当前位置:文档之家› 西工大高频实验报告

西工大高频实验报告

西工大高频实验报告
西工大高频实验报告

高频实验报告

班级班级

学号学号

姓名姓名

预习成绩预习成绩

实验成绩实验成绩

实验报告成绩实验报告成绩

总成绩总成绩

2017年 5月

实验一、调幅发射系统实验

一、实验目的与内容:

通过实验了解与掌握调幅发射系统,了解与掌握LC三点式振荡器电路、三极管幅度调制电路、高频谐振功率放大电路。

二、实验原理:

1、LC三点式振荡器电路:

工作原理:观察LC三点式振荡器电路可知,该电路可分为两部分,第一部分是由5BG1为组成的电容三点式LC振荡电路,第二部分别是由5BG2组成的放大电路。图中5R5,5R6,5W2和5R8为分压式偏置电阻,为晶体三极管5BG1提供直流偏置,电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。5R3、5W1、5L2以及5C4构成的回路调节该电路的振荡频率,通过以晶体三极管5BG1为中心的LC振荡电路产生所需的30MHz高频信号,再经下一级晶体三极管5BG2进行放大处理后,在V5-1处输出频率为30MHZ正弦振荡信号送至下一级电路。

2、三极管幅度调制电路:

工作原理:观察三极管幅度调制电路可知,图中7R1,7R4,7W1和7R3为分压式偏置电阻,为晶体管7BG1提供直流偏置,输入30MHz的高频信号和1KHz 的调制信号,分别经过隔直电容7C9、7C8加于晶体三极管的基极;三极管利用

三极管的非线性特性,对输入信号进行变换而产生新的信号,再利用电路中由电感7L1和电容7C2、7C10组成的LC 谐振回路选出所需的信号成分,从而完成调幅过程;调幅后得到所需30MHz 的已调幅信号,并输出至下一级。

3、高频谐振功率放大电路:

工作原理:观察高频谐振功率放大电路可知,高频功放由两级放大电路组成,在第一级电路中6R2和6R3分压式偏置电阻,为晶体管6BG1提供直流偏置,输入的30MHz 的调幅信号经6BG1第一次放大,晶体管6BG1输出采用6C5、6C6、6L1构成的T 型滤波匹配网络;在第二级电路中,基极采用由6R4产生偏置电压供给晶体管6BG2直流偏置,由上一级的放大信号再经第二次放大,晶体管6BG2输出采用6C13、6C13、6L3和6L4构成的T 型滤波匹配网络;经两级放大后得到所需的放大信号。

4、调幅发射系统:

图1 调幅发射系统结构图

工作原理:首先LC 振荡电路产生一个频率为30MHZ ,幅度为100mV 的信号源,然后加入频率为1KHZ ,幅度为100mV 的本振信号,通过三极管幅度调制,再经过高频谐振功率放大器输出稳定的最大不失真的正弦波。

三、实验方法与步骤:

一.LC 三点式振荡器电路:

第一步:调节晶体管5BG1的静态工作点

本振

功率

放大

调幅 信源

(1)闭合开关K5A,向电路接入12V的直流稳压电源,使得5BG1处于直流工作状态,

(2)将万用表调至电压档,接于电阻5R8两端,调节电阻5W2,测量5R8两端的电压,使得万用表示数为3V左右。

第二步:调节LC三点式振荡电路的交流通路

(1)将5K1拨到5C-11处,调节变容5C4和电阻5W1,在观测点V5-1连接示波器,通过示波器观测并记录输出波形,直到输出频率为30MHZ的稳定的最大不失真正弦波。

二.三极管幅度调制电路:

第一步:调节晶体管7BG1的静态工作点

(1)闭合开关K7,向电路接入12V的直流稳压电源,使得7BG1直流工作状态;

(2)将万用表调至电压档,接于电阻7R3两端,调节电阻7W1,测量7R3两端的电压,使得万用表示数为0.3V左右。

第二步:调节三极管调幅电路的交流通路

(1)将开关7K1打到高频输入端,用函数信号发生器向高频输入端输入频率为30MHZ,幅度为100mVpp的载波信号,用示波器连接到V7-2处,观察输出波形,调节7C10,使输出波形达到最大不失真。

(2)接着闭合开关7K3,用另一函数信号发生器向1KHZ调制信号处输入频率为1KHZ,幅度为100mV的调制信号,调节7C10,直到示波器上的波形达到最大不失真。

三.高频谐振功率放大电路:

(1)向电路接入12V的直流稳压电源,闭合开关K6A,打开K6B,用函数发生器在信源输入端输入频率为30MHZ,幅度为300mVpp的正弦信号,并将万用表调到电流档接入电路。调节6C5,用示波器观察V6-2端输出的波形,保证输出波形达到最大不失真,且输出信号有增益。

(2)打开K6A,输入发射极电源,闭合K6B,接入电流表,开关K6C打到左端,开关将6K1打到50Ω档,在V6-3处连接示波器,调节变容6C13,使得V6-3端输出的波形达到最大不失真。(在此期间应注意先观察电流表的示数,再看示波器的变化,保证电流表的示数应在60mA以下)。

四.调幅发射系统:

(1)将实验相应的三部分电路进行正确连接,电路板5输出V5-1接电路板7的高频载波输入端7K1,电路板7的输出端7W2接电路板1的信号输入端6K2.

(2)接入12V直流稳压电源,用示波器接于输出端口V6-3处,测量并分析记录整个调幅发射系统输出波形。

四、测试指标与测试波形:

1.LC三点式振荡器电路:

1.1、振荡器反馈系数k fu对振荡器幅值U L的影响关系:

表1-1: 测试条件:V1 = +12V 、 Ic 1 ≈ 3mA 、 f 0 ≈ 28MHz k fu = 0.1—0.5 振荡器的反馈系数k fu --U L 特性结论:

振荡器幅值UL 随振荡器的反馈系数Kfu 增大而增大,且随Kfu 的增大,UL 的变化率减小。

1.2、振荡管工作电流和振荡幅度的关系: Ic –U L

表1-2: 测试条件:V1 =12V 、 k fu ≈ 0.4、 fo ≈ 30MHz 、 Ic 1 = 0.5 — 6 mA

数据值

项 目

5BG1电流 Ic (mA )

0.5

1 2 3 4 5 U L V P-P 0.3 0.6 1.1 1.6 1.8 1.5 fo

MHz

30.13

30.11

30.04

30.01

29.83

29.32

振荡器的Ic –U L 特性结论:

起始位置振荡器幅值随着振荡管工作电流增大,后又随着工作电流增大而减小。说明有一最佳工作电流位置,过大或过小都会影响振荡器幅值。工作电流从最佳工作电流处减小,振荡频率会增大;工作电流从最佳工作电流处增大,振荡频率会减小。

1.3、 LC 三点式振荡输出波形:

测试条件:V1 =12V 、 k fu ≈ 0.4、 fo ≈ 28MHz 、 Ic 1 = 3mA

名称 单位 1 2 3 4 5 k fu 5C6/(C N+5C6)

0.1 0.2 0.3 0.4 0.5 U L

V P-P

0.56

0.82

1.30

1.48

1.50

LC 三点式振荡输出波形

波形特点与测量值分析结论:

