广东省广州六中2015届高三上学期12月测试英语试题(word版)
- 格式:doc
- 大小:113.21 KB
- 文档页数:11
广东省广州市第六中学2015届高三上学期12月测试一数学(文)试题3.设复数113i z =-,232i z =-,则21z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.等差数列{}n a 的前n 项和为n S ,已知33a =,63=S ,则10a 的值是( )A .1B .3C .10D .55 5.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a +b 等于( )A .()2,1--B .()2,1C .()3,1-D .()3,1-6.直线1y kx =+与圆224x y +=的位置关系是( )A .相交B .相切C .相离D .与k 的取值有关 7.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是( ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 8.设一个球的表面积为1S ,它的内接正方体的表面积为2S ,则12S S 的值等于( ) A .2π B .6π C .6π D .π29.已知实数y x ,满足0,1,2210.x y x y ≥⎧⎪≤⎨⎪-+≤⎩若目标函数y ax z +=()0≠a 取得最小值时最优解有无数个,则实数a 的值为( )A .1-B .12-C .12D .1 10.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T 是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是( )A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.在区间()0,1内任取两个实数,则这两个实数之和小于0.8的概率是 .12.已知程序框图如右,则输出的i = .13.已知直线()2y k x =-()0k >与抛物线28y x =相交于A 、B 两点,F 为抛物线的焦点,若2FA FB =,则k 的值为 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如右图,AB 是圆O 的直径,直线CE 与圆O 相切于点C ,AD CE ⊥于点D ,若圆O 的面积为4π,30ABC ∠=,则AD 的长为 . 15.(极坐标与参数方程选做题)在极坐标系中,点A的坐标为4π⎛⎫⎪⎝⎭,曲线C 的方程为θρcos 2=,则OA (O 为极点)所在直线被曲线C 所截弦的长度为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=, EAB CD3cos 5ADC ∠=.(1)求sin ABD ∠的值; (2)求BD 的长.17.(本小题满分12分)某城市为准备参加“全国文明城市”的评选,举办了“文明社区”评选的活动,在第一轮暗访评分中,评委会对全市50个社区分别从“居民素质”和“社区服务”两项进行评分,每项评分均采用5分制,若设“社区服务”得分为x 分,“居民素质”得分为y 分,统计结果如下表:(1)若“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区可以进入第二轮评比,现从50个社区中随机选取一个社区,求这个社区能进入第二轮评比的概率;(2)若在50个社区中随机选取一个社区,这个社区的“居民素质”得1分的概率为110,求a 、b 的值.18.(本小题满分14分)各项均为正数的数列{}n a ,满足11a =,2212n n a a +-=(*n ∈N ). (1)求数列{}n a 的通项公式;(2)求数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分14分)如图所示,已知正方形ABCD 的边长为2,ACBD O =.将正方形ABCD 沿对角线BD 折起,得到三棱锥A BCD -.(1)求证:平面AOC ⊥平面BCD ;(2)若三棱锥A BCD -的体积为3AC 的长. 20.(本小题满分14分)设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF AF +=0(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.21.(本小题满分14分)已知函数()321232a f x x x x =-+-()a ∈R . (1)当3a =时,求函数()f x 的单调区间;(2)若对于任意[)1,x ∈+∞都有()2(1)f x a '<-成立,求实数a 的取值范围; (3)若过点10,3⎛⎫- ⎪⎝⎭可作函数()y f x =图象的三条不同切线,求实数a 的取值范围.所以()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠ …………………6分 412353351351365=⨯-⨯=.…………………………………………8分(2)在△ABD 中,由正弦定理,得sin sin BD ADBAD ABD=∠∠,…………………………10分所以533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠.………………………………………………12分 17.(本小题满分12分)解:(1)从表中可以看出,“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区数量为24个.………………………………………………………………………………2分 设这个社区能进入第二轮评比为事件A ,则()P A =24125025=. 所以这个社区能进入第二轮评比的概率为1225.……………………………………………………4分 (2)从表中可以看出,“居民素质”得1分的社区共有()4a +个,……………………………6分因为“居民素质”得1分的概率为110, 所以415010a +=.………………………………………………………………………8分 解得1a =.…………………………………………………………………………………………10分 因为社区总数为50个,所以4750a b ++=.解得2b =.………………………………………………………………………………………12分 18.(本小题满分14分)解:(1)因为2221=-+n n a a , 所以数列{}2na 是首项为1,公差为2的等差数列.………………………………………………2分所以122)1(12-=⨯-+=n n a n .…………………………………………………………………4分因为>n a ,所以n a ()*n ∈N .………………………………………………………6分(2)由(1)知,n a =所以22122n n na n -=.…………………………………………7分所以231135232122222n n n n n S ---=+++++, ①………………………………………8分则234111352321222222n nn n n S +--=+++++, ②………………………………………9分①-②得,2341112222212222222n n n n S +-=+++++-…………………………………………11分 234111111212222222n n n +-⎛⎫=+++++- ⎪⎝⎭h =.………………………………………6分 以下分两种情形求AC 的长:①当AOC ∠为钝角时,如图,过点A 作CO 的垂线交CO 的延长线于点H , 由(1)知BD ⊥平面AOC ,所以BD AH ⊥.又CO AH ⊥,且CO BD O =,所以AH ⊥平面BCD . 所以AH 为三棱锥A BCD-的高,即AH =7分 在Rt △AOH中,因为AO ,所以OH==.………………8分在Rt△ACH中,因为CO则CH CO OH=+==.……………9分所以AC===10分②当AOC∠为锐角时,如图,过点A作CO的垂线交CO于点H,由(1)知BD⊥平面AOC,所以BD AH⊥.又CO AH⊥,且CO BD O=,所以AH⊥平面BCD.所以AH为三棱锥A BCD-的高,即AH=.……………………………………………11分在Rt△AOH中,因为AO,所以OH2==.…………12分在Rt△ACH中,因为CO则22CH CO OH=-==.…………………………………………………………13分所以AC===综上可知,AC的长为或14分20.(本小题满分14分)解:(1)由题设知,2A⎛⎫⎪⎭,)1F,………………………………………1分由112OF AF+=0,得D⎪⎪⎭⎫ ⎝⎛---=-22222222a a a a .…………………………………3分 解得62=a . 所以椭圆M 的方程为126:22=+y x M .…………………………………………………………4分(2)方法1:设圆()12:22=-+y x N 的圆心为N ,则()()-⋅-=⋅ ……………………………………………………………6分()()NF NP NF NP =--⋅-……………………………………………………………7分2221NP NF NP =-=-.……………………………………………………………8分从而求⋅的最大值转化为求2NP的最大值.………………………………………………9分因为P 是椭圆M 上的任意一点,设()00,y x P ,…………………………………………………10分所以1262020=+y x ,即202036y x -=.………………………………………11分因为点()2,0N ,所以()()121222020202++-=-+=y y x .