当前位置:文档之家› 总线相对于CPU或其它芯片的位置可分为

总线相对于CPU或其它芯片的位置可分为

总线相对于CPU或其它芯片的位置可分为

?总线相对于CPU或其它芯片的位置可分为

o内部总线:在CPU内部,寄存器之间和算术逻辑部件ALU与控制部件

之间传输数据所用的总线。

o外部总线:是指CPU与内存RAM、ROM和输入/输出设备接口之间进

行通讯的通路。

?按总线功能来划分又可分为:

o地址总线:地址总线用来传送地址信息

o数据总线:数据总线用来传送数据信息

o控制总线:控制总线用来传送各种控制信号

?计算机的总线按其功用来划分主要有

o系统总线:ISA(AT)标准,MCA,EISA,VESA,PCI,AGP

o局部总线:VESA Local Bus PCI总线

决定总线性能的主要有总线时钟频率,总线宽度,它们的计算公式为:

传输速率=总线时钟频率X总线宽度/8。

总线类型

ISA 总线PCI 总线AGP 接口字长(位)16 32/64 64

最大带宽(位)16 64 64

最高时钟频率MHz 8 33 66 最大稳态数据传输速率MB/s 16 133 266 带负载能力(台)>12 10 1 多任务能力Y Y N 是否独立于微处理器Y N

intel CPU与芯片组对应支持关系

封装形式处理器型号支持内存类型支持主板新特性 775netburst微架构: Prescott Pentium 4 505J,506,520-570,520J- 570J,521-571 Prescott 2M Pentium 4 630-670,662-672 CedarMill Pentium 4 631-661 Prescott 256K Celeron D 325J-345J,326-351 Prescott Pentium 4 Extreme Edition 3724MHz Smithfield Pentium D 805,820-840 Smithfield Pentium Extreme Edition 840 Presler Pentium D 915,925,920-960 Presler Pentium Extreme Edition 950/960 core微架构 (conroe,kentsfield,wolfdale,yokfield) Conroe Core 2 Duo E4300-4400,E63X0-68X0, Pentium Dual-Core E21X0-E2200 Conroe Core 2 Extreme,X6800 Conore Celeron Dual Core E1X00 Kentsfield Core 2 Quad,Q6600,Q6700 Kentsfield Core 2 Extreme,QX6700,QX6850,QX6800 Penryn:采用了45纳米高-k制造技术(采用铬合金高-K与 金属栅极晶体管设计),并对酷睿微体系结构进行了增 强 双核心桌面处理器Wolfdale、四核心桌面处理器 Yorkfield Wolfdale Core 2 Duo E8X00 45nm Wolfdale Core 2 Duo E7X00 45nm Wolfdale Pentium Dual Core E5X00 45nm Wolfdale Pentium Dual Core E6300 45nm Yorkfield Core 2 Quad,Q8X00,Q9X00,Q9X50 Yorkfield Core 2 Extreme,QX9650,QX9770 DDR2/DDR3 X38、P35、G33 (ddr2 667/ddr3 800)、Q33、G35 、Q35、G31(ddr2 667) x48.p45.p43.g45 .g43.g41 q45.q43(ddr3 1066,ddr3 1333) 1156Westmere微架构: Westmere将是第二代Nehalem处理器 Clarkdale(DAUL,1G) i3 530 540 550 560 I5 650 660 670 680 Nemhalem微架构: lynnfield(QUAD,1G) I7 860 I7 860 I7 870 I5 760 I5 750 Lynnfield是一代i7,完整的四核,屏蔽掉两 个核心的Lynnfield就是一代i5,Clarkdale是 一代i3,Clarkdale是在i5的基础上在缩减QPI 总线带宽和睿频技术 DDR3 P57、H57、H55、 P55、Q57 LGA1156平台带核 显的CPU只有I3系 列和I5的6系列, 其他CPU不带核显 。 CPU集成GFX图形单元 1366Gulftown(6c) i7 990x i7 980x Bloomfield(4c) i7 930 i7 960 i7 950 i7 930 i7 960 i7 965 i7 975 DDR3X58(Flagship)intel处理器接口与对应主板详细规格