波形幅度,频率特性较稳定,形状并不是标准的正弦波,从峰值处还可以看到较明显的电容充放电过程,最小值过于尖锐。由波形上下不对称,可知静态工作点选择的不是最最佳的工作点。通过调节工作点可以得到更好的波形。

I C值变化对调制系数m的影响的结论:

基极调幅电路中,调制器的调制系数m 值随晶体管工作电压Ic的增大而减小。

2.三极管幅度调制电路(基极):

2.1、I C值变化对调制系数m的影响关系:“IC -- m”

表1-3 测试条件:V1 = +12V UΩ= 1kHz/0.1 V p-p Ui = 30MHz/0.1 V p-p

名称单位UΩ= 1KHz/0.1V P-P Ui = 30MHz/0.1V P-P

Ic mA 1 2 3 4 5

Usm (A) V P-P0.73 0.96 1.21 1.37 1.48

Usm (B) V P-P0.15 0.52 0.86 1.10 1.29

m % 65.91 29.73 16.91 10.91 6.86

I C值变化对调制系数m的影响的结论:

基极调幅电路中,调制器的调制系数m 值随晶体管工作电压Ic 的增大而减小。

2.2、三极管幅度调制电路(基极)输出波形:

测试条件:V1 = +12V UΩ= 1kHz/0.1 V

p-p U i = 30MHz/0.1 V

p-p

Ic=3mA

波形特点与测量值分析结论:

输出波形为包络为1KHz 调制信号,载波频率为30MHz 的调幅波形。通过三极管基极调幅之后,载波信号被调制信号调制为调制信号。

3.高频谐振功率放大电路:

3.1.输入激励信号与输出信号电流/电压之间的关系,输出功率与工作效率

表1-4 测试条件:V1=V2=12V、fo=30MHz/0.5-0.8 V p-p、R L=50Ω、(Ic不得超过60mA)级别激励放大级器(6BG1) 末级谐振功率放大器(6BG2)

测量项目

注入信号

U i(V6-1)

激励信号

U bm(V6-2)

输出信号

U0(V6-3)

未级电流

I C(mA)

峰峰值V P-P 2.4 18.3 2.7 27.20 有效值V0.86 6.54 0.952 9.735

电源输入功率P D: Ic = 45.2 mA、P D = 541.5 mW

高频输出功率P0: Uo = 12.0 V p-p RL = 49 ΩP0 = 366 mW

电路工作效率η: 66.32 %

3.2.谐振功率放大器的负载特性: R L-- Uo

表1-5 测试条件:V1=V2 =12V、fo=30MHz U bm= 3—4Vp-p R L= 50Ω--150ΩRLΩ50Ω75Ω100Ω125Ω150ΩUo(V p-p)(V6-3) 9.40 11.6 13.2 14.8 15.9

Ic(mA)(V2)53.54 56.68 57.58 59.63 60.98 结论:

只增大Vbm 时,使集电极电流脉冲的宽度和高度增加,Vbm 增加一定程度后放大器工作状态由欠压进入过压,在即将达到临界电压时集电极电流急剧增加,进入过压状态后,集电极电流变化缓慢.

4.调幅发射系统

调幅发射系统各单元模块接口信号参数:

LC振荡电路

产生30MHZ

正弦信号

调幅电路

频率1KHZ

幅度0.1Vpp

本振信号

功率放大

实验二、调幅接收系统实验

一、实验目的与内容:

通过实验了解与掌握调幅接收系统,了解与掌握三极管混频器电路、中频放大/AGC电路、检波电路。

二、实验原理:

1、晶体管混频电路:

混频是将输入的高频信号(经滤波、放大)变换为频率固定的中频信号。

工作原理:观察晶体管混频电路可知,图中2R2、2R3和2W1为分压式偏置电阻,为晶体管2BG1提供直流偏置,2C3、2B1和2R5为输出中频回路,输入30MHZ 的载波信号经隔直电容2C5加于晶体管2BG1的基极,30.455MHZ的本振信号经隔直电容2C6加于晶体管发射极,载波信号和本振信号经三极管2C6混频得到固定频率(455KHz)的中频信号,再经选频网络得到所需的455KHz不失真混频信号。

2、中频放大/AGC和检波电路:

AGC是自动增益控制电路,用来比较电压,从而压缩有用信号强度的变化范围,但不影响调制在载波上的包络变化,保证信息的不失真传输。检波电路是将调幅信号通过检波二极管,由于检波二极管的单向导电特性,使得输出为基带低频信号,实现检波功能。

工作原理:输入上一级混频后的455KHz的中频电压,利用晶体三极管3BG1和选频网络3B1组成的中频放大器进行放大;输出放大信号输入AGC反馈控制电

路,利用AGC 控制前级中频放大器的输出增益,使系统总增益随规律变化;再经最后一段二极管检波电路实现解调,将中频调幅信号变换为反应传送信息的调制信号。

3、调幅接收系统:

图2 调幅接收系统结构图

工作原理:首先输入频率30MHz ,幅度为50mV 的载波信号,然后再输入频率为30.455MHz ,幅度为250mV 的本振信号,通过三极管混频电路进行混频,接着将信号输入中放、AGC 和检波电路,最终输出频率为1KHZ 的稳定的最大不失真的正弦波。

三、实验步骤:

一、晶体管管混频电路

第一步:调节2BG1的静态工作点:

(1).闭合开关K2,接入12V 的直流电压,使2BG1处于直流工作状态。

(2).将万用表调至电压档,接于电阻2R4两端,调节店主2W1,测量2R4两端电压,使万用表的测量值为1V 。

第二步:调节混频电路的交流通路:

(1).用一函数发生器从信源输入端向V2-1处送入频率为5MHz ,5mVpp 的单载波。

(2).用另一函数发生器从本振输入端向V2-5处送入频率为5.455MHz,250mVpp 的本振信号。

(3).将开关2K2打至混频端,示波器接于V2-3处,观察波形的振幅和频率。然后调节可调电容2C3使得输出频率为455KHz 的最大不失真的波形。

二、中频放大/AGC 和检波电路

第一步:调节3BG1和3BG2的静态工作点:

(1).闭合开关K3,接入12V 的直流电压,使3BG1和3BG2均处于直流工作状 态。

(2).同样将万用表调至电压档,先接于电阻3R7两端,调节可变电阻3W1,测量3R7两端电压,使得测量值为1.5V 左右。

(3).然后再将万用表接于电阻3人3两端,测量3R13两端,测量3R13两端电压,调节可变电阻3W2,使万用表读数为1V 左右。

第二步:调节电路的交流工作:(中频放大)

中放

/AGC

混频 低噪放

本振

检波

(1).用函数发生器从信号输入端向V3-1处送入频率为455KHz,250mVpp的单载波。

(2)将示波器接入V3-2处,调节可变电阻3C4,使V3-2处输出波形最大不失真且有增益。

(3)将示波器接于V3-4处,调节可变电阻3C7,使V3-4处输出波形最大不失真且有增益(注意:中频信号经两级放大后,应满足输出信号V>0.7V)

第三步:测试AGC电路的动态范围:

(1)闭合开关3K3,断开开关3K2,改变输入信号的幅值,使其分别取不同的值,然后用示波器分别接于V3-2处,V3-4处和V3-5处,记录不同的输入幅值对应的AGC输入、输出和控制电压的幅值。