……………………………12分因为0y ⎡∈⎣,所以当10-=y 时,2NP 取得最大值12.……………………………13分所以⋅的最大值为11.……………………………………………………………………14分方法2:设点112200(,),(,),(,)E x y F x y P x y , 因为,E F 的中点坐标为(0,2),所以2121,4.x x y y =-⎧⎨=-⎩ ………………………………………………6分 所以1()P E ⋅=……………………………………………7分 10101010()()()(4)x x x x y y y y =---+---222201011044x x y y y y =-+-+-22220001114(4)x y y x y y =+--+-.…………………………………………………9分因为点E 在圆N 上,所以2211(2)1x y +-=,即2211143x y y +-=-.………………………10分因为点P 在椭圆M 上,所以2200162x y +=,即220063x y =-.…………………………………11分所以P ⋅200249y y =--+22y =-.……………………………………………12分 因为0[,2]y ∈,所以当01y =-时,()min11PE PF ⋅=.………………………………14方法3:①若直线EF 的斜率存在,设EF 的方程为2y kx =+,……………………………6分由⎩⎨⎧=-++=1)2(222y x kx y ,解得112+±=k x .……………………………………………………7分因为P 是椭圆M 上的任一点,设点()00,y x P ,所以1262020=+yx ,即202036y x -=.…………………………………………………………8分所以002PE x y ⎛⎫=-+-⎪⎭,00,2PF x y ⎛⎫=-- ⎪⎝⎭ …………………………………………………9分所以11)1(21)2(1)2(112020202220220++-=--+=+--++-=⋅y y x k k y k x PF PE . …………………………………………………10分因为0y ⎡∈⎣,所以当10-=y 时,⋅取得最大值11.………………………11分②若直线EF 的斜率不存在,此时EF 的方程为0x =,由220(2)1x x y =⎧⎨+-=⎩,解得1y =或3y =. 不妨设,()0,3E ,()0,1F .………………………………………………………………………12分因为P 是椭圆M 上的任一点,设点()00,y x P , 所以1262020=+y x ,即202036y x -=. 所以()00,3PE x y =--,()00,1PF x y =--.所以2220000432(1)11PE PF x y y y ⋅=+-+=-++.因为0y ⎡∈⎣,所以当10-=y 时,PF PE ⋅取得最大值11.………………………13分 综上可知,⋅的最大值为11.……………………………………………14分21.(本小题满分14分)解:(1)当3a =时,()3213232f x x x x =-+-,得()2'32f x x x =-+-.………………1分因为()()()2'3212f x x x x x =-+-=---, 所以当12x <<时,()0f x '>,函数()f x 单调递增;当1x <或2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递增区间为()1,2,单调递减区间为(),1-∞和()2,+∞.………………3分(2)方法1:由()321232af x x x x =-+-,得()2'2f x x ax =-+-,因为对于任意[)1,x ∈+∞都有'()2(1)f x a <-成立,即对于任意[)1,x ∈+∞都有222(1)x ax a -+-<-成立,即对于任意[)1,x ∈+∞都有220x ax a -+>成立,………………………………………………4分令()22h x x ax a =-+,要使对任意[)1,x ∈+∞都有()0h x >成立,必须满足0∆<或()0,1,210.a h ∆≥⎧⎪⎪≤⎨⎪⎪>⎩………………………………………………………………………5分 即280a a -<或280,1,210.a a a a ⎧-≥⎪⎪≤⎨⎪+>⎪⎩………………………………………………………………………6分 所以实数a 的取值范围为()1,8-.…………………………………………………………………7分方法2:由()321232af x x x x =-+-,得()2'2f x x ax =-+-,因为对于任意[)1,x ∈+∞都有'()2(1)f x a <-成立,所以问题转化为,对于任意[)1,x ∈+∞都有[]m a x '()2(1)f x a <-.……………………………4分因为()22224a a f x x ⎛⎫'=--+- ⎪⎝⎭,其图象开口向下,对称轴为2ax =. ①当12a<时,即2a <时,()'f x 在[)1,+∞上单调递减,所以()()max ''13f x f a ==-,由()321a a -<-,得1a >-,此时12a -<<.………………………………………………5分 ②当12a ≥时,即2a ≥时,()'f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以()2max ''224a a f x f ⎛⎫==- ⎪⎝⎭,。
广东省广州市六中2015届高三上学期12月测试语文试卷高考模拟卷高三总复习粤教版语文试题下载试题预览广东省广州市六中2015届高三上学期12月测试语文试题一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,每组读音都不相同的一项是A.采撷/诙谐狭隘/宁谧隽永/隽秀B.贬黜/矗立棘手/冲刺会计/会晤C.奢侈/对峙侪辈/跻身绮丽/涟漪D.吞噬/嗜好分明/分外亢奋/伉俪2.下面语段中画线的词语,使用不恰当的一项是近几年,国内许多风景名胜区实行“一票制”,将景区内多个景点门票捆绑搭售。
这种做法让人置疑和不满,许多游客认为这是变相涨价。
一个知名景区要可持续发展,首先必须赢得游客的口碑,如果过分依赖“门票经济”做“一锤子买卖”,对游客的意见充耳不闻,一意孤行,一旦引起游客的反感乃至抵触,就可能造成难以挽回的损失。
A. 置疑B. 一锤子买卖C. 充耳不闻D. 乃至3.下列句子,没有语病的一项是A.今年6月,我国月球探测工程首席科学家欧阳自远透露,中国将在2020年计划发射火星探测器,并在发射10年后实现探测器采样返回。
B.1999年至2001年的3年间,某重点大学的农村新生比例均在39%左右。
但自2002年起,农村新生比例开始下降,2013年跌至最低,仅为26.2%。
C.关于本市大大小小业余球场到底归谁管这个问题,各个部门有不同的说法,现在大家一般认可的是以由市建设局管理的这一说法为准。
D.次贷的真正大毒素在继续弥漫,我们能否如上次世界经济危机时那样独善其身,关系到我省经济的健康发展,关系到全省人民的福祉。
4.把下列句子组成语意连贯的语段,排序最恰当的一项是在琴厚重的人文积淀之外,琴的审美在世界音乐中独树一帜。
___________,___________。
___________,___________,___________,___________。
难怪世界为之惊叹。
①琴没有肆意的宣泄②琴与诗歌密不可分③从而创造出一种空灵的意境④这和国画的审美追求是统一的⑤只在含蓄中流露出平和超脱的气度⑥都讲求韵味,讲求弦外之音,虚实相生A. ①⑤②⑥③④B. ②⑥④①③⑤C. ①⑤②③④⑥D. ②④⑥①⑤③二、本大题7小题,共35分。
About a year later, the king was hunting in an area where he should have known not to hunt. Cannibals(食人者) __7 him and took him to their village. They tied his hands, set up a wooden post and 8 him to it. As they came close to set fire to burn the king, they 9 that the king was missing a thumb. Being superstitious, they never ate anyone who was less than whole. So 10 the king, they sent him on his way.As he returned home, he was 11 of the event that had taken his thumb and felt sorry for his treatment of his friend. He went immediately to the 12 to speak with his friend. “You were right,” he said, “it was good that my thumb was blown off.” Then he 13 to tell the friend all that had just happened.“I feel 14 for send ing you to jail for so long. It was bad for me to do this.”“No,” his friend replied, “this is good!”“What do you mean? How could it be good that I sent my friend to jail for a year?”