常见PHY芯片品牌介绍

常见PHY芯片品牌介绍 2008-01-07 11:39 目前市场上百兆交换机是一个非常成熟的产品,各个芯片公司对自己的产品都进行了多次的优化和精简。总的来说规格和性能方面都能满足作为2层傻瓜型交换机的应用。一些主要的技术指标也基本相同。所有公司的芯片都可以支持10/100M自适应;全线速交换;支持线序交叉功能。下面我们将深入分析目前市场上采用的百兆交换机方案: ?1.Realtek公司??Realtek 公司相信大家比较熟悉,市场上百兆网卡大多采用他们公司8139芯片。作为一个网络低端市场的芯片供应商16口和24口百兆交换机也是他们主推的产品。Realtek公司百兆交换机方案的芯片型号为:RTL8316+ RTL8208;24口RTL8324 +RTL8208。Realtek公司采用的是MAC(媒介控制芯片)与PHY(物理层芯片)相分离的架构。RTL8316和RTL8324是MAC(媒介控制芯片),RTL8208是8口的PHY(物理层芯片)。RTL8316 集成4M位DRAM缓存用于数据包存储转发;RTL8324集成4 M 位缓存。这个缓存的大小对于交换机处理数据的能力有着很大的影响!RTL8316和RTL8324 MAC地址表的深度为8K! 2.ICPlus公司? ICPlus公司也是台湾一家有着多年历史的网络芯片生产商。ICPlus公司百兆交换机方案的芯片型号为:IP1726+IP108。同样ICPlus公司也采用MAC(媒介控制芯片)与PHY (物理层芯片)相分离的架构。 ?IP1726是MAC(媒介控制芯片),IP108是8口的PHY(物理层芯片)。IP1726集成1.5M 位缓存用于数据包存储转发。IP1726MAC地址表的深度为4K! 3.Admtek公司? Admtek公司今年已经被德国英飞凌公司收购,实际上应该是德国公司。Admtek公司百兆交换机方案的芯片型号为:ADM6926 + ADM7008。同样Admtek公司也采用MAC(媒介控制芯片)与PHY(物理层芯片)相分离的架构。ADM6926是MAC(媒介控制芯片),ADM7008是8口的PHY(物理层芯片)。ADM6926集成4 M 位DRAM缓存用于数据包存储转发。ADM6926MAC地址表的深度为4K! ?4.Broadcom公司? Broadcom公司是数据通讯芯片行业无论在技术还是在市场上都处于主导和领先地位的公司美国公司。2层傻瓜型交换机芯片只是其Robo Switch产品线中的一小部分。作为领导者Broadcom公司在几年前率先将MAC与PHY集成在同一颗芯片当中。其芯片的网络兼容性,稳定性是其他公司需要无法企及的。Broadcom公司百兆交换机方案的芯片型号为:AC526(16口),AC524(24口)。AC526/524集成4 M 位缓存用于数据包存储转发。AC526/524MAC地址表的深度为4K!??通过以上的比较,各个公司的产品规格参数基本相同。作为在市场上销售多年的产品,其品质50%取决于芯片方案的选择,50%取决于不同交换机品牌生产厂家的设计,采购和生产的控制能力。目前最终用户在选择交换机时可以结合以上两个方面进行选择。 以下是目前常用的网卡控制芯片。?1、Realtek8201BL:是一种常见的主板集成网络芯片(又称为PHY网络芯片)。PHY芯片是指将网络控制芯片的运算部分交由处理器或南桥芯片处理,以简化线路设计,从而降低成本。 2、Realtek 8139C/D:是目前使用最多的网卡之一。8139D主要增加了电源管理功能,其他则基本上与8139C芯片无异。该芯片支持10M/100Mbps。 3、lntelPro/100VE:lntel公司的入门级网络芯片。? 4、nForce MCPN

时钟频率

时钟频率 一、频率是什么? 频率用f表示,基本单位为“1次/秒”,记做Hz(赫兹)。1Hz就是每秒一次,10Hz是每秒10次(图1)。不过,Hz这个单位在电脑里面太小了,因此通常以KHz、MHz或GHz来表示信号频率。随着频率的攀升,若干年以后恐怕需要使用THz作为频率的单位了(表1)。 表1:频率表示法 频率单位kHz MHz GHz THz 换算关系1×10^3Hz 1×10^6Hz 1×10^9Hz 1×10^12Hz 英文名称Kilo Hz Mega Hz Giga Hz Tera Hz 中文名称千赫兹兆赫兹吉赫兹太赫兹 1.周期与频率 在电脑技术中,与频率相对应的一个常用术语是周期。周期是频率的倒数,频率越高,周期越短。譬如时钟频率为1GHz时,其时钟周期为1纳秒(表2)。 表2:频率与周期对照表 时钟频率时钟周期时钟频率时钟周期 5MHz 200ns 133MHz 7.5ns 10MHz 100ns 166MHz 6.0ns 20MHz 50ns 200MHz 5.0ns 25MHz 40ns 250MHz 4.0ns 33MHz 30ns 300MHz 3.3ns 40MHz 25ns 333MHz 3.0ns 50MHz 20ns 400MHz 2.5ns 66MHz 15ns 500MHz 2.0ns 80MHz 12ns 800MHz 1.2ns 100MHz 10ns 1GHz 1.0ns 120MHz 8.3ns 4GHz 0.25ns 2.带宽与频率 与频率相关的另一个参数是数据传输率,也称为“带宽”,用于衡量数据通信速度的快慢。通常情况下,带宽=时钟频率×(位宽÷8)。譬如PCI总线的时钟频率为33.33MH z,因其位宽为32bit,所以其带宽为33.33×(32÷8)=133MB/s。 3.CPU的频率 在286及以前的电脑中,CPU的频率与外部总线的频率相同。Intel 386电脑中采用了时钟分频方式,时钟电路提供给CPU的时钟信号的频率66MHz,而CPU内部则以33MHz的频率工作。Intel 80486 DX2则采用倍频方式,它允许CPU以2倍或3倍于外部总线的速度运行,但仍以原有时钟频率与外界通讯。进入Pentium时代以后,倍频技术获得广泛应用,目前处理器的倍频已达20倍。 系统时钟频率:通常也称作“外频”——CPU外部总线的时钟频率。外频由频率合成器芯片提供,后文将对频率合成器芯片进行详细介绍。主频:主频是CPU内核(整数和浮点运算器)电路的实际运行频率,由外频(或前端总线频率)与倍率共同决定,也即:主频=外频×倍率。 前端总线频率:前端总线(Front Side Bus,FSB)频率是CPU和北桥芯片间进行数据交换

