当前位置:文档之家› 超声波雾化换能器规格表

超声波雾化换能器规格表

超声波雾化换能器规格表
超声波雾化换能器规格表

主要应用

超声波雾化器 超声波加湿器 各种喷雾装置

特性

微细雾化颗粒 (直径3-6微米).

多种保护电极涂层: 高强度、耐腐蚀、抗结垢等.

超声波雾化换能器

- 电极形式: N: 镍; T: 钛合金; E: 防腐型 - 配件形式: 带引线、胶圈和压盖

规格

JR G 20-17 N C

商标

雾化片直径谐振频率电极形式产品系列号配件形式

命受输入功率、液体性质、液体温度等因素影响。例如,通过降低输入功率可提高换能器寿命。

[2] 雾化量也受到诸多因素影响,如:输入功率、液体性质、液体温度、液位深度、排风形式、送雾通

路以及雾化装置结构等。几种雾化量特性曲线在下文中给出。本说明书中所有雾化量和寿命数据均在东方金荣标准测试装置中测得,输入功率为额定功率,液体性质为纯水。

抗腐蚀性

输出特性

*”GFN ” 为旧型号名称,即镍电极JRG 雾化换能器

雾化装置样例结构图

安装示意图

外形规格

注意事项

除选配防腐型雾化换能器以外,换能器应工作在饮用水或相似性质的液体中。如果液体PH值小于5,可能会影响雾化组件输出性能,甚至损坏换能器。

需提供“无水”保护电路。换能器严禁在无液体情况下工作!

液体与雾化换能器表面不得存在电位差。我们强烈建议使用磁浮开关作为液位控制开关。请勿使用探针式液位开关!否则雾化换能器电极将因电腐蚀而损坏。

雾化换能器表面需定期清理。如由于雾化换能器表面结垢(钙镁离子沉积)造成雾化量降低,不视为产品质量问题。

Siansonic Technology Co., Ltd. reserves the right to alter or improve the specification, internal design or manufacturing process at any time, without notice. Please check with your supplier or visit our web site to ensure that you have the current and complete specification for your product before use.

? Siansonic Technology Co., Ltd. 2012 UAT_G.2

No part of this publication may be copied, transmitted or stored in a retrieval system or reproduced in any way including, but not limited to, photography, photocopy, magnetic or other recording means, without prior written permission from Siansonic Technology Limited. Instructions for use are available from https://www.doczj.com/doc/c215614381.html,

Siansonic Technology Co., Ltd.

No.1, Xingguang 5th Street, Opto-Mechatronics Industrial Base, Tongzhou Park,

Zhongguan Village Technology Park 101111, Beijing, China

Tel: +86 10 81502288

Fax: +86 10 81502688

E-mail: info@https://www.doczj.com/doc/c215614381.html,

超声波换能器的匹配设计.docx

一、匹配概述 超声波发生器与换能器匹配包括两个方面,一是通过匹配使发生器向换能器输 出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把 换能器的阻抗变换成最佳负载,也即阻抗变换作用;二是通过匹配使发生器输出 效率最高,这是由于换能器有静电抗的原因,造成工作频率上的输出电压和电流 有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐 作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。二、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载 阻抗。一般在 D类开关型功放中其发生器变压器初级等效负载 Rl' 上的输出功率表 达式为: 式中, VAm为等效负载上的基波幅度; vcc 为电源电压; vces 为功放管饱和压降,故 为了保证系统有一定功率余量 ( 因输出变压器,末级匹配回路及晶体管损耗电 阻都有损耗, po' 需要乘上一个约等于 1. 4— 1. 5 的系数。即输出功率 po 为1.5Po' ; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载 RL’。目 前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载 RL进行阻抗变换。由高阻抗变 换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数比进行变换。 变压器次初级匝数比为 n/ m,则输出功率 PO时的初级电阻 举例:要求一发生器输出在换能器上的功率为1000W,设直流电 VCC为 220V,

压电超声波换能器原理

超声波换能器 一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。 超声波换能器,要解决的技术问题是设计一种作用距离大、频带宽的超声波换能器。 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。 压电陶瓷超声换能器工作原理 压电陶瓷是一种功能性陶瓷,所谓功能性陶瓷就是对光,电,等物理量比较敏感的陶瓷。压电陶瓷对光和压力比较敏感,对压电陶瓷施加一个外力,压电陶瓷表面会产生电荷,这就是压电陶瓷的正压电效应,是一个将机械能转化为电能的过程;对压电陶瓷外加一个电场,压电陶瓷会发生微小的形变,这就是压电陶瓷的逆压电效应,是一个将电能转化为机械能的过程。利用逆压电效应,可以把高频电压转化为高频率的振动,从而产生了超声波。 超声波换能器是将电能转换成机械能(超声波)的器件,其中最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。这种夹心换能器在负荷变化时产生稳定的超声波,是获得功率超声波驱动源的最基本最主要的方法。[1] 将非电能量转换成电能量,不需要外电源,称换能器,也称有源传感器,换能器是超声波设备的核心器件,其特性参数决定整个设备的性能。 现在用的超声波换能器,除了磁致伸缩结构以外就是常用的用前后盖板夹紧压电陶瓷的“朗之万”换能器,超声波就是通过换能器将高频电能转换为机械振动。换能器的特性取决与选材和制作工艺,同样尺寸外形的换能器的性能和使用寿命是千差万别的。 我们主要生产大功率超声波换能器,应用与超声波塑料焊接机、超声波金属焊接机、各种手持式超声波工具、连续工作的超声波乳化均质器、雾化器、超声波雕刻机等超声波焊接设备。磁致伸缩 磁致伸缩有镍片换能器和铁氧体换能器。 铁氧体换能器的电声转换效率比较低,使用一、二年后效率下降,甚至几乎丧失电声转换能力。 镍片换能器的工艺复杂,价格昂贵,所以很少使用。 压电晶体 最成熟可靠的是以压电效应实现电能与声能相互转换的器件,称为压电换能器。 压电效应将电信号转换为机械振动。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。 常用的材料有石英晶体、钛酸钡和锆钛酸铅。 石英晶体的伸缩量太小,3000V电压才产生0.01um以下的变形。 钛酸钡的压电效应比石英晶体大20-30倍,但效率和机械强度不如石英晶体。 锆钛酸铅具有二者的优点,可用作超声波清洗,探伤和小功率超声波加工的换能器。 压电换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。 按实现的作用分为超声波加工、超声波清洗、超声波探测以及超声波雾化等。 编辑本段外形分类