“If I had NOT been in jail, I would have been with you, and I would hav e been ___15 !”1. A. joking B. remarking C. announcing D. whispering2. A. expectation B. experience C. expedition D. experiment3. A. prepare B. arrange C. carry D. hold4. A. deliberately B. apparently C. naturally D. specially5. A. thumb B. king C. gun D. situation6. A. angrily B. calmly C. regretfully D. joyfully7. A. caught B. warned C. robbed D. hunted8. A. connected B. related C. wrapped D. fastened9. A. observed B. understood C. noticed D. complained10. A. untying B. forgiving C. overlooking D. beating11. A. recalled B. accused C. informed D. reminded12. A. house B. jail C. village D. kingdom13. A. stopped B. hesitated C. continued D. refused14. A. fortunate B. foolish C. guilty D. painful第二节: 语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卷标号为16-25的相应位置上。
广东省广州市第六中学2015届高三上学期12月测试一数学(文)试题3.设复数113i z =-,232i z =-,则21z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.等差数列{}n a 的前n 项和为n S ,已知33a =,63=S ,则10a 的值是( )A .1B .3C .10D .55 5.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a +b 等于( )A .()2,1--B .()2,1C .()3,1-D .()3,1-6.直线1y kx =+与圆224x y +=的位置关系是( )A .相交B .相切C .相离D .与k 的取值有关 7.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是( ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 8.设一个球的表面积为1S ,它的内接正方体的表面积为2S ,则12S S 的值等于( ) A .2π B .6π C .6π D .π29.已知实数y x ,满足0,1,2210.x y x y ≥⎧⎪≤⎨⎪-+≤⎩若目标函数y ax z +=()0≠a 取得最小值时最优解有无数个,则实数a 的值为( )A .1-B .12-C .12D .1 10.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T 是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是( )A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.在区间()0,1内任取两个实数,则这两个实数之和小于0.8的概率是 .12.已知程序框图如右,则输出的i = .13.已知直线()2y k x =-()0k >与抛物线28y x =相交于A 、B 两点,F 为抛物线的焦点,若2FA FB =,则k 的值为 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如右图,AB 是圆O 的直径,直线CE 与圆O 相切于点C ,AD CE ⊥于点D ,若圆O 的面积为4π,30ABC ∠=,则AD 的长为 . 15.(极坐标与参数方程选做题)在极坐标系中,点A的坐标为4π⎛⎫⎪⎝⎭,曲线C 的方程为θρcos 2=,则OA (O 为极点)所在直线被曲线C 所截弦的长度为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=, EA3cos 5ADC ∠=.(1)求sin ABD ∠的值; (2)求BD 的长.17.(本小题满分12分)某城市为准备参加“全国文明城市”的评选,举办了“文明社区”评选的活动,在第一轮暗访评分中,评委会对全市50个社区分别从“居民素质”和“社区服务”两项进行评分,每项评分均采用5分制,若设“社区服务”得分为x 分,“居民素质”得分为y 分,统计结果如下表:(1)若“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区可以进入第二轮评比,现从50个社区中随机选取一个社区,求这个社区能进入第二轮评比的概率;(2)若在50个社区中随机选取一个社区,这个社区的“居民素质”得1分的概率为110,求a 、b 的值.18.(本小题满分14分)各项均为正数的数列{}n a ,满足11a =,2212n n a a +-=(*n ∈N ). (1)求数列{}n a 的通项公式;(2)求数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分14分)如图所示,已知正方形ABCD 的边长为2,ACBD O =.将正方形ABCD 沿对角线BD 折起,得到三棱锥A BCD -.(1)求证:平面AOC ⊥平面BCD ;(2)若三棱锥A BCD -的体积为3AC 的长. 20.(本小题满分14分)设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF AF +=0(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.21.(本小题满分14分)已知函数()321232a f x x x x =-+-()a ∈R . (1)当3a =时,求函数()f x 的单调区间;(2)若对于任意[)1,x ∈+∞都有()2(1)f x a '<-成立,求实数a 的取值范围; (3)若过点10,3⎛⎫- ⎪⎝⎭可作函数()y f x =图象的三条不同切线,求实数a 的取值范围.所以()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠ …………………6分 412353351351365=⨯-⨯=.…………………………………………8分(2)在△ABD 中,由正弦定理,得sin sin BD ADBAD ABD=∠∠,…………………………10分所以533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠.………………………………………………12分 17.(本小题满分12分)解:(1)从表中可以看出,“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区数量为24个.………………………………………………………………………………2分 设这个社区能进入第二轮评比为事件A ,则()P A =24125025=. 所以这个社区能进入第二轮评比的概率为1225.……………………………………………………4分 (2)从表中可以看出,“居民素质”得1分的社区共有()4a +个,……………………………6分因为“居民素质”得1分的概率为110, 所以415010a +=.………………………………………………………………………8分 解得1a =.…………………………………………………………………………………………10分 因为社区总数为50个,所以4750a b ++=.解得2b =.………………………………………………………………………………………12分 18.(本小题满分14分)解:(1)因为2221=-+n n a a , 所以数列{}2na 是首项为1,公差为2的等差数列.………………………………………………2分所以122)1(12-=⨯-+=n n a n .…………………………………………………………………4分因为>n a ,所以n a ()*n ∈N .………………………………………………………6分(2)由(1)知,n a =所以22122n n na n -=.…………………………………………7分所以231135232122222n n n n n S ---=+++++, ①………………………………………8分则234111352321222222n nn n n S +--=+++++, ②………………………………………9分①-②得,2341112222212222222n n n n S +-=+++++-…………………………………………11分 234111111212222222n n n +-⎛⎫=+++++- ⎪⎝⎭h =.………………………………………6分 以下分两种情形求AC 的长:①当AOC ∠为钝角时,如图,过点A 作CO 的垂线交CO 的延长线于点H , 由(1)知BD ⊥平面AOC ,所以BD AH ⊥.又CO AH ⊥,且CO BD O =,所以AH ⊥平面BCD . 所以AH 为三棱锥A BCD-的高,即AH =7分 在Rt △AOH中,因为AO ,所以OH==.………………8分在Rt△ACH中,因为CO则CH CO OH=+==.