一文读懂处理器,内核,芯片三个概念的区别

一文读懂处理器,内核,芯片三个概念的区别 一、处理器简介处理器一般指中央处理器。中央处理器(CPU,Central Processing Unit)是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心(Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。 中央处理器主要包括运算器(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)。它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。 处理器主要功能:处理指令 英文Processing instructions;这是指控制程序中指令的执行顺序。程序中的各指令之间是有严格顺序的,必须严格按程序规定的顺序执行,才能保证计算机系统工作的正确性。 执行操作 英文Perform an action;一条指令的功能往往是由计算机中的部件执行一系列的操作来实现的。CPU要根据指令的功能,产生相应的操作控制信号,发给相应的部件,从而控制这些部件按指令的要求进行动作。 控制时间 英文Control time;时间控制就是对各种操作实施时间上的定时。在一条指令的执行过程中,在什么时间做什么操作均应受到严格的控制。只有这样,计算机才能有条不紊地工作。处理数据 即对数据进行算术运算和逻辑运算,或进行其他的信息处理。 其功能主要是解释计算机指令以及处理计算机软件中的数据,并执行指令。在微型计算机中又称微处理器,计算机的所有操作都受CPU控制,CPU的性能指标直接决定了微机系统的性能指标。CPU具有以下4个方面的基本功能:数据通信,资源共享,分布式处理,提供系统可靠性。运作原理可基本分为四个阶段:提取(Fetch)、解码(Decode)、执行(Execute)和写回(Writeback)。 处理器工作过程:CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指

各手机芯片厂商介绍

各手机芯片厂商介绍 TI德州仪器虽然是自2002年才进行WLAN芯片开发行列,但是凭借其作为了际半导体芯片大厂的实力和经验,加上几年来一系列的成功并购,使其很快就在WLAN领域占住了脚跟,也使得它仅在1年之后的2003年度就把GlobespanVirata赶下冠军宝座。目前TI为全球超过40家制造商提供WLAN技术,其中包括:D-LinkSystems(友讯)、惠普(HP)、英特尔(Intel)、摩托罗拉(Motolora)、网件(NETGEAR)公司、Netopia公司、三星机电(SamsungEM)、SiemensSubscriberNetworks、SMCNetworks、U.S.Robotics、Westell及众多亚洲ODM厂商等。 在2003年,TI主要是以802.11b+芯片产品作为重点市场进行开拓的,这在当时IEEE802.11g标准才未正式发布,而IEEE802.11a由于其自身价格昂贵与不与IEEE802.11b设备兼容的特殊原因,并不受许多用户接受的大环境下,TI 的具有22Mbps速率,并且与IEEE802.11b设备完全兼容,与IEEE802.11b设备价格差不多的产品策略是非常深得人心的。但这只能是在2003年度,随着IEEE802.11g标准的正式发布,早在2002年就开始研发的各种基于IEEE802.11b/g双重标准和IEEE802.11a/b/g三大标准的多模式WLAN模式设备不断上市,所以目前TI的WLAN产品线非常齐全,它可以全面地为客户提供低功耗的802.11a、802.11b、802.11b+、802.11g和802.11g+方案。尽管它的产品型号并不多,但它的每一种型号的产品均支持多种WLAN标准。下面分别介绍。 (1)TNETW1230 TNETW1230是TI最新一个WLAN芯片产品,它是一块大小仅为12mmx12mm 的单芯片的MAC和基带处理器单芯片,芯片外观如图1左图所示。它全面支持IEEE802.11a/b/g三大WLAN标准,它可以全面支持802.11a、802.11b、802.11b+、802.11g和802.11g+标准,为客户提供最为全面的WLAN芯片方案。它具有非常低的功耗,适用于像手机、手持电话和PDA之类便携式电池供电移动设备使用。 TNETW1230它具有以下关键特性: TI的ELP(EnhanceLowPower,超低电源)技术,使得这块芯片可以长久工作在工业中最低的1mA功耗模式。 TNETW1230可以与TI的OMAP处理器、GSM、GPRS和CDMA芯片和单芯片的蓝牙芯片组合使用,形成一个完善的无线系统设计。 TNETW1230包括一个VLYNQ芯片至TNETW1230芯片的低功耗、少引脚串行接口。通过这个接口,TNETW1230可以非常容易地与TI的OMAP处理器和TCS 芯片单元连接,发展Wi-Fi单元电话和PDA无线网络系统。 TNETW1230也可以非常容易地与TI的BRF6100和BRF6150单芯片通过蓝牙方案连接,作为TI蓝牙-802.11方案的一部分一起封装。 MT6226为MT6219costdown产品,内置0.3Mcamera处理IC,支持GPRS、WAP、MP3、MP4等,内部配置比MT6219优化及改善,比如配蓝牙是可用很便宜的芯片CSR的BC03模块USD3即可支持数据传输(如听立体声MP3等)功能。 MT6226M为MT6226高配置设计,内置的是1.3Mcamera处理IC。(2006年MP) MT6227与MT6226功能基本一样,PINTOPIN,只是内置的是2.0Mcamera 处理IC。(2006年MP) MT6228比MT6227增加TVOUT功能,内置3.0Mcamera处理IC,我公司供应的MTK手机套片详解:

电压基准芯片的参数解析及应用技巧

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V输出电压,并提供良好的温度漂移特性和噪声特性。

NEURON多处理器芯片及其应用

Neuron多处理器芯片及其应用摘要:Neuron芯片是美国Mitorola公司和日本Toshiba 公司制造的一种多处理器结构的神经元芯片。它将通信协议和控制用微处理器有效地集成在一起,实现通信、控制、调度和I/O等功能。本文以MC134150为例,介绍有关Neuron芯片的基本结构和组成、LonTalk协议以及应用系统的组成方式等。关键词:神经元芯片多处理器 Neuron固件一、Neuron芯片的基本组成Neuron芯片作为一种多处理器结构的神经元芯片,有着完整的系统资源,如图1所示,其内部集成有三个管线CPU,最高工作频率可达10MHz。它设置有11编程输入、输出引脚(IO1~IO10),编程方法多达34种,方便了实现应用。片内设有EEPROM和RAM,支持有外部扩展多种存储器的接口,最大存储空间允许有64KB。内部含有两个16位定时器/计数器,能够由固件产生15个软件定时器。Neuron芯片的长处还在于它的网络通信功能,引出的五个通信引脚(CP0~CP4)提供了单端、差分和特殊应用模式等三种网络通信方式。 1.处理器单元Neuron芯片集成有三个处理器,其中一个用于执行用户编写的应用程序,另外两个完成网络任务。图2示意了Neuron芯片内三个处理器的功能分配及与内部共享存储器区域之间的关系。(1)MAC处理器是媒体访问控制层处理器。它处理OSI七层网络协议中的1,2层,主要包括驱动通信子系统硬件以及执行冲突回避算法等。MAC 处理器使用位于共享存储器中的网络缓冲区与网络处理器进行通信。(2)网络处理器实现网络协议中的3~6层。它实现网络变量处理、寻址、事务处理、文电鉴别、软件定时器、网络管理和路由等功能。网络处理器通过共享存储器中的网络缓冲区与MAC处理器通信,并采用应用缓冲区与应用处理器进行通信。应用缓冲区也是设置在共享存储器中的。对缓冲区的访问都用硬件信号灯来协调,以便在更新共享数据时消除竞争。(3)应用处理器一方面执行用户编写的应用程序代码,另一方面执行由用户代码所调用的操作系统服务。大多数应用程序均可采用Neuron C语言来编制,使编程工作真正从繁琐的汇编语言中解脱出来。2.存储器分配MC143150的外扩存储器接口总线中,有8位双向数据总线、16位处理器驱动的地址总线以及用于外部存储器存取访问的两个接口信号线R/W和E。总的地址空间为64KB,其中有6KB 的地址空间保留在芯片内,剩余的58KB的地址空间供外扩存储器使用。在外扩存储器中,通常用16KB存放固件,其余的42KB用于存放用户程序和数据信息。3.应用I/O口具有11个引脚的I/O接口提供有34种编程方式,另外,2个16位定时器/计数器可用于频率和定时I/O。由固件产生的15种软件定时器并不占用应用处理器的运算时间,而由完成网络功能的处理器实现。因此,用户可直接使用软件定时器,不必考虑其具体操作。[!--empirenews.page--]Neuron芯片提供的11个I/O引脚(IO0~IO10)可通过编程设定为34种不同的I/O对象,支持电平、脉冲、频率、编码等各种信号模式,有直接I/O对象、定时器/计数器I/O对象、串行I/O对象、并行I/O对象等供用户选择。它们与集成的硬件和固件一起可用于连接马达、阀门、显示驱动器、A/D转换器、压力传感器、热敏电阻、开关量、继电器、可控硅、转速计、其他处理器和调制解调器等,方便了实际应用。表1列举了所有I/O对象的基本类型。表1 I/O对象类型参照表I/O对象类型注释Bit input/output位输入/输出Bitshift input/output位称输入/输出Byte input/output字节输入/输出Dualslope input双积分输入Edgedivide output脉冲沿分离输出Edgelog input边沿跳变时间间隔序列输入Frequency output频率输出I2C input/outputI2C输入/输出Infrared input远红外输入Leveldetect input电平监测输入Magcard input磁卡编码输入Magtrackl input经录入1输入Muxbus input/output多总线输入/输出Neurowire input/output神经元接口输入/输出Nibble input/output半字节输入/输出Oneshot output单稳输出Ontime input逻辑电持续时间输入Parallel input/output并行输入/输出Preiod input周期输入Pulsecount input脉冲计数输入Pulsecount output脉冲计数输出Pulsewidth output脉宽输出Quadrature input位置码盘输入Serial input/output串行输入/输出Totalcount input 累加计数输入Touch input/output触点输入/输出Triac output触发输出Triggeredcount