超声波基础知识讲解

超声波基础知识的一般讲解 一、超声波探伤物理基础 1、超声波是一种机械波 机械振动:物体沿直线或曲线在某一平衡位置附近作往复周期性的运动称为机械振动。 机械波:机械振动在弹性介质中的传播过程,称为机械波;如水波、声波、超声波等。 产生机械波的条件:(1)要有作机械振动的波源(2)要有能传播机械振动的弹性介质2、波长、波速、频率 1)波长:同一波线上相邻两振动相位相同的质点之间的距离,符号λ 2)波速:波动在弹性介质中单位时间内所传播的距离,符号C 3)频率:波动过程中,任一给定点在1秒内能通过的完整波的个数,符号f 三者的关系:C=λ·f 3、次声波、声波和超声波 1)次声波:频率低于20Hz的机械波 2)声波:频率在20~20000Hz的机械波 3)超声波:频率高于20 KHz的机械波 4、超声波的特性 1)方向性好,犹如手电简灯光在黑暗中寻找到所需物品 2)能量高 3)能在界面上产生反射折射和波型转换 4)超声波穿透能力强 5、超声波的类型 a、按质点的方向分类 1)纵波:介质中质点的振动方向与波的传播方向相同的波 2)横波:介质中质点的振动方向与波的传播方向垂直的波 3)表面波:当介质表面受到交变应力作用时产生沿介质表面传播的波 4)板波:在板厚与波长相当的弹性薄板中传播的波 C、按波的形状分类 1)平面波:波阵面为互相平行的平面的波 2)柱面波:波阵面为同轴圆柱面的波 3)球面波:波阵面为同心球面的波 6、声速 纵波:钢 5900 m/s 铝 6300 m/s 水 1500 m/s 有机玻璃 2700 m/s 空气 340 m/s 横波:只能在固体中传播 钢 3200 m/s 铝 3130 m/s 有机玻璃 1120 m/s 表面波:声速大约为横波的0.9倍,纵波的0.45倍 7、超声波垂直入射到平面上的反射和透射 当超声波垂直入射到足够大的光滑平面时,将在第一介质中产生一个与入射波方向相反的反射波在第二介质中产生一个与入射波方向相同的透射波 设入射波声压为P 0,反射声压为P r , 透射声压为P t , 其声压反射率r=P r / P =(z 2 -z 1 )/ (z 2 +z 1 ) 其声压透射率t=P t / P =2 z 2 / (z 2 +z 1 )

超声波换能器工作原理

2、超声波换能器的工作原理 (1) 超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压 电陶瓷式。电源输出到 超声波发生器,再到超声波换能器,一般还要经过 超声波导出、接收 装置就可以产生超声波了。 (2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出 电缆,其特征在于它还包括阵列接收器, 它由引出电缆、换能器、金属圆环、橡胶垫圈组成。 (3) 超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料 的压电效应将电信号转换为机械振动 ?超声波换能器是一种能量转换器件,它的功能是将输 入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。 超声波换能器的种类:可分为压电换能器、 夹心换能器、柱型换能器、倒喇叭型换能器等等。 40kHZ 超声波发射/接收电路综述 40kHZ 超声波发射电路 ⑴ 10kHz 因声波发射器]1 ) 40kHZ 超声波发射电路之一,由 F1~F3三门振荡器在F3的输出为40kHZ 方波,工作 频率主 要由C1、R1和RP 决定,用RP 可调电阻来调节频率。 F3的输出激励换能器 T40-16 的一端和反向器 F4, F4输出激励换能器 T40-16的另一端,因此,加入 F4使激励电压提高 了一倍。电容 C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器 F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用 9V 叠层电池。测量F3 输出频率应为40kHZ ± 2kHZ 否则应调节 RR 发射超声波信号大于 8m 。 40kHZ 超声波发射电路 ⑵ 1615? F 100 — ^500 T40-16

★超声的基本知识

超声的基本知识 陈仓区中医医院B超室 朱浩峰

三、超声的传播速度:超声在人体软组织 中的平均传播速度为1540m/s 。 一、超声的概念:其本质为高频变化的压力波,是一种机械波,其频率超过成年人听觉阈值的上限,在20千赫兹以上。 二、频率:即每秒振动的次数。医学诊断用超声频率一般在1MHz---20MHz 间。

四、超声的特性: 超声波可在气体、液体、固体等介质中传播 使人们利用超声波成为可能超声波可以传递能量,可随距离增大逐渐衰减超声波在传播过程中会产生反射、折射、散 射、绕射、干涉等现象 超声波在液体介质中传播时,会在界面 产生冲击和空化现象;在人体组织中传播 时可产生热效应。 聪明的人类充分利用超声波对人们有用的 特性,尽最大能力减小其负面的特性

WFUMB(世界医学生物学超声联合会) 1992年发表的关于超声热作用和临床应用的声明中提到五、超声检查的安全性 目前使用的简单的B 型超声成像设备的声功率, 不可能产生有害的温度升高作用。因此它在至热 方面无禁忌证,包括经阴道、经腹壁及内镜超声的应用 某些Doppler 诊断仪在无血流灌注的实 验条件下,可引起生物学作用的升温效 应。将声束照射时间减少,可是升温降 至最小。输出功率也可调节,应采用最 低输出功率。动物实验研究清楚表明, <38.5 0C 可以广泛的使用,包括产科