……………9分所以AC===10分②当AOC∠为锐角时,如图,过点A作CO的垂线交CO于点H,由(1)知BD⊥平面AOC,所以BD AH⊥.又CO AH⊥,且CO BD O=,所以AH⊥平面BCD.所以AH为三棱锥A BCD-的高,即AH=.……………………………………………11分在Rt△AOH中,因为AO,所以OH2==.…………12分在Rt△ACH中,因为CO则22CH CO OH=-==.…………………………………………………………13分所以AC===综上可知,AC的长为或14分20.(本小题满分14分)解:(1)由题设知,2A⎛⎫⎪⎭,)1F,………………………………………1分由112OF AF+=0,得D⎪⎪⎭⎫ ⎝⎛---=-22222222a a a a .…………………………………3分 解得62=a . 所以椭圆M 的方程为126:22=+y x M .…………………………………………………………4分(2)方法1:设圆()12:22=-+y x N 的圆心为N ,则()()-⋅-=⋅ ……………………………………………………………6分()()NF NP NF NP =--⋅-……………………………………………………………7分2221NP NF NP =-=-.……………………………………………………………8分从而求⋅的最大值转化为求2NP的最大值.………………………………………………9分因为P 是椭圆M 上的任意一点,设()00,y x P ,…………………………………………………10分所以1262020=+y x ,即202036y x -=.………………………………………11分因为点()2,0N ,所以()()121222020202++-=-+=y y x .……………………………12分因为0y ⎡∈⎣,所以当10-=y 时,2NP 取得最大值12.……………………………13分所以⋅的最大值为11.……………………………………………………………………14分方法2:设点112200(,),(,),(,)E x y F x y P x y , 因为,E F 的中点坐标为(0,2),所以2121,4.x x y y =-⎧⎨=-⎩ ………………………………………………6分 所以1()P E ⋅=……………………………………………7分 10101010()()()(4)x x x x y y y y =---+---222201011044x x y y y y =-+-+-22220001114(4)x y y x y y =+--+-.…………………………………………………9分因为点E 在圆N 上,所以2211(2)1x y +-=,即2211143x y y +-=-.………………………10分因为点P 在椭圆M 上,所以2200162x y +=,即220063x y =-.…………………………………11分所以P ⋅200249y y =--+22y =-.……………………………………………12分 因为0[,2]y ∈,所以当01y =-时,()min11PE PF ⋅=.………………………………14方法3:①若直线EF 的斜率存在,设EF 的方程为2y kx =+,……………………………6分由⎩⎨⎧=-++=1)2(222y x kx y ,解得112+±=k x .……………………………………………………7分因为P 是椭圆M 上的任一点,设点()00,y x P ,所以1262020=+yx ,即202036y x -=.…………………………………………………………8分所以002PE x y ⎛⎫=-+-⎪⎭,00,2PF x y ⎛⎫=-- ⎪⎝⎭ …………………………………………………9分所以11)1(21)2(1)2(11202020222022++-=--+=+--++-=⋅y y x k k y k x PF PE . …………………………………………………10分因为0y ⎡∈⎣,所以当10-=y 时,⋅取得最大值11.………………………11分②若直线EF 的斜率不存在,此时EF 的方程为0x =, 由22(2)1x x y =⎧⎨+-=⎩,解得1y =或3y =.不妨设,()0,3E ,()0,1F .………………………………………………………………………12分因为P 是椭圆M 上的任一点,设点()00,y x P ,所以1262020=+y x ,即202036y x -=.所以()00,3PE x y =--,()00,1PF x y =--. 所以2220000432(1)11PE PF x y y y ⋅=+-+=-++.因为0y ⎡∈⎣,所以当10-=y 时,PF PE ⋅取得最大值11.………………………13分综上可知,⋅的最大值为11.……………………………………………14分21.(本小题满分14分)解:(1)当3a =时,()3213232f x x x x =-+-,得()2'32f x x x =-+-.………………1分因为()()()2'3212f x x x x x =-+-=---,所以当12x <<时,()0f x '>,函数()f x 单调递增; 当1x <或2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递增区间为()1,2,单调递减区间为(),1-∞和()2,+∞.………………3分(2)方法1:由()321232a f x x x x =-+-,得()2'2f x x ax =-+-, 因为对于任意[)1,x ∈+∞都有'()2(1)f x a <-成立, 即对于任意[)1,x ∈+∞都有222(1)x ax a -+-<-成立, 即对于任意[)1,x ∈+∞都有220x ax a -+>成立,………………………………………………4分令()22h x x ax a =-+,要使对任意[)1,x ∈+∞都有()0h x >成立, 必须满足∆<或()0,1,210.ah ∆≥⎧⎪⎪≤⎨⎪⎪>⎩………………………………………………………………………5分 即280a a -<或280,1,210.a a aa ⎧-≥⎪⎪≤⎨⎪+>⎪⎩………………………………………………………………………6分 所以实数a的取值范围为()1,8-.…………………………………………………………………7分方法2:由()321232a f x x x x =-+-,得()2'2f x x ax =-+-, 因为对于任意[)1,x ∈+∞都有'()2(1)f x a <-成立, 所以问题转化为,对于任意[)1,x ∈+∞都有[]max'()2(1)f x a <-.……………………………4分 因为()22224a a f x x ⎛⎫'=--+- ⎪⎝⎭,其图象开口向下,对称轴为2a x =.①当12a<时,即2a <时,()'f x 在[)1,+∞上单调递减, 所以()()max ''13f x f a ==-,由()321a a -<-,得1a >-,此时12a -<<.………………………………………………5分②当12a ≥时,即2a ≥时,()'f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以()2max''224a af x f ⎛⎫==- ⎪⎝⎭,。
2015年广州市普通高中毕业班综合测试(一)英语试题与答案I 语言知识及应用(共两节,满分45分)第一节完形填空(共15小题;每小题2分,满分30分)阅读下面短文,掌握其大意,然后从1—15各题所给的A、B、C和D项中,选出最佳选项,并在答题卡上将该项涂黑。
As the world’s population grows, so does our consumption of all kinds of materials. Scientists and environmental groups are increasingly 1.__________ about conserving two important natural resources: our fresh water and our rainforests.Water supports every form of life. Neither plants nor animals can 2.__________ without it. It is also the most 3.__________ used resource in industry. Our quality of life, as well as life itself, depends on a continual 4.__________ of clean, fresh water.However, clean water supplies are now decreasing rapidly. The main 5.__________ of this are overpopulation, water pollution, and deforestation. It is predicted that future watershortages could reduce global farm production by as much as twenty-five percent, leading to widespread 6.__________. Possible solutions to this problem include 7.__________ water recycling methods and limiting population growth.Another 8.__________ but endangered resource is the world’s rainforests. The Amazon rainforest has often been called the “Lungs of the Planet”, because i t 9.