(2)将示波器接于V3-4,调节选频网络中电容3C7。使得输出信号最大不失真。

第四步:检波失真观测:(大信号包括检波)

(1)用函数发生器向信号输入端输入调制频率1KHz,载波频率455KHz,幅度为50mVpp,调制度为50%的调幅信号。

(2)先断开3K4,调节3W4,用示波器观察检波输出信号为最大不失真,观察且记录波形。

(3)观察检波电路的对角线失真:调节电阻3W4,用示波器接于检波输出端,观察波形。

(4)观察负峰切割失真:先将波形调回不失真波形,再闭合开关3K4,再调节电阻3W4,观察输出波形。

三、调幅接收系统:

(1)晶体管混频电路中:①向V2-1处送入频率为5MHz,5mVpp的单载波信号。

②向V2-5处送入频率为5.455MHz,250mVpp的本振

信号。

(2)中频放大电路3K1打至中频输入端,闭合3K3,断开3K2和3K4,调节3W4,观察检波输出波形至最大不失真。

(3)测试系统灵敏度:将两电路板连接在一起,将单载波从50mVpp不断减小,同时观察检波输出波形,直到使示波器输出波形出现明显失真,记录此时的输入幅值。

四、测试指标与测试波形:

3.1.晶体管混频电路:

混频管静态电流“Ic”变化对混频器中频输出信号“U2”的影响关系

表2- 1 测试条件:EC1 = +12V、载波信号Us = 5mv UL=250 mV p-p Ic = 0.1—3mA 电流Ic(mA)0.0 0.5 1.0 1.5 2.0 2.5 3.0 中频U2 (mVp-p)192 523 531 470 425 354 306

混频增益Kuc (dB) 31.6 40.4 40.5 39.5 38.6 37.0

3.2.中频放大/AGC和检波电路:

2.1、AGC 动态范围测试

表2-2 V1=+12V, U in =1mVp-p ——1Vp-p/455kHz 输入信号U in mVp-p

10

20 50 80 200 500

1V 中放Vo1(AGC 输入)

(V )p-p

0.55

0.85 1.72 2.41 3.74 4.05 3.74 AGC 输出Vo2 (V )p-p 3.48 3.56 3.97 4.10 4.12 4.16 4.18 AGC 控制电压Vc

V

0.16

0.16

0.24

0.26

0.27

0.27

0.27

由表上表数据得出AGC 动态范围测试曲线图如下所示:

AGC 动态范围结论

从图中可以看出AGC 控制电压并不随输入信号的变化而变化,总是保持一条

直线,而在一定范围内,随着输入信号的增加,输出信号也随之增加,且在一定范围内呈线性关系,但是当输入信号达到某一值后,输出信号将不再随输入信号的变化而变化。

分析:AGC 为自动增益控制电路,当高频端接收到弱信号时,它会自动控制放大管增加放大倍数,反之减小放大倍数,使放大电路的增益自动的随信号强度而调整的自动控制。减小了原中频放大器的输出动态范围,从而降低了系统波形

的失真。

2.2、AGC输入信号峰峰值与AGC检波输出电压关系曲线图

2.3、检波失真观测

测试条件:输入信号Vin:455KHz、50mVp-p,调制1kHz信号,调制度50%调幅信号检波无失真输出波形实测波形选贴:

对角线失真输出波形实测波形选贴

对角线失真的原因是:当输入为调幅波时,过分增大L R 和C

值,致使极管截止期间C 通过L R 的放电速度过慢,在某t1时刻跟不上输入调幅包络的下降速度,输出平均电压就会产生失真。

负峰切割失真输出波形实测波形选贴

3.3. 调幅接收系统(给出各单元模块接口信号参数并分析调幅接收系统性能):

频率5MHZ 幅度50mV 正弦信号

频率5.455MHZ 幅度 250mV 本振信号

混频电路

455KHZ 中频信号

解调检波

1KHZ 正弦信

中放 /AGC

对角线失真输出波形

实验三、调频接收系统实验

一、实验目的与内容:

通过实验了解与掌握调频接收系统,了解与掌握小信号谐振放大电路、晶体振荡器电路、集成混频鉴相电路。

二、实验原理:

2.3、小信号谐振放大电路:

工作原理:该电路是对天线接收到的信号进行前级小信号放大的电路,其中1R1、1R2为晶体三极管提供直流偏置,信号经隔直电容1C7输入三极管基极,从集电极输出,并可经过1C5和1L1组成的选频网络输出单频谐振信号,也可经过1C5和1L1组成的选频网络与1C9、1C10和1L2组成的选频网络,输出双谐振信号。(而本实验采用双谐振输出)

2.4、晶体振荡电路:

工作原理:晶体振荡电路采用石英晶体振荡器控制与稳定频率,其中7805三端集成稳定器为晶体振荡电路提供稳定的5V 电压,主体为并联型晶体振荡器,其中晶体可作高Q 值得电感与电容构成LC 谐振回路选频网络,输出频率固定的振荡信号经晶体三极管放大和选频网络输出理想振荡信号。

2.5、集成混频鉴相电路:

工作原理:天线接收载波信号,经前级低噪放进行初步放大后,被送入MC3362P 集成混频鉴相电路,经过两次混频和一次鉴相操作,完成频率调制,最终输出所需的已调频信号。

2.6、调频接收系统:

图3. 调频接收系统结构图

工作原理:由天线接收到信号后,送入低噪声放大器进行放大,然后与本振信号进行混频,混频后进行滤波,然后进入中放AGC ,经过中放后再进行一次滤波,

鉴频

本振1

混频 放大

混频 本振2

MC3362P

然后进行鉴相器,经过鉴相器后放大输出信号。(混频和鉴相均在集成混频鉴相电路MC3362p中完成)

三、实验步骤:

(一)小信号放大电路

第一步:调节晶体管1BG1的静态工作点:

1、向电路正确接入12V的直流工作电压,闭合开关K1,使晶体管工作于直流状态下。

2、将万用表调至电压档,测量电阻1R3两端的电压,并调节可变电阻1W1,使万用表示数为1.5V左右。

第二步:调节双谐振回路并输出最大不失真双谐振波形:

1、从天线输入端用函数发生器送入一个30MHz,50mVpp的单载波。

2、先将开关1K1打到单谐振端,将示波器接于V1-2处,然后调节变容1C4和将开关1K2打到不同的阻值,观察示波器输出波形,使得使得波形稳定且最大不失真。

3、再将开关1K2打到双谐振端,将示波器接于V1-3处,然后调节变容1C10和1C9,使得示波器输出波形稳定且最大不失真。

第三步:逐点测试放大电路的幅频特性:

改变输入信号的频率,使其值在中心频率(30MHz)左右变化,逐步改变频率的值,然后在V1-3处用示波器观察输出波形的幅度变化。

(二)晶体振荡电路

由于实验设备有限我们并没有进行该电路的操作。

(三)集成混频鉴相电路

第一步:连接小信号放大电路与集成混频电路:

1、向电路正确接入12V的直流工作电压,闭合开关K2B,向7805三端稳压器和MC3362P供电。

2、将小信号谐振放大电路中,开关1K1打至双谐振端,开关1K3打至高放输出2端,

使信号能输入到集成混频电路。

第二步:产生混频信号:

1、在小号放大电路天线输入端接入天线使载频输入端输入30MHz,50mVpp 的单载波。用函数发生器在本振输入端输入40.7MHz,3Vpp的单载波,由V2-5接入,开关2K3向下打,2K2向上打。

2、将载频输入信号与本振输入信号进行混频,调节可变电容2C20或是选频网络2B2,使V2-4处用示波器观察得到10.7MHz的稳定且最大不失真的正弦波。

3、产生的10.7MHz的混频信号与10.245MHz的单载波将将进行二次混频,同样调节2C20和2B2,使V2-7处用示波器观察得到455kHz的稳定的最大不失真正弦波。

第三步:进行鉴相操作:

调整选频网络2B2,将示波器接于V2-8处,调节电容2C20的值,观察示波器波形,使输出频率为1KHz的稳定的最大不失真正弦波。

(四)调频接收系统

由于实验仪器有限在第三步的集成混频鉴相电路中直接就进行了

四、测试指标与测试波形:

1.小信号谐振放大电路:

放大器直流工作点对Uo的影响关系

表1-1: 测试条件:V1 = +12V、Ic1 ≈0.5—4.5mA、Ui ≈50mV P-P f0 ≈30MHz 输入信号

50mV P-P

Ui(mV P-P)

放大管电流Ic1 0.5mA 1mA 2mA 3mA 4mA 4.5mA

输出信号Uo

0.45 0.78 1.21 1.64 0.95 0.17

(V P-P)

结论与分析:

在一定范围内,放大器的放大倍数会随着直流工作点的升高而增大,当超过一定范围后放大器的放大倍数随着直流工作点的升高而减小.

逐点法测量放大器的幅频特性

表1-3: 测试条件:V1 = +12V、Ic1≈2mA、f0 =27—33MHz Ui =50mV P-P

输入信号幅度

50 mV P-P

(mV P-P)

输入信号

27 27.5 28 28.5 29 29.5 30

(MHz)

输出幅值

0.12 0.15 0.19 0.30 0.56 1.23 1.75

(V P-P)

输入信号

30.5 31 31.5 32 32.5 33

(MHz)

输出幅值

1.46 1.33 1.12 0.91 0.62 0.43

(V P-P)

且用扫描进行频率扫描得到幅频特性曲线如下:

观察可得用逐点法测得放大器的幅频特性曲线与扫描仪扫描得到的幅频特性曲线相差不大。

放大器幅频特性测试结论: 由幅频特性曲线可看出,输出信号幅值和输入信号频率呈抛物线关系,当输入信号频率为31.5MHz 时,输出幅值最大为2.12V ,输入信号频率增高或降低都会导致输出幅值降低。

2. 晶体振荡电路:

3.集成混频鉴相电路:

4.调频接收系统(给出各单元模块接口信号参数):

输出1KHZ 正弦信号

MC3362P 混频、鉴频电路 40.7MHZ 3V 本振信

小信号谐振

放大电路 双谐振输出30MHZ 放大正弦信号

信号源发出频率为30MHZ 正弦信号

高频电子电路实验感受与建议:第一次如此认真地做实验,感觉电类学科相比于其他学科的优点就是可操作性强,有很多有趣的实验以及试验结果。做完试验对电路板有了一种亲切之感,没有理论课上的抽象概念,每一个元件都成了直观的实体。第一次看了芯片手册,虽然很多看不懂,但是感觉很好至少不算难,以后有可能用到不了解的芯片知道第一时间翻看芯片手册。知道了扩展放大电路的得通频带可以使用双谐振网络,知道了三极管的静态工作点通过可调分压偏置电阻实现,知道了变容二极管的电容值通过电压改变,知道了反馈系数对增益的影响,知道了AGC自动增益电路。

以下几点认知:

(1)射随器,因为在高频电子线路理论课上积累知识不够,所以第二节课预习不足到教室外重新预习,虽然感觉理论知识确实很难,但是我在教室外的过程中第一次郑重认识了射随器,虽然了解深度有限,但是这个基本器件是深深的烙印在了我的记忆中,对以后的我也是一种激励。

其实仔细想来,这三个实验差不多概括了我们高频理论课的所有内容,然而就是这三个实验的内容,让我们感觉到十分的困难。但是当我们做完了这些实验之后,发现其实这些理论从实验的角度看还是比较直观的,四周的实验给了我重新学习高频理论课的机会和信心,亲自实验也是学习理论的重要途径。实验课程本来为巩固和应用理论知识为目的,但却成了我学习理论课的开始。

(2)第一次直观地看到了调幅波,理论课上一直讨论的调幅波在我的脑海里一直很抽象,当自己对一种事物没有直观感受的时候,就总是有一种抽象难以理解甚至离我们很遥远的感觉。实验课上第一节课亲自眼看见调幅波,对称的正弦波形真实而柔美,看了一次就再也不会忘记。当然我们也看了调频波波形,虽然没有调幅波直观,但也很真实,不过没看到调相波是一个小小的遗憾,不过貌似和调频波差不多吧,但是不清楚直观上有什么区别。

(3)学会了正确使用各种仪器,之前也做过电类试验,但是对仪器的了解和认识不够深入,使用仪器不够规范,有时完全按照老师的指导操作但是不了解原理,在此次实验过程中学会了很多仪器相关使用知识。知道了扫频仪的原理概述以及使用方法,计数器的使用等等。

哈工大高频课设

通信电子线路课程设计 课程名称:咼频电子线路课程设计 院系: 电子信息工程___________ 班级:XXXXXXX _________________ 姓名:XXXX ___________________ 学号:XXXXXXXXXXX ______________ 指导教师:XXXXXXXXX _______________

时间:2014年11月_________________

、中波电台发射系统设计 1设计目的 要求掌握最基本的小功率调幅发射系统的设计与安装调试, 了解高频振荡器电路、高频 放大器电路、调制器电路、音频放大电路的工作原理,学会分析电路、 设计电路的方法和步 骤。 2设计要求 技术指标:载波频率 535-1605KHZ ,载波频率稳定度不低于 10-3,输出负载51 Q,总的 输出功率50mW ,调幅指数 30% ~80%。调制频率 500Hz~10kHz 。 本设计可提供的器件如下, 高频小功率晶体管 高频小功率晶体管 集成模拟乘法器 高频磁环 运算放大器 集成振荡电路 3 设计原理 发射机包括高频振荡、 个频率稳定的幅度较大的, 采用LC 谐振回路作为选频网络的晶体管振荡器。选用西勒振荡器来产生所需要的正弦波。 在振荡器后加一缓冲级,缓冲级将的作用是前后两部分隔离开, 减小后一级对前一级的影响 而又不影响前级的输出。音频处理器是提供音频调制信号, 通常采用低频电压放大器和功率 放大电路把音频调制信号送到调幅电路级去完成调幅。 振幅调制使用乘法器将高频振荡信号 和低频语音信号相乘得到高频调制信号; 再经高频功率放大器放大调制信号的功率, 以达到 发射机对功率的要求, 调制电路和功率放大器要保证信号上下对称且不是真, 否则影响发射 效果。 发射机设计框图如下: 参数请查询芯片数据手册。 3DG6 3DG12 XCC MC1496 NXO-100 卩 A74I E16483 音频信号、调制电路和功率放大器四大部分。 正弦振荡器产生一 波形失真小的高频正弦波信号作为发射载频信号, 该级电路通常 ■号,