超声检查的安全性WFUMB(世界医学生物学超声联合会)在1996年4月会议上提出: TI (热指数) 一般脏器≤1.0 胚胎<0.3 眼<0.2 MI(机械指数) 一般脏器≤1.0 胚胎<0.3 眼<0.1

超声波换能器与超声波系统保养细则

超声波换能器与超声波系统保养细则 目录: 超声波换能器的作用及不同分类方式2关于超声波的问题与客户对话4野田超声波如何做好保养5

超声波换能器的作用及不同分类方式 超声波换能器对一些不了解的客户可能不清楚,那么什么是超声波换能器,它有什么作用?它又有什么分类方式? 首先,野田先给各位讲讲什么是超声波换能器。什么是超声波换能器是由锆钛酸铅压电陶瓷材料制造的夹芯式构件组成,通常无纺布分切机、无纺布分 条机、 无纺布剪切机的超声波焊接头处就会有一组超声波换能器。超声波换能器主要 功能是实现声能、电能、机械能的能量转换。 其次,超声波换能器对无纺布分切机、无纺布分条机、无纺布剪切机的作用主要表现在能量转化上,主要通过超声波换能器把超声波能量集中,然后转 化到超 声波模具及焊接头上。 再次,超声波换能器的分类方式有多种多样,常见的有: 1.按照换能器的工作介质,可分为液体换能器、固体换能器以及气介超声换能 器等。 2.按照换能器的工作状态,可分为接收型超声换能器、发射型超声换能器和收 发两用型超声换能器。 3.按照换能器的振动模式,可分为剪切振动换能器、扭转振动换能器、纵向振 动换能器、弯曲振动换能器等。 4.按照能量转换的机理和所用的换能材料,可分为电磁声换能器、静电换能器、机械型超声换能器、磁致伸缩换能器、压电换能器等。

5.按照换能器的形状,可分为圆柱型换能器、棒状换能器、圆盘型换能器、复 合型超声换能器及球形换能器等。 6.按照换能器的输入功率和工作信号,可分为检测超声换能器、脉冲信号换能器、功率超声换能器、连续波信号换能器、调制信号换能器等。 以上,可得超声波换能器分类方式多种多样,作用也不相同。我司的无纺布分切机、无纺布分条机、无纺布剪切机的超声波换能器主要应用振动模式, 能量转化。确保了剪切和分条的精确度,也保证无纺布分切机、无纺布分条机、无纺布剪切机的生产效率。 关于超声波的问题与客户对话 听业务部说,经常有客户打电话进来问到无纺布分切机、无纺布分条机、无纺 布剪切机的事时就会询问有关于超声波的问题。今天野田就把客户最常问到的 关于超声波问题的疑问整理出来,给大家分享一下一些常见的关于超声波的问题。

超声波换能器基本知识

超声波换能器基本知识 超声波换能器基本组成: 换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-5压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。压电陶瓷圆盘换能器用作基本的超声波换能器,由它发射和接收超声波信号;Cymbal阵列接收器位于圆盘式压电换能器之上,作为超声波接收器,用于接收圆盘换能器频带之外的多普勒回波信号。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。

超声波换能器功能结构: 超声波换能器,包括外壳(1)、匹配层即声窗(2)、压电陶瓷圆盘换能器(3)、背衬(4)、引出电缆(5),其特征在于它还包括Cymbal阵列接收器,它由引出电缆(6)、8~16只Cymbal换能器(7)、金属圆环(8)、(9)和橡胶垫圈(10) 组成;Cymbal阵列接收器位于圆盘式压电换能器3之上;压电陶瓷圆盘换能器用作基本的超声波换能器,由它发射和接收超声波信号;Cymbal阵列接收器位于圆盘式压电换能器之上,作为超声波接收器,用于接收圆盘换能器频带之外的多普勒回波信号。 超声波换能器常见问题 1、超声波振子受潮,可以用兆欧表检查与换能器相连接的插头,检查绝缘电阻值就可以判断基本情况,一般要求绝缘电阻大于5兆欧以上。如果达不到这个绝缘电阻值,一般是换能器受潮,可以把换能器整体(不包括喷塑外壳)放进烘箱设定100℃ 左右烘干3小时或者使用电吹风去潮至阻值正常为止。 2、换能器振子打火,陶瓷材料碎裂,可以用肉眼和兆欧表结合检查,一般作为应急处理的措施,可以把个别损坏的振子断开,不会影响到别的振子正常使用。

超声波发生器与换能器的匹配设计

声波发生器与换能器的匹配设计 超声波发生器与换能器的匹配设计 选自《近代超声原理与应用》袁易全主编作者:陈思忠 、匹配概述超声波换能器与发生器匹配包括两个方面,一是通过匹配使发生器向换能器输出额定的电功率,这是由于发生器需要一个最佳的负载才能输出额定功率所致,把换能器的阻抗变换成最佳负载,也即阻抗变换作用;二是通过匹配使发生器输出效率最高,这是由于换能器有静电抗的原因, 造成工作频率上的输出电压和电流有一定相位差,从而使输出功率得不到期望的最大输出,使发生器输出效率降低,因此在发生器输出端并上或串上一个相反的抗,使发生器负载为纯电阻,也即调谐作用。由此可见匹配的好坏直接影响着功率超声源的产生和效率。 、阻抗匹配 为了使功率放大器输出额定功率最大;在电源电压给定条件下主要取决于负载阻抗。一般在D类开关型功放中其发生器变压器初级等效负载RI' 上的输出功率表达式为: 式中,VAm为等效负载上的基波幅度; vcc为电源电压;vces为功放管饱和压降,故 为了保证系统有一定功率余量(因输出变压器,末级匹配回路及晶体管损耗电阻都有损耗,po'需要乘上一个约等于1. 4—1. 5的系数。即输出功率po为1. 5Po'; 从上式可知,在电源电压给定之后,输出功率的大小取决于等效负载RL'。目前大多数功率超声发生器的负载为压电型换能器,其阻抗约为几十欧姆至几百欧姆间,为了要达到要求的额定功率,因此需要对换能器负载RL进行阻抗变换。由高阻抗变换为低阻抗。一般常用的方法,通过输出变压器的初次级线圈的匝数比进行变换。变压器次初级匝数比为 n/m则输出功率PO时的初级电阻