__________ takes in carbon dioxide and puts out oxygen, which helps keep our atmosphere 10.__________. The Amazon rainforest is home to millions of plant, animal and insect species and the only source of the raw materials used in many important medicines.Rainforests once covered fourteen percent of the earth’s land. Now they cover only six percent, and experts believe that we may 11.__________ these rainforests completely in less than forty years. One clear solution is using 12.__________ products instead of cutting trees for wood. Another is reducing people’s consumption of meat, since many rainforests are destroyed to 13.__________ farmland to raise animals.We must work together to find solutions to these resource14.__________ and develop sustainable ways of living that will15.__________ natural resources for future generations.1. A. curiousC. concernedD. embarrassed2. A. surviveB. struggleC. expandD. benefit3. A. reliablyB. overlyC. expensivelyD. widely4. A. baseB. supplyC. growthD. location5. A. casesB. resultsC. functionsD. causes6. A. angerB. hungerC. failure7. A. returningB. removingC. improvingD. collecting8. A. valuableB. forgottenC. expectedD. renewable9. A. usuallyB. naturallyC. obviouslyD. unfortunately10. A. lightB. friendlyC. cleanD. warm11. A. destroyB. cutC. removeD. reproduce12. A. replacedB. reservedC. adaptedD. recycled13. A. saveB. provideC. changeD. reduce14. A. problemsB. demandsC. discoveriesD. preferences15. A. promoteB. produceC. preserveD. prevent第二节语法填空(共10题;每小题分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卡标号为16—25的相应位置上。
About a year later, the king was hunting in an area where he should have known not to hunt. Cannibals(食人者) __7 him and took him to their village. They tied his hands, set up a wooden post and 8 him to it. As they came close to set fire to burn the king, they 9 that the king was missing a thumb. Being superstitious, they never ate anyone who was less than whole. So 10 the king, they sent him on his way.As he returned home, he was 11 of the event that had taken his thumb and felt sorry for his treatment of his friend. He went immediately to the 12 to speak with his friend. “You were right,” he said, “it was good that my thumb was blown off.” Then he 13 to tell the friend all that had just happened.“I feel 14 for sending you to jai l for so long. It was bad for me to do this.”“No,” his friend replied, “this is good!”“What do you mean? How could it be good that I sent my friend to jail for a year?”“If I had NOT been in jail, I would have been with you, and I would have been ___15 !”1. A. joking B. remarking C. announcing D. whispering2. A. expectation B. experience C. expedition D. experiment3. A. prepare B. arrange C. carry D. hold4. A. deliberately B. apparently C. naturally D. specially5. A. thumb B. king C. gun D. situation6. A. angrily B. calmly C. regretfully D. joyfully7. A. caught B. warned C. robbed D. hunted8. A. connected B. related C. wrapped D. fastened9. A. observed B. understood C. noticed D. complained10. A. untying B. forgiving C. overlooking D. beating11. A. recalled B. accused C. informed D. reminded12. A. house B. jail C. village D. kingdom13. A. stopped B. hesitated C. continued D. refused14. A. fortunate B. foolish C. guilty D. painful15. A. burnt B. cooked C. fired D. eaten第二节: 语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卷标号为16-25的相应位置上。
广东省广州市第六中学2015届高三上学期12月测试一数学(文)试题3.设复数113i z =-,232i z =-,则21z z 在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.等差数列{}n a 的前n 项和为n S ,已知33a =,63=S ,则10a 的值是( ) A .1 B .3 C .10 D .55 5.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a +b 等于( ) A .()2,1--B .()2,1C .()3,1-D .()3,1-6.直线1y kx =+与圆224x y +=的位置关系是( )A .相交B .相切C .相离D .与k 的取值有关 7.已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是( ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 8.设一个球的表面积为1S ,它的内接正方体的表面积为2S ,则12S S 的值等于( ) A .2π B .6π C .6π D .π29.已知实数y x ,满足0,1,2210.x y x y ≥⎧⎪≤⎨⎪-+≤⎩若目标函数y ax z +=()0≠a 取得最小值时最优解有无数个,则实数a 的值为( )A .1-B .12-C .12D .1 10.定义:若函数)(x f 的图像经过变换T 后所得图像对应函数的值域与)(x f 的值域相同,则称变换T 是)(x f 的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于)(x f 的同值变换的是( )A .2)1()(-=x x f ,T 将函数)(x f 的图像关于y 轴对称 B .12)(1-=-x x f ,T 将函数)(x f 的图像关于x 轴对称C .32)(+=x x f ,T 将函数)(x f 的图像关于点()1,1-对称D .