞? 例2:如图所示,在光滑的水平面上,质量为4m、长为L的木板右端紧靠竖直墙壁,与墙壁不粘连。质量为m的小滑块(可视为质点)以水平速度v0滑上木板左端,滑到木板右端时速度恰好为零。现小滑块以水平速度v滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,以原速率弹回,刚好能够滑到木板左端而不从木板上落下,球v/v0的值。 练习2:如图示,M为悬挂在竖直平面内某一点O的木质小球,(可以看作质点)悬线长为L,质量为m 的子弹以水平初速v0射入球在中而未穿出,要使子弹射入小球后,小球能在竖直平面内运动,悬线始终不发生松弛,求子弹的初速度v0的大小应满足的条件(不计空气阻力)

高考物理考点最新模拟题精练专题6.10与弹簧相关的能量问题基础篇含解析

专题6.10与弹簧相关的能量问题(基础篇) 一.选择题 1. (2019河南郑州二模)蹦极是一项考验体力、智力和心理承受能力的空中极限运动。跳跃者站在约50m 高的塔台上,把一根原长为L的弹性绳的一端绑在双腿的踝关节处,另一端固定在塔台上,跳跃者头朝下跳下去。若弹性绳的弹力遵守胡克定律,不计空气阻力,则在跳跃者从起跳到第一次下落到最低点的过程中,跳跃者的动能Ek(图线①)和弹性绳的弹性势能Ep(图线②)随下落高度的变化图象中,大致正确的是() 【参考答案】B 【命题意图】本题以蹦极为情景,考查蹦极过程中动能和弹性绳的弹性势能随下落高度的变化的分析及其相关知识点。 【解题思路】在跳跃者起跳到下落到弹性绳刚伸直(0~L)的过程中动能随下落高度h的增加线性增大;再往下落时动能和弹性势能都增大,当弹性绳的弹力等于跳跃者的重力时,速度最大,动能最大;继续向下落时动能减小,弹性绳的弹性势能增大,图象B正确。 【易错警示】解答此题常见错误主要有:没有考虑到弹性绳伸直后动能还要增大,导致错选C或A或D。2.(2018?江苏)如图所示,轻质弹簧一端固定,另一端连接一小物块,O点为弹簧在原长时物块的位置.物块由A点静止释放,沿粗糙程度相同的水平面向右运动,最远到达B点.在从A到B的过程中,物块() A. 加速度先减小后增大 B. 经过O点时的速度最大 C. 所受弹簧弹力始终做正 D. 所受弹簧弹力做的功等于克服摩擦力做的功 【参考答案】A,D 【名师解析】物体从A点到O点过程,弹力逐渐减为零,刚开始弹簧弹力大于摩擦力,故可分为弹力大于摩擦力过程和弹力小于摩擦力过程:弹力大于摩擦力过程,合力向右,加速度也向右,由于弹力减小,摩擦力不变,小球所受合力减小加速度减小,弹力等于摩擦力时速度最大,此位置在A点与O点之间;弹力

弹簧问题的归纳总结

弹簧问题的归类总结 1、弹簧的瞬时问题 弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。 2、弹簧的平衡问题 这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或△f=k?△x来求解。 3、弹簧的非平衡问题 这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。 4、弹力做功与动量、能量的综合问题 在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。它有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起,以考察学生的综合应用能力。分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。 例1在原子物理中,研究核子与核子关联的最有效途经是“双电荷交换反应”。这类反应的前半部分过程和下面力学模型类似。两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。在它们左边有一垂直轨道的固定档板P,右边有一小球C沿轨道以速度v0射向B球,如图7所示,C与B发生碰撞并立即结成一个整体D。在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。然后,A球与档板P发生碰撞,碰后A、D静止不动,A与P接触而不粘连。过一段时间,突然解除销定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。 (1)求弹簧长度刚被锁定后A球的速度。 (2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。 解:整个过程可分为四个阶段来处理. (1)设C球与B球粘结成D时,D的速度为v1,由动量守恒定律,得 图—9

物理易错疑难考点—与弹簧相关的能量问题带解析

物理易错疑难考点—与弹簧相关的能量 问题(带解析) 一.选择题 1.(2016河南洛阳高三质检)在倾角为θ的光滑斜面上 有两个用轻弹簧相连接的物块A、B,它们的质量均为m,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态。现用一恒力F沿斜面方向拉物块A使之向上运动,当物块 B刚要离开C时,A的速度为v,则此过程(弹簧的弹性势能与弹簧的伸长量或压缩量的平方成正比,重力加速度 为g)() A.物块A运动的距离为2mgsinθk B.物块A加速度为F2m C.拉力F做的功为12mv2 D.拉力F对A做的功等于A的机械能的增加量 【参考答案】.AD 2.(2016辽宁师大附中一模)如图所示,一轻质弹簧竖 立于地面上,质量为m的小球,自弹簧正上方h高处由静止释放,则从小球接触弹簧到将弹簧压缩至最短(弹簧的形变始终在弹性限度内)的过程中,下列说法正确的是() A.小球的机械能守恒