举例:要求一发生器输出在换能器上的功率为1000W设直流电VCC为 220V, VCES=10V功率应留有一定余量,则PO=1.5PO'=1500W则变压器初级的 6.5 Q 若换能器谐振时等效电阻RL= 200Q,则输出变压器次级/初级圈数比 以上称谓阻抗变换,是通过输出变压器实行的。 输出变压器是超声波发生器阻抗匹配、传输功率的重要部件,它的设计与绕制工艺对发生器的工作安全是十分重要的。它不仅会以漏感、励磁电流等方式影响电路的工作,其漏感还是形成输出电压尖峰的主要原因。为此,在设计时,应选取具有高磁通密度B,高导磁率卩,高电阻率pc 和低矫顽力He的高饱和材料作铁芯。一般在防止高频变压器的瞬态饱和时,在设计时要注意如下几点: 1. 工作磁通密度B的选取 铁芯材料的磁感应增量4B愈大,所需线圈匝数愈少,直流电阻R也愈小,从而线圈的铜损Pm也愈小。4B取得高时,传输的脉冲前沿就愈陡。因此,在设计变压器时,选取高磁通密度的材料作铁芯,这对降低变压器的损耗、减小体积和重量都是很有利的。为了避免在稳态或过渡过程中发生饱和,一般选取工作磁通密度B W Bs/ 3为宜,这里Bs为磁芯的最大和磁通密度。 2. 要保证初级电感量足够大 一般要求变压器初级阻抗应满足下式关系:WLl> 15RL',其中RL'为次 级负载所算到初级边的等效电阻值,WLl为初级电感感抗,若初级电感 量太小,励磁电流将比较大,励磁电流过大,变压器的损耗将增加,温升随之增高,从而降低Bs,使变压器进入饱和的可能性增大。 3. 要考虑“集肤效应”的影响 在高频工作时,流过导线的电流会产生“集肤效应”。这相当于减少了导线有效截面积,增加了导线的电阻,从而引起导线的压降增大,导致变压器温度升高,结果增大了变压器进入饱和的危险性,建议采用小直径的多股导线并绕的方法。 三、调谐匹配 由于压电换能器有静电容Co,磁致伸缩换能器有静电感L0,在换能器谐振状态时,换能器上的电压VRL与电流IRL间存在着一相位角?,其输出功率pg

超声波换能器工作原理精品名师资料

2、超声波换能器的工作原理 (1)超声波换能器:一种能把高频电能转化为机械能的一种装置,一般有磁致伸缩式和压电陶瓷式。电源输出到超声波发生器,再到超声波换能器,一般还要经过超声波导出、接收装置就可以产生超声波了。 (2) 超声波换能器的组成:包括外壳、匹配层即声窗、压电陶瓷圆盘换能器、背衬、引出电缆,其特征在于它还包括阵列接收器,它由引出电缆、换能器、金属圆环、橡胶垫圈组成。 (3)超声波换能器的原理与作用:超声波换能器即是谐振于超声频率的压电陶瓷,由材料的压电效应将电信号转换为机械振动.超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,面它自身消耗很少的一部分功率。超声波换能器的种类:可分为压电换能器、夹心换能器、柱型换能器、倒喇叭型换能器等等。 40kHZ超声波发射/接收电路综述 40kHZ超声波发射电路(1) 40kHZ超声波发射电路之一,由F1~F3三门振荡器在F3的输出为40kHZ方波,工作频率主要由C1、R1和RP决定,用RP可调电阻来调节频率。 F3的输出激励换能器T40-16的一端和反向器F4,F4输出激励换能器T40-16的另一端,因此,加入F4使激励电压提高了一倍。电容C3、C2平衡F3和F4的输出,使波形稳定。电路中反向器F1~F4用CC4069 六反向器中的四个反向器,剩余两个不用(输入端应接地)。电源用9V叠层电池。测量F3输出频率应为40kHZ±2kHZ,否则应调节RP。发射超声波信号大于8m。

40kHZ超声波发射电路(2) 40kHZ超声波发射电路之二,电路中晶体管VT1、VT2组成强反馈稳频振荡器,振荡频率等于超声波换能器T40-16的共振频率。T40-16是反馈耦合元件,对于电路来说又是输出换能器。T40-16两端的振荡波形近似于方波,电压振幅接近电源电压。S是电源开关,按一下S,便能驱动T40-16发射出一串40kHZ超声波信号。电路工作电压9V,工作电流约25mA。发射超声波信号大于8m。电路不需调试即可工作。 40kHZ超声波发射电路(3) 40kHZ超声波发射电路之三,由VT1、VT2组成正反馈回授振荡器。电路的振荡频率决定于