()sin 3f x x π⎛⎫=+ ⎪⎝⎭,T 将函数)(x f 的图像关于点()1,0-对称二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.在区间()0,1内任取两个实数,则这两个实数之和小于0.8的概率是 .12.已知程序框图如右,则输出的i = .13.已知直线()2y k x =-()0k >与抛物线28y x =相交于A 、B 两点,F 为抛物线的焦点,若2FA FB =,则k 的值为 .(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)E如右图,AB 是圆O 的直径,直线CE 与圆O 相切于点C ,AD CE ⊥于 点D ,若圆O 的面积为4π,30ABC ∠=,则AD 的长为 . 15.(极坐标与参数方程选做题) 在极坐标系中,点A的坐标为4π⎛⎫⎪⎝⎭,曲线C 的方程为θρcos 2=,则OA (O 为极点)所在直线被曲线C 所截弦的长度为 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)如图,在ABC ∆中,点D 在BC 边上,33AD =,5sin 13BAD ∠=, 3cos 5ADC ∠=.(1)求sin ABD ∠的值; (2)求BD 的长.17.(本小题满分12分)某城市为准备参加“全国文明城市”的评选,举办了“文明社区”评选的活动,在第一轮暗访评分中,评委会对全市50个社区分别从“居民素质”和“社区服务”两项进行评分,每项评分均采用5分制,若设“社区服务”得分为x 分,“居民素质”得分为y 分,统计结果如下表:(1)若“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区可以进ABCD入第二轮评比,现从50个社区中随机选取一个社区,求这个社区能进入第二轮评比的概率; (2)若在50个社区中随机选取一个社区,这个社区的“居民素质”得1分的概率为110,求a 、b 的值.18.(本小题满分14分)各项均为正数的数列{}n a ,满足11a =,2212n n a a +-=(*n ∈N ). (1)求数列{}n a 的通项公式;(2)求数列22n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .19.(本小题满分14分)如图所示,已知正方形ABCD 的边长为2,AC BD O =.将正方形ABCD 沿对角线BD折起,得到三棱锥A BCD -. (1)求证:平面AOC ⊥平面BCD ; (2)若三棱锥A BCD -AC 的长.20.(本小题满分14分)设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF AF +=0(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.21.(本小题满分14分) 已知函数()321232a f x x x x =-+-()a ∈R . (1)当3a =时,求函数()f x 的单调区间;(2)若对于任意[)1,x ∈+∞都有()2(1)f x a '<-成立,求实数a 的取值范围; (3)若过点10,3⎛⎫- ⎪⎝⎭可作函数()y f x =图象的三条不同切线,求实数a 的取值范围.参考答案所以()sin sin ABD ADC BAD ∠=∠-∠sin cos cos sin ADC BAD ADC BAD =∠∠-∠∠ …………………6分412353351351365=⨯-⨯=.…………………………………………8分 (2)在△ABD 中,由正弦定理,得sin sin BD ADBAD ABD=∠∠, (10)分所以533sin 132533sin 65AD BADBD ABD⨯⨯∠===∠.………………………………………………12分17.(本小题满分12分)解:(1)从表中可以看出,“居民素质”得分和“社区服务”得分均不低于3分(即3x ≥且3y ≥)的社区数量为24个.………………………………………………………………………………2分 设这个社区能进入第二轮评比为事件A ,则()P A =24125025=.所以这个社区能进入第二轮评比的概率为1225.……………………………………………………4分 (2)从表中可以看出,“居民素质”得1分的社区共有()4a +个,……………………………6分因为“居民素质”得1分的概率为110, 所以415010a +=.………………………………………………………………………8分 解得1a =.…………………………………………………………………………………………10分因为社区总数为50个,所以4750a b ++=.解得2b =.………………………………………………………………………………………12分18.(本小题满分14分) 解:(1)因为2221=-+n n a a ,所以数列{}2n a 是首项为1,公差为2的等差数列.………………………………………………2分 所以122)1(12-=⨯-+=n n a n . (4)分因为0>n a ,所以n a ()*n ∈N .………………………………………………………6分(2)由(1)知,n a 22122n n na n -=.…………………………………………7分 所以231135232122222n n n n n S ---=+++++, ①………………………………………8分 则234111352321222222n nn n n S +--=+++++, ②………………………………………9分①-②得,2341112222212222222n n n n S +-=+++++-…………………………………………11分234111111212222222n n n +-⎛⎫=+++++- ⎪⎝⎭h =.………………………………………6分 以下分两种情形求AC 的长:①当AOC ∠为钝角时,如图,过点A 作CO 的垂线交CO 的延长线于点H , 由(1)知BD ⊥平面AOC ,所以BD AH ⊥. 又CO AH ⊥,且COBD O =,所以AH ⊥平面BCD .所以AH 为三棱锥A BCD -的高,即2AH =.………………………………………………7分在Rt △AOH中,因为AO =,所以OH2==.………………8分 在Rt △ACH中,因为CO=则22CH CO OH =+==.……………9分所以AC ===10分②当AOC ∠为锐角时,如图,过点A 作CO 的垂线交CO 于点H , 由(1)知BD ⊥平面AOC ,所以BD AH ⊥. 又CO AH ⊥,且COBD O =,所以AH ⊥平面BCD .所以AH 为三棱锥A BCD -的高,即AH =.……………………………………………11分在Rt △AOH中,因为AO =, 所以OH2==.…………12分 在Rt △ACH中,因为CO =则CH CO OH =-==13分所以AC==综上可知,AC14分20.(本小题满分14分)解:(1)由题设知,2A⎛⎫⎪⎭,)1F,………………………………………1分由112OF AF+=0,得⎪⎪⎭⎫⎝⎛---=-22222222aaaa.…………………………………3分解得62=a.所以椭圆M的方程为126:22=+yxM.…………………………………………………………4分(2)方法1:设圆()12:22=-+yxN的圆心为N,则()()-⋅-=⋅ (6)分()()NF NP NF NP=--⋅-……………………………………………………………7分2221NP NF NP=-=-.……………………………………………………………8分从而求⋅的最大值转化为求2的最大值.………………………………………………9分因为P是椭圆M上的任意一点,设()0,yxP,…………………………………………………10分所以1262020=+y x ,即202036y x -=.………………………………………11分 因为点()2,0N ,所以()()121222020202++-=-+=y y x NP .……………………………12分因为0y ⎡∈⎣,所以当10-=y 时,2取得最大值12.……………………………13分 所以⋅的最大值为11.……………………………………………………………………14分方法2:设点112200(,),(,),(,)E x y F x y P x y ,因为,E F 的中点坐标为(0,2),所以2121,4.x x y y =-⎧⎨=-⎩ ………………………………………………6分 所以1()P E ⋅=……………………………………………7分 10101010()()()(4)x x x x y y y y =---+---222201011044x x y y y y =-+-+-22220001114(4)x y y x y y =+--+-.…………………………………………………9分因为点E 在圆N 上,所以2211(2)1x y +-=,即2211143x y y +-=-.………………………10分因为点P 在椭圆M 上,所以2200162x y +=,即220063x y =-.…………………………………11分所以PE PF ⋅200249y y =--+202(1)11y =-++.……………………………………………12分因为0[y ∈,所以当01y =-时,()min 11PE PF ⋅=.………………………………14方法3:①若直线EF 的斜率存在,设EF 的方程为2y kx =+,……………………………6分由⎩⎨⎧=-++=1)2(222y x kx y ,解得112+±=k x .……………………………………………………7分因为P 是椭圆M 上的任一点,设点()00,y x P , 所以1262020=+y x ,即202036y x -=.