B.重力对小球做正功,小球的重力势能减小 C.由于弹簧的弹力对小球做负功,所以小球的动能一直减小 D.小球的加速度先增大后减小 【参考答案】.B 3.(2015天津理综,5)如图所示,固定的竖直光滑长杆 上套有质量为m的小圆环,圆环与水平状态的轻质弹簧 一端连接,弹簧的另一端连接在墙上,且处于原长状态。现让圆环由静止开始下滑,已知弹簧原长为L,圆环下 滑到最大距离时弹簧的长度变为2L(未超过弹性限度), 则在圆环下滑到最大距离的过程中() A.圆环的机械能守恒 B.弹簧弹性势能变化了3mgL C.圆环下滑到最大距离时,所受合力为零 D.圆环重力势能与弹簧弹性势能之和保持不变 【参考答案】.B 【名师解析】圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组 成的系统机械能守恒,故A、D错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零, 故C错误;圆环重力势能减少了3mgl,由能量守恒定律 知弹簧弹性势能增加了3mgl,故B正确。

弹簧问题中的能量与动量 (0)

弹簧问题中的能量与动量 在力学主干知识的考查中,能量与动量又永远是考查的重中之重。 一.弹簧基础知识 弹簧类弹力: 大小:F=kx (在弹性限度以内); 方向:沿弹簧轴线而指向弹簧的恢复原状的方向 二.弹簧问题中的能量与动量分析 在如图1所示的装置中,木块B 与水平桌面间的接触是光 滑的,子弹A 沿水平方向射入木块后,留在木块内,将弹簧压 缩到最短。若将子弹、木块和弹簧合在一起作为研究对象(系统),此系统从子弹开始射入木块到弹簧压缩到最短的整个过程中,动量是否守恒?机械能是否守恒? 例1:如图1所示,若木块的质量为M ,子弹的质量为m ,弹簧为轻质弹簧,子弹以速度v 0射入木块B 后能在极短时间内达到共同速度。求弹簧可能具有的最大弹性势能。 分析:学生在分析过程中,最容易怱略的就是的在A 、B 的碰撞过程中存在能量的损失。 运动情景分析:过程一:子弹A 射入木块B 的过程;过程二:子弹A 和木块B 一起压缩弹簧,做加速度越来越大的变减速直线运动。 对子弹A 和木块B 构成的系统,在子弹A 射入木块B 的过程中,内力远大于外力,系统动量守恒,设子弹射入木块后的共同速度为1v ,由动量守恒定律,有: 10)(v m M mv += ① 对子弹A 、木块B 和弹簧构成的系统,从子弹射入木块后到弹簧压缩到最短的过程中,系统能量守恒,有: ()21max 2 1v m M E P += ② 联立①②两式得:弹簧具有的最大弹性势能为()m M v m E P +=2202max 例2:如图2所示,轻弹簧的一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态。另一质量与B 相同滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后B 紧贴 在一起运动,但互不粘连。已知最后A 恰好返回出发点P 并停止。滑块A 和B 与导轨的滑动摩擦因数都为μ,运动 过程中弹簧最大形变量为2l ,求A 从P 出发时的初速度0v 。 分析:此变式的物理情景较复杂,注意分析物理过程,再针对不同的过程选择恰当的规律列式。 过程一:对滑块A ,从P 到与B 碰撞之前做匀减速直线运动,设滑块A 与B 碰撞前瞬间的速度为1v ,由动能定理得 202112 121mv mv mgl -=-μ ① 图1

弹簧的能量问题和能量守恒

能量守恒练习 1.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中() A.圆环与橡皮绳组成的系统机械能守恒B.圆环机械能先不变后减小 C.橡皮绳再次到达原长时圆环动能最大D.最终橡皮绳的弹性势能增加了mgh 2.如图所示,物体A、B通过细绳及轻质弹簧连接在轻滑轮两侧,物体A、B的质量都为m.开始时细绳伸直,用手托着物体A使弹簧处于原长且A与地面的距离为h,物体B静止在地面上.放手后物体A下落,与地面即将接触时速度大小为v,此时物体B对地面恰好无压力,则下列说法中正确的是( ) A.弹簧的劲度系数为 B.此时弹簧的弹性势能等于 C.此时物体B的速度大小也为v D.此时物体A的加速度大小为g,方向竖直向上 3.如图所示为通过弹射器研究轻弹簧的弹性势能的实验装置。半径为R的光滑3/4圆形轨道竖直固定于光滑水平面上并与水平地面相切于B点,弹射器固定于A处。某次实验过程中弹射器射出一质量为m的小球,恰能沿圆轨道内侧到达最髙点C,然后从轨道D处(D与圆心等高)下落至水平面。忽略空气阻力,取重力加速度为g。求:(1).小球落至水平面时的动能(2).小球运动至最低点B时对轨道压力(3).释放小球前弹射器的弹性势能