超声基础知识

超声基础知识 第二章超声基础知识 (超声波的定义及其特性 1. 超声波的定义 20000Hz 物体的机械振动是产生波的源泉,波的频率取决于物体的振动频率。频率范围在20,内的波称为可听声波,频率范围在20Hz内的波称为次声波,频率范围在2X10 4 ,10 8 Hz的波称为超声波,频率范围在10 8 ,10 12 Hz的波称为特超声波。次 声波、可听声波、超声波、特超声波统称声波。可见,整个声波频谱是比较宽的, 其中只有可听声波才能为人耳所听到,而次声、超声、特超声虽然属于声波却不能为人耳所察觉。 在自然界存在着多种多样的超声波,如某些昆虫和哺乳动物就能发出超声波,又如风声、海浪声、喷气飞机的噪声中都含有超声波成分。在医学诊断上所使用的超声波是由压电晶体一类的材料制成的超声探头产生的。眼科方面所使用的超声频率在5,15MHz 范围内,心和腹部所使用的超声频率在2,10MHz范围内。 2. 超声波的特性 超声波和可听声波一样,也是一种机械波,它是由介质中的质点受到机械力的作 用而发生周期性振动产生的。依据质点振动方向与波的传播方向的关系,超声波亦有纵波和横波之分。由超声诊断仪所发射的超声波,在人体组织中是以纵波的方式传播的。就是因为人体软组织基本无切变弹性,横波在人体组织中不能传播。 与普通声波(可闻波)相比,超声波具有许多特性,其中最突出的有:?由于超声波的频率高,因而波长很短,它可以像光线那样沿直线传播,使我们有可能只向某一确 定的方向发射超声波;?由超声波所引起的媒质微粒的振动,即使振幅很小,加速度也 非常大,因此可以产生很大的力量。超声波的这些特性,使它在近代科学研究、工业生产和医学领域等方面得到日益广泛的应用。例如,我们可以利用超声波来测量海 底的深度和探索鱼群、暗礁、潜水艇等。在工业上,则可以用超声波来检测金属内

超声波换能器的基本原理

. 超声波换能器的基本原理 压电式换能器:压电式换能器利用了某些单晶材料的压电效应和某些多晶材料的电致伸缩效应。 超声波压电效应 某些单晶材料的结构具有非对称特性,当这些材料受到外加应力作用而产生应变时,其内部晶格结构的变化(形变)会破坏原来宏观表现为电中性的状态,产生极化电场(电极化),所产生的电场(电极化强度)与应变的大小成正比。这种现象称为正压电效应,它是由居里兄弟于1880年发现的。随后,在1881年又进一步发现这类单晶材料还具有逆压电效应,即具有正压电效应的材料在受到外加电场作用时,会有应力和应变产生,其应变与外电场的大小成正比。压电效应是晶体结构的一个特性,它与晶体结构的非对称性有关,而压电效应的大小及性质则与施加的应力或电场对晶体结晶轴的相对方向有关。具有压电效应的单晶材料种类很多,最常用的如天然石英(SiO2)晶体,以及人工单晶材料如硫酸锂(Li2SO4)、铌酸锂(LiNbO3)等等。 2电致伸缩效应 某些多晶材料中存在有自发形成的分子集团,即所谓“电畴”,它具有一定的极化,并且沿极化方向的长度往往与其他方向的长度不同。当有外加电场作用时,电畴会发生转动,使其极化方向与外加电场方向趋于一致,从而使该材料沿外加电场方向的长度将发生变化,表现为弹性应变。这种现象称为电致伸缩效应。 3.磁致伸缩式换能器 磁致伸缩式换能器利用了磁致伸缩效应,这时特定合金材料结晶结构的物理特性,即某些铁磁体及其合金,以及某些铁氧体中的磁畴,在其自发磁化方向上的长度可能与其它方向上的不同。当有外加磁场作用时,由于这种磁畴将发生转动,使其磁化方向尽量与外磁场方向趋于一致,从而使该材料沿外磁场方向的长度将发生变化,表现为弹性应变(当然,这种变形引起的应变是很小的,约在10-5~10-6之间)。这种现象即是磁致伸缩效应。相反,具有磁致伸缩效应的材料在经受外加应力或应变时,其磁化强度也会发生改变,此即为逆磁致伸缩效应。这样,在对磁致伸缩材料施以交变磁场时,该材料将沿磁力线方向发生磁致形变,从而可以在与它表面紧密接触的介质中激发出机械振动波-[1]。同样,利用逆磁致伸缩效应则可达到接收超声波的目的:施加到磁致伸缩材料上的应变(弹性应力-超声波作用力)将使处在外加磁场中的该材料其磁场的磁通密度发生变化(此即所谓磁弹性效应),从而使位于该材料表面上的检测线圈中将因磁通密度变化而产生感应电势,可以用作磁弹性效应的信号,达到接收超声波的效果(注意磁场方向应和应力方向-超声波产生的质点振动方向一致)。根据磁致伸缩的变化状态,可以分为: [1]线型磁致伸缩:在发生应变时,材料的体积不变,但在长度方向上伸缩变化的程度大,这是磁致伸缩式换能器主要应用的类型。但是,它只能在居里温度以下的情况发生,若温度超过居里点后将只能存在体积型磁致伸缩。 [2]体积型磁致伸缩:在发生应变时,材料的体积也会发生变化。磁致伸缩式换能器主要用于低频大功率的场合,这与其频率受限制和受磁性材料特性参数限制的因素有关,它特别是在功率超声应用领域中有着广泛应用,其特点主要是机械强度高,性能稳定,水密要求低(不会水解)。但是,它的涡流和磁滞损耗较大,电声转换效率不如压电式换能器,而且通常需要有较大的激励电能以用于大功率场合。需要注意的是,在施以交变磁场时,由于趋肤效应