计算机网络实验1

实验一网络常用命令的使用及DNS层次查询、SMTP协议分析 网络常用命令的使用 1、windows命令 不同的操作系统要用不同的命令进入命令行界面。 在Win9x/Me的开始菜单中的运行程序中键入"command"命令,可进入命令行界面。在Win2000/NT的开始菜单中的运行程序中键入"cmd"命令,可进入命令行界面。 开始——〉运行——〉键入cmd命令或command命令——〉回车 进入了命令行操作界面(DOS窗口),在DOS窗口中只能用键盘来操作。如下所示: 2、网络常用命令的作用与格式 了解和掌握网络常用命令将会有助于更快地检测到网络故障所在,从而节省时间,提高效率。网络命令数量比较多,在本次实验中我们学习的网络命令是为数不多的一些常用网络命令。 由于每个网络命令都有不同的作用,为了更好地掌握这些网络常用命令应该了解这些命令的基本格式,基本格式如下:

网络命令参数1参数2参数3参数… 查看这些参数的方法是在网络命令后加“/?”,如要查看ping命令的参数可以输入ping/?显示如下: 【实验目的】 1、掌握网络常用命令的使用; 2、利用网络常用命令对网络中常见现象进行分析判断。 【实验容】 1、掌握PING命令的基本使用方法(包括参数的使用),对网络常见故障利用命令进行分析判断: Ping是测试网络联接状况以及信息包发送和接收状况非常有用的工具,是网络测试最常用的命令。Ping 向目标主机(地址)发送一个回送请求数据包,要求目标主机收到请求后给予答复,从而判断网络的响应时间和本机是否与目标主机(地址)联通。 如果执行Ping不成功,则可以预测故障出现在以下几个方面:网线故障,网络适配器配置不正确,IP 地址不正确。如果执行Ping成功而网络仍无法使用,那么问题很可能出在网络系统的软件配置方面,Ping 成功只能保证本机与目标主机间存在一条连通的物理路径。 命令格式: ping IP地址或主机名[-t] [-a] [-n count] [-l size] 常用参数含义: -t不停地向目标主机发送数据; -a 以IP地址格式来显示目标主机的网络地址;

模电实验报告一_西工大

模 拟 电 路 设 计 实 验 报 告 西北工业大学 赵致远2014302170 裘天成2014302171 2016年1月1日 实验一:电源 1.实验目的: ●学习开关型和线性型直流稳压电源原理。 ●认识电解电容与陶瓷电容的区别。 ●认识电感的作用。 ●学会通过芯片datasheet(数据表)了解其工作特性及参数指标 ●掌握直流稳压电源主要指标的意义与其测试方法。

熟悉开关型与线性型直流稳压电源的优缺点与其区别。 2.实验原理: a.线性稳压原理: 特点: 1.输出电压绝对值必须比输入电压绝对值低 2.输出三极管或者MOS管工作在放大状态,导通压降大,输入输 出电压压差大时效率较低。 3.输出电流能力较小 4.输出电压纹波小 5.无开关动作和EMI b.开关稳压原理: 降压 负压 升压

V SW I L V OUT ΔI L ΔV OUT T ON T 特点: 1.能够实现升压,降压,负压转换 2.采用开关传输能量,效率高。 3.具有大电流输出能力 4.输出纹波较大 5.开关动作产生较大EMI和系统电源噪声 3.实验内容: a.实验1:MC34063开关稳压电路 降压输出5V 负压输出-5V

1. 计算参数。 方法:依据MC34063 数据手册(datasheet)中,降压(step-down)和负压(Voltage-Inverting)部分提供的公式计算。 计算开关频率f和导通时间T ON:首先,依据选定的电容C T的值及其公式计算出T ON大小,之后根据T ON/T OFF比值公式计算出T OFF大小。T ON与T OFF之和为开关周期。计算得出开关频率大小。 通过反馈电阻R1,计算反馈电阻R2值。 已知确定R1,通过datasheet中提供的公式计算设定V OUT所需的电阻R2值。 并且调整好可调电阻大小。 计算最大输出电流I OUT(max) 2. 搭建电路。 3. 测试参数 A: 输出电压V OUT 电压表直接测量输出端的电压,并记录。 B:输出纹波 输入电压V IN=25V,负载电阻100Ω时,通过示波器AC档测试V OUT波形,读取纹波大小。 C: 开关频率f和导通时间T ON 输入电压V IN=25V,负载电阻100Ω时,测量开关节点引脚2的波形频率。 高电平时间为导通时间T ON。 D: 负载调整率 输入电压V IN=25V,在输出负载上串联电流表,接入V OUT端,调节负载电阻100Ω和50Ω变化。记录两个负载下输出电压值,计算负载调整率。 E:线性调整率 输入电压V IN在15V到25V变化,负载电阻100Ω时,记录输出电压变化值,计算线性调整率。 F:效率 输入电压V IN=25V,负载电阻100Ω时效率。 G:短路电流 输出负载0.1ohm,串联电流表,接入V OUT端,记录此时的输出电流值。b.实验2:LM7805线性降压电路

计算机网络实验报告

计算机网络实验报告 专业计算机科学与技术 班级15秋 学号1532001256679 姓名王小祥 组号一组 指导教师印志勇 国家开放大学东台分校 二○一七年十二月

目录 实验总体说明 (3) 实验一以太网帧的构成 (3) 实验三路由信息协议RIP (8) 实验四传输控制协议TCP (10) 实验五邮件协议SMTP、POP3、IMAP (12) 实验六超文本传输协议HTTP (14)

实验总体说明 1.实验总体目标 配合计算机网络课程的教学,加强学生对计算机网络知识(TCP/IP协议)的深刻理解,培养学生的实际操作能力。 2.实验环境 计算机网络协议仿真实验室: 实验环境:网络协议仿真教学系统(通用版)一套 硬件设备:服务器,中心控制设备,组控设备,PC机若干台 操作系统:Windows 2003服务器版 3.实验总体要求 ●按照各项实验内容做实验,记录各种数据包信息,包括操作、观察、记录、分析, 通过操作和观察获得直观印象,从获得的数据中分析网络协议的工作原理; ●每项实验均提交实验报告,实验报告的内容可参照实验的具体要求,但总体上应包 括以下内容:实验准备情况,实验记录,实验结果分析,算法描述,程序段,实验过程中遇到的问题以及对思考问题的解答等,实验目的、实验原理、实验步骤不需要写入实验报告中。 实验一以太网帧的构成 实验时间:____________ 成绩:________________ 实验角色:_____________ 同组者姓名:______________________________

试验二网际协议IP 实验时间:_____________ 成绩:________________ 实验角色:_____________ 同组者姓名:______________________________

DB1-西工大数据库实验一数据库及表的创建和管理

《数据库原理》实验报告 题目:实验一 学号姓名班级日期数据库和表的创建与管理 一.实验内容、步骤以及结果 1.利用图形用户界面创建,备份,删除和还原数据库和数据表(50分,每小题5分) 数据库和表的要求(第四版教材第二章习题5要求的数据库) 数据库名:SPJ,其中包含四张表:S表, P表, J表, SPJ表 图2.1 S表(供货商表) 图2.2 P表(零件表) 图2.4 SPJ表(供应情况表) 图2.3 J表(工程项目表)