…………………………………………………………8分所以002PE x y ⎛⎫=+-⎪⎭,00,2PF x y ⎛⎫=-- ⎪⎝⎭…………………………………………………9分所以11)1(21)2(1)2(112020202220220++-=--+=+--++-=⋅y y x k k y k x . …………………………………………………10分因为0y ⎡∈⎣,所以当10-=y 时,PF PE ⋅取得最大值11.………………………11分②若直线EF 的斜率不存在,此时EF 的方程为0x =,由220(2)1x x y =⎧⎨+-=⎩,解得1y =或3y =.不妨设,()0,3E ,()0,1F .………………………………………………………………………12分因为P 是椭圆M 上的任一点,设点()00,y x P ,所以1262020=+y x ,即202036y x -=. 所以()00,3PE x y =--,()00,1PF x y =--.所以2220000432(1)11PE PF x y y y ⋅=+-+=-++.因为0y ⎡∈⎣,所以当10-=y 时,⋅取得最大值11.………………………13分 综上可知,⋅的最大值为11.……………………………………………14分21.(本小题满分14分)解:(1)当3a =时,()3213232f x x x x =-+-,得()2'32f x x x =-+-.………………1分因为()()()2'3212f x x x x x =-+-=---, 所以当12x <<时,()0f x '>,函数()f x 单调递增;当1x <或2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递增区间为()1,2,单调递减区间为(),1-∞和()2,+∞.………………3分(2)方法1:由()321232a f x x x x =-+-,得()2'2f x x ax =-+-, 因为对于任意[)1,x ∈+∞都有'()2(1)f x a <-成立,即对于任意[)1,x ∈+∞都有222(1)x ax a -+-<-成立,即对于任意[)1,x ∈+∞都有220x ax a -+>成立,………………………………………………4分令()22h x x ax a =-+, 要使对任意[)1,x ∈+∞都有()0h x >成立,必须满足0∆<或()0,1,210.a h ∆≥⎧⎪⎪≤⎨⎪⎪>⎩………………………………………………………………………5分即280a a -<或280,1,210.a a a a ⎧-≥⎪⎪≤⎨⎪+>⎪⎩………………………………………………………………………6分 所以实数a 的取值范围为()1,8-.…………………………………………………………………7分 方法2:由()321232a f x x x x =-+-,得()2'2f x x ax =-+-, 因为对于任意[)1,x ∈+∞都有'()2(1)f x a <-成立,所以问题转化为,对于任意[)1,x ∈+∞都有[]max '()2(1)f x a <-.……………………………4分因为()22224a a f x x ⎛⎫'=--+- ⎪⎝⎭,其图象开口向下,对称轴为2a x =. ①当12a <时,即2a <时,()'f x 在[)1,+∞上单调递减, 所以()()max ''13f x f a ==-,由()321a a -<-,得1a >-,此时12a -<<.………………………………………………5分 ②当12a ≥时,即2a ≥时,()'f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递增,在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以()2max ''224a a f x f ⎛⎫==- ⎪⎝⎭,。
About a year later, the king was hunting in an area where he should have known not to hunt. Cannibals(食人者) __7 him and took him to their village. They tied his hands, set up a wooden post and 8 him to it. As they came close to set fire to burn the king, they 9 that the king was missing a thumb. Being superstitious, they never ate anyone who was less than whole. So 10 the king, they sent him on his way.As he returned home, he was 11 of the event that had taken his thumb and felt sorry for his treatment of his friend. He went immediately to the 12 to speak with his friend. “You were right,” he said, “it was good that my thumb was blown off.” Then he 13 to tell the friend all that had just happened.“I feel 14 for sending you to jai l for so long. It was bad for me to do this.”“No,” his friend replied, “this is good!”“What do you mean? How could it be good that I sent my friend to jail for a year?”“If I had NOT been in jail, I would have been with you, and I would have been ___15 !”1. A. joking B. remarking C. announcing D. whispering2. A. expectation B. experience C. expedition D. experiment3. A. prepare B. arrange C. carry D. hold4. A. deliberately B. apparently C. naturally D. specially5. A. thumb B. king C. gun D. situation6. A. angrily B. calmly C. regretfully D. joyfully7. A. caught B. warned C. robbed D. hunted8. A. connected B. related C. wrapped D. fastened9. A. observed B. understood C. noticed D. complained10. A. untying B. forgiving C. overlooking D. beating11. A. recalled B. accused C. informed D. reminded12. A. house B. jail C. village D. kingdom13. A. stopped B. hesitated C. continued D. refused14. A. fortunate B. foolish C. guilty D. painful15. A. burnt B. cooked C. fired D. eaten第二节: 语法填空(共10小题;每小题1.5分,满分15分)阅读下面短文,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卷标号为16-25的相应位置上。
广东省广州六中2015届高三上学期12月测试英语试题 Ⅰ语言知识及应用(共两节,满分45分) 第一节 完形填空(共15小题;每小题2分,满分30分) 阅读下面短文,掌握其大意,然后从1-15各题所给的A、B、C和D项中.选出最佳选项,并在答题卡上将该项涂黑。 According to a recent report, some once-hot majors like English, Computer and Law for Chinese students entering college have now fallen out of favor. The reason is that more graduates studying in those fields end up __1__. This year, a sample of 500,000 college graduates from 2009 were __2__ and 220,000 questionnaires were received back for the 2010 report. Among the __3__ majors, Law graduates had the most difficulty finding jobs, with the __4__ unemployment rate of 17.7% of all the majors in 2009. English majors had the highest __5__ of the unemployed for three years, with 15,700 graduates __6__ out of work. “Such majors as Computer, English