内存和CPU频率匹配方法的探讨

内存和CPU频率匹配方法的探讨 目录 1.CPU频率的概念 (1) 2.前端总线的概念 (2) 3.各种内存频率的名称辨析 (2) 4.内存的类别和属性 (2) 5.Intel平台内存和CPU同步的条件 (3) 6.FSB带宽和内存带宽相匹配条件 (4) 7.Intel平台的内存异步设置方法 (4) 8.AMD平台的内存实际频率的计算方法 (6) 9.关于双通道内存技术 (8) 10. 小结 (11) 11. 后记 (11) 关于内存与CPU搭配的问题,是电脑爱好者最关心的问题之一。怎样搭配?在网上有成百上千篇文章,把人给看得眼花缭乱,如果不仔细分析判断,很难辨别哪个是正确的,哪个是错误的。据我分析,形成这种局面的原因有多种:一是CPU的外频跟前端总线的频率经常混用,有时还把前端总线跟HT总线也混同;二是三种内存(SDRAM、DDR1 SDRAM、DDR2 SDRAM)的特性不 1

同,但是,经常被混同、混用;三是因为同一个频率有多种名称,各种名称经常被混用;四是Intel的CPU和AMD的CPU特性不同,它们跟内存的搭配方法也不相同,但是经常被混同;五是AMD的K8以前的CPU跟K8及以后的CPU 特性不同,经常被混同;六是各个主板厂商对内存的设置经常采用不同的方法和名称,容易使人迷惑;七是文章写作年代不予注明,不知道说的是哪个年代的、用的是什么型号的内存;八是写作者的水平参差不齐,鱼龙混杂,有时很难辨别孰是孰非。因此,我在学习内存知识时,还真的花了不少时间。因为看得多了,想得也多了,当然,也会萌生一些个人的见解。为了巩固我的学习成果,我作了此小结备忘。当然也希望给同是“菜鸟”的网友们以参考,更欢迎“大侠”们指正。 1.CPU频率的概念 CPU的频率就是我们常说的电脑的速度,非常重要。但是,CPU本身只是一个芯片,不会产生频率,频率是电脑的主板外加给它的。它的主频是它能正常工作的频率,如果频率太高,即对它作过度超频使用时,它会“罢工”甚至被烧坏的。CPU的主频等于外频(CPU Host Frequency)乘以倍频(Multiplier),即 有 主频=外频×倍频 其实,倍频并不是频率,只是一个倍数,倍频器是设在CPU中的。外频是计算机主板上的频率发生器产生的,是计算机的时钟标准,也称为系统时钟频率。例如一个CPU的倍频器的倍数是10,加给它的外频是200 MHz时,这个CPU 的主频就等于 200 MHz×10 = 2000 MHz = 2.0 GHz

LED芯片厂商简介

LED芯片厂商简介 台湾芯片厂商: 晶元光电(Epistar)简称:ES、(联诠、元坤,连勇,国联),广镓光电(Huga),新世纪(Genesis Photonics),华上(Arima Optoelectronics)简称:AOC,泰谷光电(Tekcore),奇力,钜新,光宏,晶发,视创,洲磊,联胜(HPO),汉光(HL),光磊(ED),鼎元(Tyntek)简称:TK,曜富洲技TC,燦圆(Formosa Epitaxy),国通,联鼎,全新光电(VPEC)等。
华兴(Ledtech Electronics)、东贝(Unity Opto Technology)、光鼎(Para Light Electronics)、亿光(Everlight Electronics)、佰鸿(Bright LED Electronics)、今台(Kingbright)、菱生精密(Lingsen Precision Industries)、立基(Ligitek Electronics)、光宝(Lite-On Technology)、宏齐(HARV A TEK)等。 大陆LED芯片厂商: 三安光电简称(S)、上海蓝光(Epilight)简称(E)、士兰明芯(SL)、大连路美简称(LM)、迪源光电、华灿光电、南昌欣磊、上海金桥大晨、河北立德、河北汇能、深圳奥伦德、深圳世纪晶源、广州普光、扬州华夏集成、甘肃新天电公司、东莞福地 电子材料、清芯光电、晶能光电、中微光电子、乾照光电、晶达光电、深圳方大,山东华光、上海蓝宝等。 国外LED芯片厂商: CREE,惠普(HP),日亚化学(Nichia),丰田合成,大洋日酸, 东芝、昭和电工(SDK),Lumileds,旭明(Smileds),Genelite,欧司朗(Osram),GeLcore,首尔半导体等,普瑞,韩国安萤(Epivalley)等。 1、CREE 著名LED芯片制造商,美国CREE公司,产品以碳化硅(SiC),氮化镓(GaN),硅(Si)及相关的化合物为基础,包括蓝,绿,紫外发光二极管(LED),近紫外激光,射频(RF)及微波器件,功率 开关器件及适用于生产及科研的碳化硅(SiC)外延片。 2、OSRAM(欧司朗是西门子全资子公司):是世界第二大光电半导体制造商,产品有

常用电源芯片及其参数

常用电源的电源稳压器件如下: 79L05 负5V稳压器 79L06 负6V稳压器 79L08 负8V稳压器 79L09 负9V稳压器 79L12 负12V稳压器 79L15 负15V稳压器 79L18 负18V稳压器 79L24 负24V稳压器 LM1575T-3.3 3.3V简易开关电源稳压器(1A) LM1575T-5.0 5V简易开关电源稳压器(1A) LM1575T-12 12V简易开关电源稳压器(1A) LM1575T-15 15V简易开关电源稳压器(1A) LM1575T-ADJ