完成以下具体操作: (1)创建SPJ数据库,初始大小为10MB,最大为50MB,数据库自动增长,增长 方式是按5%比例增长;日志文件初始为2MB,最大可增长到5MB,按1MB 增长。数据库的逻辑文件名和物理文件名均采用默认值。 (2)在SPJ数据库中创建如图2.1-图2.4的四张表(只输入一部分数据示意即可)。 (3)备份数据库SPJ(第一种方法):备份成一个扩展名为bak的文件。(提示:最 好先删除系统默认的备份文件名,然后添加自己指定的备份文件名) (4)备份数据库SPJ(第二种方法):将SPJ数据库定义时使用的文件(扩展名为 mdf,ldf的数据文件、日志文件等)复制到其他文件夹进行备份。 (5)删除已经创建的工程项目表(J表)。 (6)删除SPJ数据库。(可以在系统默认的数据存储文件夹下查看此时SPJ数据库 对应的mdf,ldf文件是否存在) (7)利用备份过的bak备份文件还原刚才删除的SPJ数据库。(还原数据库) (8)利用备份过的mdf,ldf的备份文件还原刚才删除的SPJ数据库。(附加) (9)将SPJ数据库的文件大小修改为100MB。 (10)修改S表,增加一个联系电话的字段sPhoneNo,数据类型为字符串类型。 实验具体步骤: (1)创建SPJ数据库:右击数据库-->新建数据库-->填写相应参数-->点击确定。如下图: (2)在SPJ数据库中创建四张表:单击数据库SPJ-->右击‘表’-->新建表-->填写参数-->确定。如下图:

西工大高频第二次实验报告

实验二调幅接收系统实验 一、实验目的和内容: 图2为实验中的调幅接收系统结构图(虚框部分为实验重点,低噪放电路下次实验实现,本振信号由信号源产生。)。通过实验了解和掌握调幅接收系统,了解和掌握三极管混频器电路、中频放大/AGC电路、检波电路。 图2 调幅接收系统结构图 二、实验原理: 1、晶体管混频电路: 给出原理图,并分析其工作原理。 原理:混频电路将高频载波信号或已调波信号经过滤波、放大,将其频率变换为固定频率的信号且该高频滤波信号的频谱内部结构和调制类型保持不变,仅仅改变其频率。 2、中频放大/AGC和检波电路: 给出原理图,并分析其工作原理。 原理:中频输入信号通过中放电路放大中频信号,抑制干扰信号,连接AGC电路实现自动增益控制,接着连接二极管检波电路和低通滤波器,从中取出调制信号。 3、调幅接收系统: 给出系统框图,并简述其工作原理。 检波 低噪放混频 中放 /AGC 本振

工作原理:天线接收信号通过滤波器滤波然后低噪放放大幅度,晶体振荡器振荡出所需的本振信号,让本振信号和其进行混频然后滤波,AGC对其进行放大,输出稳定值,再进行滤波并解调检波,经过功率放大器输出。 三、实验步骤: 1、晶体管混频电路: 1)先调整静态工作点,测量2R4两端电压,调节2W1,使2R4两端电压为0; 2)在V2-5输入10.455MHz,250mV的本振信号,在V2-1输入10MHz、30mV的单载波信号,在V2-3处观测,调节2C3和2B1的大小,改变中频输出,当输出为455KHz的最大不失真稳定正弦波时,完成调试并记录此时的中频输出峰峰值。 3)改变基极偏置电阻2W1,使2R4端电压分别为0.5,1,1.5,2,2.5,3V,重复上述步骤2),记录下不同静态工作点下的中频输出的峰峰值,并计算混频增益,完成表2-1. 2、中频放大/AGC和检波电路: 1)调节直流静态工作点:闭合开关K3,电路仅接入12v直流电压,调节可调电阻3W1、3W2,为使静态电流不超过1mA,应使3R7,3R13两端电压为0.5V,0.033V。 2)调节交流工作:第一,调节函数发生器产生频率455KHZ的标准正弦信号,接入3K1。将示波器接于V3-2。 第二,调节可调电容3C4,使输出波形幅度最大不失真。 第三,将示波器加于V3-4,调节可调电容3C7,使输出波形最大不失真。 3)测试动态范围:开关3K2断开,开关3K3闭合。调节输入信号Vi幅值,使其分别为10,20…100,200mv…1V,示波器分别接到V3-2、V3-4、V3-5,,将分别测得的波形峰峰值记入表2-2,即分别为V01,V02,Vc,同时用示波器接V3-6处记录电压值(即AGC检波输出电压)。 4)检波失真观测:第一,输入信号455KHz、10mVpp,调制1KHz信号,调制度50%调幅信号,将示波器接到V3-6处即可观察到正常无失真的波形输出并记录;第二,增大直流负载电阻3W4,观察示波器直到观测到失真波形,即为对角线失真,记录波形;第三,再次调整3W4使波形正常不失真,减小交流电阻即闭合3K4,观察示波器输出波形产生负峰切割失真,记录波形。 3、调幅接收系统: 1、晶体管混频电路:1)2K1接入调制频率1KHz正弦波,载波频率10MHz,幅度为30mVp-p ,调制度50%的调幅波信号。 2)2K3接入本振信号10.455MHz,250mVp-p的正弦信号,将示波器接在V2-3处观察波形,记录参数、波形。 2、中频放大电路3K1打至中频输入端。 3K2、3K4断开,3K3闭合,,将示波器接到V3-6观察检波输出的波形,调节3W4,使其达到最大不失真波形,记录波形。 3、测试系统性能:1)灵敏度。不断减小输入调幅波信号的幅值,同时观察检波输出波形,使示波器波形出现明显失真的输入幅值为该系统的最小可接收幅值。 四、测试指标和测试波形: 3.1.晶体管混频电路:

哈工大高频电路课设

高频电子线路课程设计 学院:电子与信息工程学院 专业班级:1105102 班 姓名:苏新 学号: 1111900211 日期:2013 年11 月9 日

一设计要求 1.1 设计内容 1.中波电台发射系统设计 设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。 技术指标:载波频率535-1605KHz,载波频率稳定度不低于10-3,输出负载51Ω,总的输出功率50mW,调幅指数30%~80%。调制频率500Hz~10kHz。 2.中波电台接收系统设计 本课题的设计目的是要求掌握最基本的超外差接收机的设计与调试。 任务:AM调幅接收系统设计主要技术指标:载波频率535-1605KHz,中频频率465KHz,输出功率0.25W,负载电阻8Ω,灵敏度1mV。 1.2 设计要求 必做任务(针对每个系统): 1.针对每个系统给出系统设计的详细功能框图。 2.按照任务技术指标和要求及系统功能框图,给出详细的参数计算及方案论证、器件选择的计算 过程。 3.给出详细的电路原理图,标出电路模块的输入输出,给出详细的数学模型和计算过程。 选作任务(针对每个系统):这部分完成有额外的加分 4.对整个电路进行ADS等计算机软件仿真,给出功能节点及系统的输入输出仿真波形及分析。 二中波电台发射系统的设计与仿真 2.1小功率调幅发射机的系统设计 系统原理图如图2.1所示: 图2-1 小功率调幅发射机的系统设计框图