超声波换能器材料的设计与研究

超声波换能器一般有磁致伸缩换能器和压电晶 体换能器两类。 属于磁致伸缩的有镍片换能器和铁氧体换能器。铁氧体换能器的电声转换效率比较低。一般使用一、二年后效率下降,甚至几乎丧失电声转换能力。镍片换能器的工艺复杂,价格昂贵,所以至今很少使用[1]。 目前,广泛使用压电晶体换能器。这种换能器电声转换效率高,原材料价格便宜,制作方便,也不容易老化。常用的材料有石英晶体、钛酸钡(BaTiO 3 ) 和锆钛酸铅(PbTiZrO 3 ,简称PZT)。 石英晶体的伸缩量太小,3000V电压才产生0.01μm以下的变形。钛酸钡的压电效应比石英晶体大20~30倍,但效率和机械强度不如石英晶体。锆钛酸铅具有二者的优点,一般可用作超声波清洗,探伤和小功率超声波加工的换能器[2]。 一、锆钛酸铅的结构与相图 锆钛酸铅是ABO 3 型钙钛矿结构的二元系固溶 体,其化学式为Pb(Zr xTi 1-x )O 3 。晶胞中的B位置可 以是Ti4+,也可以是Zr4+。由于Ti4+的离子半径(0.64埃)和Zi4+离子半径(0.77埃)相近,且两种 离子的化学性能相似,所以PbTiO 3与PbZrO 3 能以 任何比例形成连续固溶体。对于锆钛比例不同的固溶体,由于其内部条件不同,所以结构和性能也不同。从研究它的相图可知,在相变温度以下。在难同型相界的右边(即富钛一边),固溶体为四方晶相;相界的左边(即富锆那一边)为三角品相。这两种晶相的晶体都具有压电效应。且四方晶相的自发极化方向沿晶胞伸长的轴;三角品相的自发激化方向则活品胞的空间对角线方向。 在相变温度以下,铬钛比100/0到94/6的狭窄范围内,固溶体属反铁电正交结构,无压电效应[3]。 在生产设计上,根据各种压电器件对材料性能的不同要求,可以选用不同的锆钛比成分来配方。例如,要求高Kp(机电耦合系数),高∈(介电常数)的材料,就需要选择铬钛比个相界附近的配方;如果要求高Qm(机械品质因数),低Kp的材料,就往往选取离开相界的铬钛比的配方。所以,PZT压电陶瓷材料的性能可以通过改变锆钛比来进行调节。 二、锆钛酸铝陶瓷材料的改性 改变PZT中Zr/Ti的比值,可以调整陶瓷材料的性能参数。但是仅用这种方法得到的材料,还不能满足实际应用的要求。例如,在许多场合下同时要求具有高的Kp和Qm。仅用这种改变组分的办法是很难达到的。 在生产和科研中,往往采用掺杂来改进PZT陶瓷材料的性能。按在固溶体化合物中添加金属离子化合价与被置换离子化合价相比,分成等价离子置换和不等价离子置换。不等价离子置换又分为高价离子置换和低价离子置换[4]。 1、等价离子置换 这是指用与Pb2+、Ti4+或Zr4+化合价相等、离子半径相近的金属离子置换PZT中正常晶格中少量pb2+,Ti4+或Zr4+,形成取代式固溶体。其结构仍然是钙钛矿型结构,但其物理性能、电性能发生变化。 常用来取代pb2+的碱土金属高于有Sr2+,Ca2+,Ba2+和Mg2+等。这种部分置换pb2+后,PZT陶瓷材料性能的变化规律是: a.居里温度Tc降低; b.介电系数∈显著增大,压电系数d 1 、机电耦合系数Kp、及陶瓷密度有所增加; C.导致c/a比值降低,即各向异性减少; d.改变准同型相界位置。 有时为了得到性能更优的PZT陶瓷材料,还可 超声波换能器材料的设计与研究 湘潭大学机械工程学院 (411105) 周里群 李玉平 摘 要 本文就超声波换能器所用材料进行了分析与讨论,介绍PZT的结构、相图与制备方法,重点对PZT的掺杂改性进行了研究与总结,最后介绍了关于PZT的当前的研究热点与研究方向。 关键词 PZT 换能器 超声波

超声波换能器选用说明及其原理介绍

超声波换能器选用说明及其原理介绍 超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗掉很少的一部分功率(小于10%)。所以,使用超声波换能器最应考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。市面上超声波机械种类繁多,客户必须提供准确可靠的指标,才能保证公司提供的换能器产品能与贵公司的机器良好匹配,发挥最佳性能。 因换能器品种繁多,本文只提供了部分换能器参数。 ①谐振频率:f, 单位:KHz 该频率是指用频率发生器,毫伏表等通过传输线路法测得的频率,或用阻抗特性分析仪等类似仪器测得的频率。一般通称小信号频率。与它相对的是上机频率,即客户将换能器通过电缆连到驱动电源上,通电后空载或有载时测得的实际工作频率。因客户的匹配电路各不相同,同样的换能器配不同的驱动电源表现出来的频率是不同的,这样的频率不能作为订货依据。 ②换能器电容量:CT ,单位:PF 即换能器自由电容,一般可用电容电桥在400Hz-1000Hz的频率下测得,也可用阻抗特性分析仪类似仪器。再简单点,用一般的便携式电容表测量也可满足要求。 ③换能器工作方式 因加工方式和要求不同,换能器的工作方式大致可分为连续工作(花边机,CD套机,拉链机,金属焊接等)和脉冲式工作(如塑焊机),

不同的工作方式对换能器的要求是不同的。一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇式的,有停顿,但瞬间电流很大。平均而言,两种状态的功率都很大的。

④换能器型式和最大功率 整机厂家可能对于不同用途和目的的机器的标称功率有不同的规定,换句话说,同样的换能器用在不同的机器上标称功率可能是不同的。为避免产生岐义,客户应详细说明换能器的结构型式,如柱型、倒喇叭型等,及压电陶瓷晶片的直径和片数。 ⑤安装和配合尺寸 主要有变幅杆材质,表面处理方式,形状。换能器与变幅杆连接螺纹,变幅杆与模具连接螺纹,变幅杆法兰盘处直径、厚度、缺口或螺孔数量和位置。 如有侵权请联系告知删除,感谢你们的配合!