简易开关电源稳压器(1A可调1.23 to 37) LM1575HVT-3.3 3.3V简易开关电源稳压器(1A) LM1575HVT-5.0 5V简易开关电源稳压器(1A) LM1575HVT-12 12V简易开关电源稳压器(1A) LM1575HVT-15 15V简易开关电源稳压器(1A) LM1575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575T-3.3 3.3V简易开关电源稳压器(1A) LM2575T-5.0 5V简易开关电源稳压器(1A) LM2575T-12 12V简易开关电源稳压器(1A) LM2575T-15 15V简易开关电源稳压器(1A) LM2575T-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2575HVT-3.3 3.3V简易开关电源稳压器(1A) LM2575HVT-5.0 5V简易开关电源稳压器(1A) LM2575HVT-12 12V简易开关电源稳压器(1A)

LM2575HVT-15 15V简易开关电源稳压器(1A) LM2575HVT-ADJ 简易开关电源稳压器(1A可调1.23 to 37) LM2576T-3.3 3.3V简易开关电源稳压器(3A) LM2576T-5.0 5.0V简易开关电源稳压器(3A) LM2576T-12 12V简易开关电源稳压器(3A) LM2576T-15 15V简易开关电源稳压器(3A) LM2576T-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2576HVT-3.3 3.3V简易开关电源稳压器(3A) LM2576HVT-5.0 5.0V简易开关电源稳压器(3A) LM2576HVT-12 12V简易开关电源稳压器(3A) LM2576HVT-15 15V简易开关电源稳压器(3A) LM2576HVT-ADJ 简易开关电源稳压器(3A可调1.23V to 37V) LM2930T-5.0 5.0V低压差稳压器

CPU的三个主要参数,主频.总线频率.缓存容量。

要弄明白这些参数的意思,首先要明白MHz(兆赫)是什么东西,MHz(兆赫)是Hz(赫兹)的一个衍生当量级,Hz相应的衍生单位有:kHz(千赫)、MHz(兆赫)、GHz(吉赫)、THz(太赫)、PHz(拍赫) 、EHz(艾赫)。Hz在电子技术中,是指一个按一定电压幅度,一定时间间隔连续发出的脉冲信号(脉冲信号之间的时间间隔称为周期,时间是s(秒)),一秒钟一个周期就是1Hz ,一秒钟1000个周期就是1000Hz。(赫兹频率计算单位为:1 千赫kHz 10^3 Hz =1 000 Hz .1 兆赫MHz 10^6 =Hz 1 000 000 Hz .1 吉赫GHz 10^9 Hz =1 000 000 000 Hz。衍生单位以千进位1000kHz(千赫)=1MHz(兆赫)、1000MHz=1GHz(吉赫))。CPU一般运行在MHz(兆赫)、GHz(吉赫)段,人们偏好用MHz(兆赫)表示。一个cpu 主频如果是1800MHz,也可以叫1.8GHz(吉赫),则表示脉冲信号一秒钟内在这个cpu运行了18亿个周期(一个周期cpu可以完成1次二进制运算)。 以酷睿2双核E8400为例: 主频:3000MHz. 总线频率:1333MHz. 二级缓存容量:6144KB. cpu主频:即CPU内核工作的时钟频率,代表一秒钟内脉冲信号运行了X个周期,主频对于提高CPU运算速度却至关重要,如:CPU在同一个时钟周期内执行同一条运算指令,运行在1000MHz主频时,比运行在2000MHz主频时速度慢一倍,因为2000MHz的时钟周期比1000MHz的时钟周期占用时间减少了一半。同等条件下主频越高运行的速度越快。 但不能精确代表实际的计算速度,因为一颗cpu需要许多技术支持才能有优秀的表现。如:酷睿i3处理器比同频酷睿E快10%以上,AMD闪龙2800+主频1600MHz速度性能却与Intel 的2800MHzCPU相当。CPU的主频代表速度不等同CPU实际的运算能力。 酷睿2双核E8400,主频:3000MHz,就是说一秒钟内脉冲信号可以在E8400中运行30亿个周期。也意味着E8400每秒钟能够完成30亿次二进制运算。 总线频率(FSB):CPU标注的总线频率是指CPU连接到北桥芯片总线的最高频率,CPU 连接到北桥芯片的总线也是CPU与外界交换数据的主要通道,因此前端总线的数据传输能力对整机性能影响很大。最大带宽决定着数据传输速度,而数据带宽的计算公式=总线频率×数据位宽÷8,酷睿2双核E8400,总线频率:1333MHz,(1333x64÷8=10664MB/s),酷睿2双核E4300,总线频率:800(800x64÷8=6400MB/s),计算得知E8400比E4300,数据传输能力强了1.6倍,所以总线频率高的cpu比总线频率低的cpu其数据传输优势不言而喻。高档的cpu一定配有高的总线频率。 酷睿2双核E8400,总线频率:1333MHz,就是说它可以用每秒10664MB带宽传输数据。缓存容量:1L(一级缓存)、L2(二级缓存)、L3(三级缓存)是处理器内部的缓冲存储器,工作在cpu与内存之间,能够大幅度提升CPU的处理速度,缓存大小直接影响CPU性能。缓存作用与内存相仿一同为处理器提供数据,但cpu从缓存上读取数据的速度是内存无法相比拟的。1L与CPU同速运行,L2比一级缓存速度稍慢,但是容量大,三级缓存相对二级缓存速度更慢一些,容量也更大,1L、L2、L3通称为高速缓存。CPU在运行时读取数据的顺序是1L、L2、L3再内存和虚拟内存。只有在缓存中查找不到数据时cpu才会从内存中查找并把这个数据所在的数据块同时调入缓存中,现在大多数CPU缓存读取率可达90%左右,大约10%需要从内存读取,就是说CPU下一次要读取的数据90%都可在缓存中找到,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用。一级缓存制造成本很高生产难度很大,所有cpu一级缓存容量很难扩大。随着CPU制造工艺的发展,二级缓存容量在逐年提升,二级缓存上的差异,往往是同一核心CPU高低端的分水岭。只有高档cpu才具高的二级缓存和三级缓存。 酷睿2双核E8400,二级缓存容量:6144KB,就是说cpu在缓存中一次可以调用一个6144KB