2.2工作原理及说明 图2-1中,各组成部分的的作用如下: 正弦震荡器:产生频率为MHz 的载波信号。 缓冲级:将正弦振荡器与调制电路隔离,减小调制级对正弦振荡器的影响。 低频放大级:将话筒信号电压放大到调制级所需的调制电压。 调幅级:将话音信号调制到载波上,产生已调波。 功放及天线:对前级送来的信号进行功率放大,通过天线将已调高频载波电流以电磁波的形式发射到空间。 现在结合题目所给性能指标进行分析: 载波频率535-1605KHz ,载波频率稳定度不低于10-3 :正弦波振荡器产生的正弦波信号频率f 为535 KHz 到1605KHz ,当震荡波形不稳定时,最大波动频率f ?与频率f 之比的数量级小于10-3 。 输出负载51Ω :输出部分,即高频功率放大器的输出负载为51Ω。 总的输出功率50mW :即高频功率放大器的输出功率,结合计算公式1cm c m P U I =?可进行分析,实现指标。 调幅指数30%~80% :设A 为调幅波形的峰峰值,B 为谷谷值,则由调幅指数计算公式有 100%a A B m A B -= ?+。在振幅调制电路中可通过更改调制信号振幅实现此指标。 调制频率500Hz~10kHz :调制信号频率,由输入信号的频率来决定。 2.3各部分的具体设计及分析 2. 3.1正弦波振荡器及缓冲电路 正弦波振荡器是用来产0.535~1.605MHz 左右的高频振荡载波信号,由于整个发射机的频率稳定度由主振级决定,因此要求主振级有较高的频率稳定度,同时也要有一定的振荡功率,其输出波形失真较小。为此,这里我采用西勒振荡电路,可以满足要求,为了减少后级对主振级振荡电路振荡频率的影响,采用缓冲级。缓冲电路采用射极跟随器,特点为输入阻抗高,输出阻抗低,因而从信号源索取的电流小而且带负载能力强。用它连接两电路,可以减少电路间直接相连所带来的影响,起到缓冲作用。振荡器与缓冲级联调时会出现缓冲级输出电压明显减小或波形失真的情况,可通过增大缓冲级的射极电阻 来提高缓冲输入级输入阻抗,也可通过减小,即减小主振级与缓冲级的耦合来实现, 同时负载也会对缓冲的输出波形也有很大影响。电路图如图2-2所示。如图西勒振荡器电路三极 管工作在放大区。

数据库实验报告1

一. 实验内容、步骤以及结果: 1.利用图形用户界面创建,备份,删除和还原数据库和数据表(30分,每小题5分) ●数据库和表的要求 (1)依据课本P127(第四版教材,下同)的第三题,创建一个名为SPJ的数据库,初始大小为 10MB,最大为50MB,数据库自动增长,增长方式是按5% 比例增长;日志文件初始为2MB,最大可增长到5MB,按1MB增长。数据库 的逻辑文件名和物理文件名均采用默认值。 (2)数据库SPJ包含供应商表,零件表,工程项目表,供应情况表。具体每张表的定义以及数据参看课本P74页的第五题。 ● 完成以下具体操作: (1)创建的SPJ数据库。 (2)在SPJ数据库中分别创建上述的四张表(只输入一部分数据示意即可)。 (3)备份SPJ数据库。 (4)删除已经创建的工程项目表(J表)。 (5)删除SPJ数据库。 还原刚才删除的SPJ数据库。 实验具体步骤: (1)创建SPJ数据库:右击数据库-->新建数据库-->填写相应参数-->点击确定。(2)创建表:单击数据库SPJ-->右击‘表’-->新建表-->填写参数-->确定。

(3)备份数据库:右击数据库SPJ-->任务-->备份-->填参数-->确定。 (4)删除表:单击数据库SPJ--》单击表--》右击J--》选择删除。 (5)删除数据库:右击数据库SPJ--》选择删除命令。 (6)还原数据库。右击数据库--》选择还原数据库命令--》填写参数--》确定。 2. 利用SQL语言创建和删除数据库和数据表(30分,每小题5分) 数据库和表的要求 (1)创建用于学生信息的数据库,数据库名为Student,初始大小为20MB,最大为100MB,数据库自动增长,增长方式是按10M兆字节增长;日志文件初 始为2MB,最大可增长到5MB,按1MB增长。数据库的逻辑文件名和物理文 件名,日志文件名请自定义。 (2)数据库Student包含学生信息,课程信息和学生选课的信息。包含下列3个表:S:学生基本信息表;C:课程基本信息表;SC:学生选课信息表。各表的结 构以及数据如下所示: 表 2.1 学生基本信息表(表名:S)

西工大高频第二次实验报告

实验二 调幅接收系统实验 一、实验目的与内容: 图2为实验中的调幅接收系统结构图(虚框部分为实验重点,低噪放电路下次实验实现,本振信号由信号源产生。)。通过实验了解与掌握调幅接收系统,了解与掌握三极管混频器电路、中频放大/AGC 电路、检波电路。 图2 调幅接收系统结构图 二、实验原理: 1、晶体管混频电路: 给出原理图,并分析其工作原理。 原理:混频电路将高频载波信号或已调波信号经过滤波、放大,将其频率变换为固定频率的信号且该高频滤波信号的频谱内部结构和调制类型保持不变,仅仅改变其频率。 2、中频放大/AGC 和检波电路: 给出原理图,并分析其工作原理。 检波 低噪放 混频 中放 /AGC 本振

原理:中频输入信号通过中放电路放大中频信号,抑制干扰信号,连接AGC电路实现自动增益控制,接着连接二极管检波电路和低通滤波器,从中取出调制信号。 3、调幅接收系统: 给出系统框图,并简述其工作原理。 工作原理:天线接收信号通过滤波器滤波然后低噪放放大幅度,晶体振荡器振荡出所需的本振信号,让本振信号与其进行混频然后滤波,AGC对其进行放大,输出稳定值,再进行滤波并解调检波,经过功率放大器输出。 三、实验步骤: 1、晶体管混频电路: 1)先调整静态工作点,测量2R4两端电压,调节2W1,使2R4两端电压为0; 2)在V2-5输入10.455MHz,250mV的本振信号,在V2-1输入10MHz、30mV的单载波信号,在V2-3处观测,调节2C3和2B1的大小,改变中频输出,当输出为455KHz的最大不失真稳定正弦波时,完成调试并记录此时的中频输出峰峰值。 3)改变基极偏置电阻2W1,使2R4端电压分别为0.5,1,1.5,2,2.5,3V,重复上述步骤2),记录下不同静态工作点下的中频输出的峰峰值,并计算混频增益,完成表2-1. 2、中频放大/AGC和检波电路: 1)调节直流静态工作点:闭合开关K3,电路仅接入12v直流电压,调节可调电阻3W1、3W2,为使静态电流不超过1mA,应使3R7,3R13两端电压为0.5V,0.033V。 2)调节交流工作:第一,调节函数发生器产生频率455KHZ的标准正弦信号,接入3K1。将示波器接于V3-2。 第二,调节可调电容3C4,使输出波形幅度最大不失真。 第三,将示波器加于V3-4,调节可调电容3C7,使输出波形最大不失真。 3)测试动态范围:开关3K2断开,开关3K3闭合。调节输入信号Vi幅值,使其分别为10,20…100,200mv…1V,示波器分别接到V3-2、V3-4、V3-5,,将分别测得的波形峰峰值记入表2-2,即分别为V01,V02,Vc,同时用示波器接V3-6处记录电压值(即AGC检波输出电压)。 4)检波失真观测:第一,输入信号455KHz、10mVpp,调制1KHz信号,调制度50%调幅信号,