超声波换能器

超声波无损检测技术工艺 第二章 超声换能器 §2.2 压电换能器 §2.2.4超声检测用压电换能器的种类,结构,设计与制作工艺的考虑因素 一.超声检测技术中常用压电换能器的种类 在超声检测技术中应用的压电换能器是多种多样的,但最广泛应用的是厚度振动型的压电换能器(俗称探头),它受激励而产生的超声波是纵波,然后可以利用超声波的折射特性,通过适当的方法实现波型转换,把纵波转换成其他所需要的波型用于检测.此外,根据激发超声波的工作频谱,可以把探头分为宽频带(窄脉冲)探头(可窄至一周半)和窄频带脉冲探头,前者主要用于要求具有较高分辨力的超声检测,而后者则主要用于如穿透法,谐振法,声振法等的超声检测. 在实际应用中,最常见的是根据探头的用途和结构特点来分类,大致上有: 1.普通直探头:由单块压电晶片兼并发射与接收功能而制成的探头,其晶片多为圆形薄片,还可分为液浸法检测用的和直接接触法用的探头 2.普通斜探头:由单块压电晶片兼并发射与接收功能,其晶片多为圆形,方形和矩形薄片.其上配有斜楔以改变晶片受激产生的纵波在界面上的入射角,利用超声波的折射特性产生波型转换,从而在检测介质中激发出所需要的波型.它主要用于直接接触法检测,根据所激发波型的不同,可以分为: (1)横波探头:用于对工件内部及表面缺陷的横波检测,例如检测焊缝 (2)瑞利波(表面波)探头:用于对具有光洁表面的工件的表面缺陷检测,例如检测叶片表面裂纹 (3)板波(兰姆波)探头:用于薄板检测 (4)爬波探头:用于粗糙表面工件的近表面缺陷检测 (5)可变角探头:可调整纵波入射角以探索适当波型超声波的激发条件以及调整超声波在被检介质中的折射角度 此外还有如纵波斜探头及各种适应不同工件需要的专用探头. 3.组合双晶探头:由两块晶片分别发射和接收超声波,晶片形状有两块半圆形(分割式),两块方形或两块矩形等.探头上配有延迟块,用以小范围改变纵波入射角以调节超声波进入工件的状态,而且起到延迟阻塞时间,抑制近场干扰等作用,从而显著提高检测的近表面分辨力.两块晶片之间还配置了隔声层以阻隔入射界面上产生的直通波和屏蔽感应电场的干扰(即起到电声屏蔽的作用).按照产生的波型和结构形式,可以分为: (1)组合双晶直探头:包括液浸法检测与直接接触法检测应用的探头,尤其以后者为常用.全部元件组合在一个整体之内,在工件中激励的是纵波-在被检介质中是以折射纵波进行检测的。 (2)组合双晶斜探头:用于直接接触法,全部元件(包括斜楔)组合在一个整体内,主要用于在工件中激励横波或瑞利波进行检测。 (3)骑马式组合双晶探头:两块晶片分别安置在一个马鞍形的座块两侧,在工件中激励纵波,同时也兼有横波与瑞利波成分,可进行综合波型检测,特别适合于小直径棒材的检测 4.聚焦探头:利用声透镜原理或直接烧结而成的曲面形压电晶片,使激励的超声波束能汇聚成细长(或扁长)形状,有利于声能高度集中,从而明显提高穿透性,指向性和分辨率以及信噪比。聚焦探头的种类很多,主要有: (1)接触法聚焦直探头 (2)液浸法聚焦直探头 (3)接触法聚焦斜探头 (4)接触法组合双晶聚焦斜探头

超声波换能器的原理和使用

超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗很少一部分功率(小于10%)。所以,使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。 超声波换能器分类: 1、柱型 2、倒喇叭型 3、钢后盖型 4、中间夹铝片型 主要适用于超声波塑料焊接机、超声波切割刀、超声波金属焊接机,超声波清洗机,超声波声化学设备等。 超声波换能器在合适的电场激励下能发生有规律的振动,其振幅一般10μm左右,这样的振幅要直接完成焊接和加工工序是不够的。连上通过合理设计的变幅杆后,超声波的振幅可以在很大的范围内变化,只要材料强度足够,振幅可以超过100μm。 因加工方式和要求不同,换能器的工作方式大致可分为连续工作(如花边机,CD机,清洗机,拉链机)和脉冲工作(如塑料焊机),不同的工作方式对换能器的要求是不同的。一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇的,有停顿,但瞬间电流很大。平均而言,二种状态的功率都是很大的。

使用超声波换能器最主要考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。换能器的频率相对而言还比较直观些。该频率是指用频率(函数)发生器,毫伏表,示波器等通过传输线路法测得的频率,或用网络阻抗分析仪等类似仪表测得的频率。一般通称小信号频率。与它相对应的是上机频率,即客户将换能器通过电缆连到机箱上,通电后空载或有载时测得的实际工作频率。因客户匹配电路各不相同,同样的换能器在不同的驱动电源(电箱)表现出来的频率是不同的,这样的频率不能作为交流讨论的依据。 让换能器和驱动电源、模具良好配合以形成一台完整的超声波设备可以简称为匹配。由于匹配对整机性能的影响是决定性的,无论怎样强调匹配的重要性都不为过。匹配最主要考虑的因素是换能器的电容量,其次是换能器的频率。 换能器与驱动电源的匹配主要有4个方面,即阻抗匹配、频率匹配、功率匹配、容抗匹配。其中最主要的是容抗和频率。如前所述因为陶瓷片是绝缘体,你几乎可以理解为换能器是不通电的,它只是相当于一个电容器。要使换能器工作,实际上是通过驱动电路对它施加交流高电压,让换能器的电容充放电。压电陶瓷片在交变电场的作用下做同步伸缩变形,形成了整个换能器的纵向振动,从而带动变幅杆和模具振动。所以,若电容匹配不好,轻者是换能器无力,焊不牢;重者换能器发热严重,烧电极片、烧电源的大功率管。我们的换能器产品附有产品性能参数表,给出了每个换能器的电容和频率。驱动电源应该根据换能器的电容量,调整高压变压器,匹配电容板,峰化线圈,调频线圈等的参数。由于电感和电容量的敏感性,功放板,扼流线圈及其他外围电路对匹配也有影响。而且随着工作进行,换能器的温度会升高,导致电容也会升高且变化量可能会超过50%,若不能将电容有效地匹配掉,就会造成回路中电流电压相位差很大,功率因素很低,虚功高。看看电流很大,但换能器没力,易发热,且电源的功率器件也容易发热损坏。一般换能器电极片(耳朵)振裂或烧掉很可能就是由此引起的。 频率匹配同样也非常重要。这首先是因为超声换能器只能工作在他的谐振频率点,所以驱动电源、变幅杆、模具(工具头)都应该在这个频率下工作。一般而言,这个差别最大不超过±0.1kHz,能小一点就更好。我们强烈建议配套模具(焊头)的频率低于振动子频率0.1kHz左右(小信号频率)。也就是说,若原振动子小信号测量的频率是14.85 kHZ,则连上模具后再测频率为14.75 kHZ最为理想。同时就应考虑到,超声波换能器接上变幅杆和模具头后,系统的谐振频率峰会变得很尖锐,也即带宽很窄,机械品质因数很大,频率偏移一点都会造成阻抗很大的增加。表现在驱动电源上就是电源(振幅表电功率)很大或过载保护。若刚好这时是空载调机,则很可能会造成晶片错位,晶片裂或中心螺杆断。