and Law were the most __7__ ones for Beijing students entering universities in 2005, but now these graduates are in a tight corner,” said Ba ran, a senior occupation counselor at a well-known company. Ba said that the expansion of college enrollment for those hot majors five years ago has __8__ an oversupply in the market, making it harder for those graduates to find jobs. On the other side, engineering graduates majoring in Geological Engineering, Ship and Marine Engineering are __9__ most in the job market. Engineering majors are more practical in professional skills and work experience, which are favored by many __10__. The graduates are thus armed with a competitive __11__ in the fierce job market. The report suggested a readiness system should be set up against majors with a high risk of __12__. Undergraduates studying Law or English are encouraged to change their __13__ or obtain a second degree. For some colleges and provinces with incapable operation and __14__ employment rates, the report advised a(n) __15__ in enrollment numbers or even a temporary stop in enrolling students. 1. A. professional B. jobless C. incapable D. skillful 2. A. researched B. surveyed C. investigated D. questioned 3. A. unpromising B. favorable C. professional D. impractical 4. A. quickest B. slowest C. highest D. lowest 5. A. rate B. number C. sample D. supply 6. A. even B. somehow C. still D. often 7. A. famous B. risky C. practical D. popular 8. A. received B. encouraged C. stopped D. caused 9. A. ignored B. enrolled C. favored D. surveyed 10. A. employers B. professors C. reporters D. researchers 11. A. occupation B. advantage C. skill D. major 12. A. dropout B. incapability C. oversupply D. unemployment 13. A. favors B. jobs C. majors D. schools 14. A. low B. high C. rising D. falling 15. A. end B. maintain C. cut D. increase 第二节:语法填空(共10小题,每小题1.5分,共15分) 阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答卷标号为16-25的相应位置上。 To most Chinese students, studying abroad could be a burden. There are lots of difficulties facing them every day---language barrier, culture shock, gaps __16_____ Eastern and Western lifestyles, expensive tuition fees and endless research projects. To Song Yinan, however, studying abroad was a(n) __17______ (forget) experience. In her book, Kiki’s London Diary, she tells her stories in __18______ optimistic way. The language barrier is the biggest difficulty Chinese students will meet abroad. In a story __19______ (write) at the beginning of her first term in London, Song suffered some __20______(embarrass) during a welcoming party, __21_____ she was introduced to some drink and wine. However, she found that she couldn’t read most of the English names of the drinks and therefore __22_______ (drink) only cola and fruit juice. She described about __23______ red her face was. Song says __24_______ is normal for most Chinese to lose face when they study abroad. And she is happy to share the story with others. Throughout the book, readers can feel the optimism and persistence of this girl. Her study and life experiences are sure to delight any Chinese __25________(study) abroad or who plan to do so.
Ⅱ.阅读(共两节,满分50分) 第一节:阅读理解(共20小题,每小题2分,满分40分) 阅读下列短文,从每题所给的A.B.C和D项中,选出最佳选项,并在答题卡上将该项涂黑。 A Fifty has never looked better. It’s been 50 years since the first James Bond film, Dr. No, premiered (首映) in cinemas. As first embodied by Scottish actor Sean Connery, Agent 007 was a fearless, cool-as-ice spy who excelled at sleuthing (侦查), fighting and saving the world. Since then, more than 20 films featuring the iconic (偶像的) spy have been released–making it one of the longest-running franchises (授权) in the history of cinema. On Nov 9, the 23rd Bond movie, Skyfall, celebrated the legend’s 50th birthday. Over the years, audiences have changed. It doesn't matter. Six different actors have acted 007 and it doesn't matter. Even shocking technological and cultural changes can’t bend Bond. Why? Is it the action, the sexy women, the cars, the gadgets and the exotic locations? Yes, but the most important reason is still the man himself. Bond can challenge his boss and shoot a bad guy in mere minutes. He is an expert in literature, languages, art and fine wines. He has a sharp tongue besides his wits.