CPU芯片的制作过程

转载自 https://www.doczj.com/doc/c218243906.html, CPU是计算机的心脏,它是决定计算机性能的最重要的部件。同样CPU也是现代社会飞速运转的动力源泉,在任何电子设备上都可以找到微芯片的身影。不过能完成复杂功能的CPU确是以沙子为原料做成的,不得不惊叹于人类的智慧!Intel公布了大量图文资料,详细展示了从沙子到芯片的全过程,满足你的好奇心。 简单地说,处理器的制造过程可以大致分为沙子原料(石英)、硅锭、晶圆、光刻(平版印刷)、蚀刻、离子注入、金属沉积、金属层、互连、晶圆测试与切割、核心封装、等级测试、包装上市等诸多步骤,而且每一步里边又包含更多细致的过程。 下边就图文结合,一步一步看看: ===================================================================== ============= CPU制造:第一阶段图文直播: 沙子:硅是地壳内第二丰富的元素,而脱氧后的沙子(尤其是石英)最多包含25%的硅元素,以二氧化硅(SiO2)的形式存在,这也是半导体制造产业的基础。 (原文件名:1.jpg) 引用图片 硅熔炼:12英寸/300毫米晶圆级,下同。通过多步净化得到可用于半导体制造质量的硅,学名电子级硅(EGS),平均每一百万个硅原子中最多只有一个杂质原子。此图展示了是如何通过硅净化熔炼得到大晶体的,最后得到的就是硅锭(Ingot)。

(原文件名:2.jpg) 引用图片 单晶硅锭:整体基本呈圆柱形,重约100千克,硅纯度99.9999%。 (原文件名:3.jpg) 引用图片 ===================================================================== ============= CPU制造:第二阶段图文直播: 硅锭切割:横向切割成圆形的单个硅片,也就是我们常说的晶圆(Wafer)。顺便说,这下知道为什么晶圆都是圆形的了吧?

全球重点芯片公司介绍

全球重点芯片公司介绍 龙继军 英特尔公司——全球最大的芯片制造商 英特尔公司是全球最大的芯片制造商及国际领先的个人电脑网络产品和通信产品的生产商。自一九八五年进入中国市场以来,英特尔公司已在中国设立了十二个办事机构,并在上海兴建了世界一流的制造工厂。为了与中国的计算机行业共同发展,在上海和北京分别成立了英特尔上海软件实验室和英特尔中国研究中心。 我们不仅努力发展新一代的微型处理器,更为各方人士的沟通,学习和生活作出多元化的改善。杰出的员工是我们成功的关键。英特尔公司以独特的企业文化,"业绩为本"的激励机制及每一位员工都能享受的股票期权计划,创造"良好的工作环境",吸引最优秀的人才。我们身为高科技的先驱者,为您提供不可多得的工作机会。把握科技时代的脉搏,亲身体验探索尖端科技领域的乐趣,发掘具有创意的解决方案,在无止境的挑战中开拓人生的崭新境界,尽在英特尔世界。 日本Elpida公司——全球最大芯片工厂 日本硕果仅存的DRam芯片制造商Elpida内存公司表示,计划在未来三年最多投资5000亿日元(54亿美元)建立全球最大的芯片制造工厂之一。 这一投资突出显示了DRam芯片制造商面临的压力,他们需要通过增加投资来保持竞争力。英飞凌、Nanya技术公司已经宣布将合作投资建立工厂,明年的产量将能达到50000个圆片。 Elpida希望这一投资能使公司进入市场领先者的行列。三星、美光、英飞凌目前主宰着市场。iSuppli 的数据显示,Elpida目前是全球第六大DRam芯片制造商,有4.3%的份额。Elpida是日立和NEC建立的合资企业,希望这家位于Hiroshima的工厂在2005年秋季能开始生产先进的300毫米圆片,主要用于数码产品,其中包括手机和数码电视。 最初的产量将在每月一万个圆片左右,但是在2007年可望提高到每月六万个圆片。ING芯片分析师YoshihiroShimada表示:“这一投资是Elpida生存的条件。如果他们不能发展,就应该退出。所以,他们必须这么做。”Elpida在市场中还是一个轻量级选手,市场份额只有排名第三的英飞凌的四分之一。 Elpida目前仍然在调整第一座工厂的生产线,希望在年底将生产能力提高到28000个300毫米圆片。汇丰分析师史蒂夫-迈尔斯表示:“如果只有一个工厂,市场份额就会相对太低。”但是Elpida要募集新工厂的资金也面临着巨大的障碍,他们将通过银行贷款还将发行债券和新股,同时租赁一些设备。Elpida计划今年IPO上市,这是这一投资的先决条件。 IDC——全球第3大DRAM厂商 据韩国媒体报道,市场研究公司IDC日前称,去年,德国的英飞凌科技公司已经超过韩国Hynix半导体公司成为全球第三大DRAM制造商。 全球最大的内存片制造商三星电子公司,去年仍然保持了其在这一市场的领头地位,其市场份额是29.7%。美国的美光科技公司排列第二,市场份额是19.7%。 IDC还预计,今年全球科技发展投资与去年比将增长7%,而今年早些时候曾预计这个数字是4.9%。 台湾TSMC——全球最大的芯片代工企业 台湾积体电路制造公司(TSMC,简称台积电)是全球最大的芯片代工企业,该公司行政总裁及创始人张忠谋(MorrisChang)对芯片行业的健康状况有独特观点。 张忠谋认为,尽管深深困扰芯片行业的3年低迷时期即将结束,但是该行业的前景还不能说是一片光明。 他认为半导体行业在宽带、传感器和无线应用领域都有良好的发展机会,还有许多应用潜力有待开发。但是,看似光明的前景却处在一个令人担忧的背景之下。电子设备中的半导体含量已经饱和。1980年代,电子装备中半导体的平均含量仅为5%。随后该比例逐年上升,2000年达到最高点21%。目前该含量又开