超声波的基本知识

第1题 当某些晶体受到拉力或压力时会产生形变,从而晶体的表面上出现电荷,这种现象称为____效应 A.压电 B.振动 C.逆压电 D.应变 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第2题 下面的衰减类型中不属于材料特征的是 A.扩散衰减 B.吸收衰减 C.散射衰减 D.以上都是 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第3题 Vp、Vs、VR三者的大小关系是 A.Vp>Vs>VR B.Vs>Vp>VR C.Vp>VR>Vs D.VR>Vs>Vp 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第4题 下列哪个声学参数对缺陷的反应最为敏感? A.声时 B.声幅

C.频率 D.声速 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第5题 声波透射法的波速属于 A.一维波速 B.二维波速 C.三维波速 D.以上皆是 答案:C 您的答案:B 题目分数:5 此题得分:0.0 批注: 第6题 纵波声速___横波声速 A.大于 B.小于 C.等于 D.小于等于 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第7题 声速(v)、波长(λ)和频率(f)三者的关系为 A.f= v*λ B.λ=f*v C.v =f*λ D.v =f/λ 答案:C 您的答案:C 题目分数:5

此题得分:5.0 批注: 第8题 声波透射法中测得的桩身混凝土声速是声波在无限大固体介质中传播的声速。对同一根混凝土桩,声波透射法测出的声速应___ 低应变法测量出的声速。 A.大于 B.小于 C.等于 D.小于等于 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第9题 超声波在混凝土中传播时,当混凝土质量差或存在缺陷时接收到的声波信号中,一般可以具有如下特征 A.声时增大、频率变高 B.声时减小、频率变低 C.声时增大、频率变低 D.声时减小、频率变高 答案:C 您的答案:B 题目分数:5 此题得分:0.0 批注: 第10题 声波透射法中,换能器在声测管内一般用___耦合 A.空气 B.黄油 C.泥浆 D.清水 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注:

压电超声换能器的应用与发展

压电超声换能器的应用与发展 摘要: 压电换能器是超声技术的主要部件, 其种类多, 用途及发展前景广。该文回顾了超声换能器的发展历程, 概括总结了压电超声换能器的分类和应用, 分析了压电超声换能器的发展趋势。大功率、低压驱动、高频、薄膜化、微型化、集成化是当前的发展方向。 超声换能器是实现声能与电能相互转换的部件。最早的超声换能器是P1 郎之万(P1L angevin) 在1917 年为水下探测设计的夹心式换能器。这个换能器是以石英晶体为压电材料, 用两块钢板在两侧夹紧而成的。1933 年以后出现的叠片型磁致伸缩换能器, 强度高、稳定性好、功率容量大, 迅速取代了当时的郎之万换能器。到了50 年代, 由于电致伸缩材料、钛酸钡铁电陶瓷、锆钛酸铅压电陶瓷的研制成功, 使郎之万型超声换能器再度兴起。目前压电超声的应用范围很广, 且对超声测量精度、测量范围、超声功率以及器件的微小化程度的要求越来越高。目前妨碍超声广泛应用的原因是缺少适用、可靠、经济、耐用的超声换能器。超声换能器历来是各种超声应用的关键部件, 国内外均大力研究, 近年来取得了很多成就。本文将介绍压电超声换能器的种类、应用和发展。 1压电超声换能器的种类 压电超声换能器的种类很多, 按组成超声换能器的压电元件形状分为薄板形、圆片形、圆环形、圆管形、圆棒形、薄壳球形、压电薄膜等; 按振动模式分为伸缩振动、弯曲振动、扭转振动等; 按伸缩振动的方向分为厚度、切向、纵向、径向等; 按压电转换方式分为发射型(电2声转换)、接收型(声2电转换)、发射2接收复合型等。 2压电换能器的应用 压电换能器的应用十分广泛, 它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等; 按实现的功能分为超声加工、超声清洗、超声探测、检测、监测、遥测、遥控等; 按工作环境分为液体、固体、气体、生物体等; 按性质分为功率超声、检测超声、超声成像等。 (1) 压电陶瓷变压器压电变压器是利用极化后压电体的压电效应来实现电压输出的。其 输入部分用正弦电压信号驱动, 通过逆压电效应使其产生振动, 振动波通过输入和输出部分的机械耦合到输出部分, 输出部分再通过正压电效应产生电荷, 实现压电体的电能2机械能2 电能的两次变换, 在压电变压器的谐振频率下获得最高输出电压。与电磁变压器相比, 这具有体积小, 质量轻, 功率密度高, 效率高, 耐击穿, 耐高温, 不怕燃烧, 无电磁干扰和电磁噪声, 且结构简单、便于制作、易批量生产, 在某些领域成为电磁变压器的理想替代元件等优点。此类变压器用于开关转换器、笔记本电脑、氖灯驱动器等。(2) 超声马达超声马达是把定子作为换能器, 利用压电晶体的逆压电效应

相关主题
文本预览
相关文档 最新文档