齐平,静止放于光滑斜面上,一 7.如图,质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g. 8.如图所示,在某竖直平面内,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径r=0.2m的四分之一细圆管CD,管口D端正下方直立一根劲度系数为k=100N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐.一个质量为1kg的小球放在曲面AB上,现从距BC的高度为h=0.6m处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口C端时,它对上管壁有F N=2.5mg的相互作用力,通过CD后,在压缩弹簧过程中滑块速度最大时=0.5J.取重力加速度g=10m/s2.求: 弹簧的弹性势能为E (1)小球在C处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km; (3)小球最终停止的位置. 如图所示,一轻质弹簧固定于O点,另一端固定一小球,将小球从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让其自由摆下,不计空气阻力,在小球摆向最低点B的过程中,下列说法正确的是() A.小球的机械能守恒B.小球的机械能减少 C.小球的重力势能与弹簧的弹性势能之和不变D.小球与弹簧组成的系统机械能不守恒

弹簧的动量和能量问题(答案)

弹簧的动量和能量问题(参考答案) 一、知识清单 1.【答案】 二、例题精讲 2.【答案】(1)√2gh (2)m1^2gh/(m1+m2)-?(m1+m2)gd 4.【答案】(1)滑块a的初速度大小为2m/s,a、b正碰中损失的机械能△E为1J; (2)滑块c的质量为6kg; (3)此后弹簧弹性势能最大值E p的表达式为:E P=,当时,E P能取得最大值,最大值:E Pm=1J. 【解析】由图乙所示图象求出速度,分析清楚过程,应用动量守恒定律与能量守恒定律分析答题. 【解答】解:(1)由图乙所示图象可知,a、b粘合后瞬间的速度大小:v d1=1m/s…①, a、b正碰过程中动量守恒,以a的初速度方向为正方向,由动量守恒定律得::m a v0=m d v d1…②, 解得,滑块a的初速度:v0=2m/s…③, 由能量守恒定律可得a、b正碰中损失的机械能:△E=m a v02﹣m d v d12…④ 代入数据解得:△E=1J; (2)由图乙所示可知,弹簧第一次恢复形变瞬间,d的速度为:v d2=﹣0.5m/s…⑤ d、c和弹簧构成的系统动量守恒、机械能守恒,以d、c系统的初速度方向为正方向,由动量守恒定律得:m d v d1=m d v d2+m c v c2…⑥ 由能量守恒定律得:…⑦

代入数据解得滑块c 的质量为:m c =6kg…⑧; (3)设猛击滑块c 前的瞬间,d 的速度大小为v d3,则有: m d v d1=m d v d3+m c v x ,v d3=1﹣3v x …⑨ 此后,当滑块c 与d 共速瞬间,弹簧弹性势能最大,以d 的初速度方向为正方向,由动量守恒定律得: m d v d3+m c v x =(m d +m c )v', 得:…⑩ 由能量守恒定律得,最大弹性势能: , 解得:E P = , 当时,E P 能取得最大值,最大值:E Pm =1J ; 5. 【答案】(1)mg-ma (2) 【解析】(1)开始运动时,物体受物体受重力mg 和支持力N,由牛顿运动定律:mg-N=ma ,所以N=mg-ma (2)运动过程中,m 的受力:mg-F-N=ma 随着向下运动,F 增大,N 减小,当N =0时,分离则此时:mg-F =ma 所以F =m(g-a) F =kx 得: 设时间为t ,有: ?at 2=x ∴ 6. 【答案】 (1)2gR (2)125mgR (3)355gR 13 m 【解析】(1)根据题意知,B 、C 之间的距离l 为 l =7R -2R ① 设P 到达B 点时的速度为v B ,由动能定理得 mgl sin θ-μmgl cos θ=12mv 2B ② 式中θ=37°,联立①②式并由题给条件得 v B =2gR ③ (2)设BE =x ,P 到达E 点时速度为零,设此时弹簧的弹性势能为E p .P 由B 点运动到E 点的过程中,由动能定理有 mgx sin θ-μmgx cos θ-E p =0-12mv 2B ④ E 、F 之间的距离l 1为 l 1=4R -2R +x ⑤ P 到达E 点后反弹,从E 点运动到F 点的过程中,由动能定理有

相关主题
文本预览
相关文档 最新文档