常见电源稳压芯片

LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) 线性LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) 线性LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A)

LM337T 三端可调-1.2V to -37V稳压器(1.5A) 线性LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) 线性LM350T 三端可调1.2V to 32V稳压器(3A) 线性LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源 LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源 MC34063 充电控制器

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系

主频、外频、倍频、前端总线频率、内存频率的概念及它们之间的关系2010-01-27 09:51:34| 分类:电脑知识| 标签:|字号大中小订阅 主频、外频、倍频、前端总线频率、内存频率的概念 及它们之间的关系 天蚕收集整理2010-01-27 现在网上对主频、外频、倍频、前端总线频率、内存频率的叫法千奇百怪,对同一种事物的叫法都没有统一,给人感觉好像有很多种类似的,所以很有必要先理清头绪,搞清楚多种不同叫法之间的等价关 系: 1.主频=CPU频率=CPU内部的频率 2.外频=CPU外频=CPU外部的频率 3.倍频=CPU倍频 4.前端总线频率=FSB频率 5.内存频率=DRAM频率 一、参数名称的历史沿革、发展及它们之间的关系概述 我们知道,电脑有许多配件,配件不同,速度也就不同。在286、386和早期的486电脑里,CPU 的速度不是太高,和内存保持一样的速度。后来随着CPU速度的飞速提升,内存由于电气结构关系,无法象CPU那样提升很高的速度,于是造成了内存和CPU之间出现了速度差异,这时就提出一个CPU的主频、倍频和外频的概念。外频顾名思义就是CPU外部的频率,早期也就是内存的频率,CPU以这个频率来与内存联系。CPU的主频就是CPU内部的实际运算速度,主频肯定是比外频高的,高一定的倍数,这个数就是倍频。例如:一个老的INTEL 486 CPU,上面印着486 DX/2 66。这个486的CPU的主频是66MHZ,DX/2代表是2倍频的,于是算出CPU的外频是33MZ,也就是内存的工作频率,这同时也是前端总线(英文Front Side Bus)FSB的频率。因为CPU是通过前端总线来与内存发生联系的,所以内存的工作频率(或者说外频也行)就是前端总线的频率,即前端总线的频率就是33MZ。这样的前端总线结构一直延续到486之后的奔腾(俗话说的586)、奔腾2、奔腾3。 到了奔腾4年代,内存和CPU的工作模式发生了改变,前端总线的概念也变得有些复杂了。奔腾4 CPU采用了Quad Pumped(4倍并发)技术,该技术可以使系统总线在一个时钟周期内传送4次数据,也就是传输效率是原来的4倍,相当于用了4条原来的前端总线来和内存发生联系,即前端总线FSB有效频率=外频X4。在外频仍然是133MHZ的时候,前端总线的速度增加4倍变成了133X4=533MHZ,当外频升到200MHZ,前端总线变成200X4=800MHZ,所以你会看到533 MHZ前端总线的P4和800 MHZ 前端总线的P4,就是这样来的。但他们的实际外频只有133 MHZ和200 MHZ,不过,由于人们保留了以前老的概念——前端总线就是外频,所以习惯了这样的叫法:533 MHZ外频的P4和800 MHZ外频的P4。其实应该叫533 MHZ前端总线P4或533 MHZ FSB的P4才准确。到现在,外频与前端前线的概念则出现了明显的区别:即外频是CPU与主板之间同步运行的速度,是指数字脉冲信号在每秒钟震荡的次数;而前端总线的速度指的是数据传输的速度,即每秒钟CPU可接受的数据传输量。两者的区别就在于,前者是震荡频率的概念,而后者则是传输量的概念。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡1

相关主题
文本预览
相关文档 最新文档