数据库系统概论实验指导(第七版)

数据库系统概论实验指导 (第七版) 计算机学院 2013/09

改版履历

目录 目录 (3) 1.实验概要 (4) 1.1.实验说明 (4) 1.2.实验环境和配置 (4) 1.3.上机要求 (5) 2.实验1:数据库/表的基本操作和表级约束 (5) 2.1.目的和要求 (5) 2.2.实验准备 (5) 2.3.实验内容 (5) 3.实验2:库级约束和基本表的数据操作 (8) 3.1.目的和要求 (8) 3.2.实验准备 (8) 3.3.实验内容 (8) 4.实验3:视图操作和安全性控制 (10) 4.1.目的和要求 (10) 4.2.实验准备 (10) 4.3.实验内容 (10) 5.实验4:存储过程/触发器/ODBC数据库编程 (12) 5.1.目的与要求 (12) 5.2.实验准备 (12) 5.3.实验内容 (12) 6.实验5:数据库综合实验 (14) 6.1.目的与要求 (14) 6.2.实验准备 (14) 6.3.实验内容 (15) 5.3.1.题目一:零件交易中心管理系统 (15) 5.3.2.题目二:图书管理系统 (15) 5.3.3.题目三:民航订票管理系统 (15) 5.3.4.题目四:学生学籍管理系统 (16) 5.3.5.题目五:车站售票管理系统 (16) 5.3.6.题目六:企业人事管理系统 (16)

5.3.7.题目七:电话交费管理系统 (16) 5.3.8.题目八:医药销售管理系统 (17) 7.附录:实验报告格式 (18) 1.实验概要 1.1.实验说明 内容:本课程实验分5次完成,每次完成一部分。具体内容参考本指导的后半部分。 成绩:每次实验100分,最后取5次实验的加权平均分作为实验的总成绩,其中第五次实验占40%,其余各次占15%。每次实验中各个环节的评分标准如下: 上述每一项按照百分制给出分值,最后按照比率计算每次实验的最终成绩。 实验报告 每次实验需提交电子版的实验报告(最后一次实验需提交设计文档,源程序等相关资料)。每次实验结束时,将写好的实验报告,提交给各班辅导老师。如果确有困难没有完成的情况下,课后自己完成之后提交到辅导老师的邮箱里。由辅导老师根据课堂上机实验检查状况和实验报告的内容给出每次实验的成绩。 实验报告的内容包括:实验内容、实验步骤、程序源码、运行结果(可以是程序的输出,也可以是运行画面的抓屏,抓屏图片要尽可能的小,否则文件太大)。每份实验报告是一个WORD文档。实验报告命名规则如下:DBx(实验次数)_XXXXXX(学号)_姓名例如:20052978的学生的第一次实验报告文件名: DB1_20052978_李宁注意:请每个人保存好自己的实验报告的电子版,直到该门课考试成绩公布之后。 1.2.实验环境和配置 SQL Server 2008(Microsoft SQL Server 2008 Express With Advance Service)

西工大-数电实验-第二次实验-实验报告

数电实验2 一.实验目的 1.学习并掌握硬件描述语言(VHDL 或 Verilog HDL);熟悉门电路的逻辑功能,并用硬件描述语言实现门电路的设计。 2.熟悉中规模器件译码器的逻辑功能,用硬件描述语言实现其设计。 3.熟悉时序电路计数器的逻辑功能,用硬件描述语言实现其设计。 4.熟悉分频电路的逻辑功能,并用硬件描述语言实现其设计。 二.实验设备 1.Quartus开发环境 2.ED0开发板 三.实验内容 要求1:编写一个异或门逻辑电路,编译程序如下。 1)用 QuartusII 波形仿真验证; 2)下载到DE0 开发板验证。 要求2:编写一个将二进制码转换成 0-F 的七段码译码器。 1)用 QuartusII 波形仿真验证; 2)下载到 DE0 开发板,利用开发板上的数码管验证。 要求3:编写一个计数器。 1)用QuartusII 波形仿真验证; 2)下载到 DE0 开发板验证。 要求4:编写一个能实现占空比 50%的 5M 和50M 分频器即两个输出,输出信号频率分别为 10Hz 和 1Hz。 1)下载到 DE0 开发板验证。(提示:利用 DE0 板上已有的 50M 晶振作为输入信号,通过开发板上两个的 LED 灯观察输出信号)。 2)电路框图如下: 扩展内容:利用已经实现的 VHDL 模块文件,采用原理图方法,实现 0-F 计数自动循环显示,频率 10Hz。(提示:如何将 VHDL 模块文件在逻辑原理图中应用,参考参考内容 5) 四.实验原理 1.实验1实现异或门逻辑电路,VHDL源代码如下: LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL;

哈工大高频课程设计

课程设计报告(结题) 题目:中波电台发射和接收系统设计 专业电子信息工程 学生XXX 学号11305201XX 授课教师赵雅琴 日期2015-05-24 哈尔滨工业大学教务处制

目录 一、仿真软件介绍 (1) 二、中波电台发射系统设计 2.1 设计要求 (1) 2.2 系统框图 (1) 2.3 各模块设计与仿真 (2) 2.3.1 主振荡器设计与仿真 (2) 2.3.2 缓冲级的设计与仿真 (3) 2.3.3 高频小信号放大电路的设计与仿真 (5) 2.3.4 振幅调制电路的设计与仿真 (6) 2.3.5 高频功率放大器与仿真 (8) 2.3.6 联合仿真 (9) 三、中波电台接收系统设计 3.1 设计要求 (10) 3.2 系统框图 (11) 3.3 各模块设计与仿真 (11) 3.3.1 混频电路设计与仿真 (11) 3.3.2 中频放大电路设计与仿真 (13) 3.3.3 二极管包络检波的设计与仿真 (14) 3.3.4 低频小信号电压放大器 (16) 四、总结与心得体会 (17) 五、参考资料 (17)

一、仿真软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 二、中波电台发射系统设计 2.1 设计要求 设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。 技术指标:载波频率535-1605KHz,载波频率稳定度不低于10-3,输出负载51Ω,总的输出功率50mW,调幅指数30%~80%。调制频率500Hz~10kHz。 本设计可提供的器件如下(也可以选择其他元器件来替代),参数请查询芯片数据手册。 高频小功率晶体管 3DG6 高频小功率晶体管 3DG12 集成模拟乘法器 XCC,MC1496 高频磁环 NXO-100 运算放大器μA74l 集成振荡电路 E16483 2.2 系统框图 发射机包括三个部分:高频部分,低频部分和电源部分。 高频部分一般包括主振器、缓冲器、高频小信号放大器、振幅调制电路、高频功率放大器。主振器的作用是产生频率稳定的载波。主振器里比较稳定的是西勒振荡器,再在后面接一个射极跟随器来减小级间影响。 图1:发射机设计框图

西工大计算机网络实验三

实验报告 实验名称 --SOCKET编程 一、实验目的 (1)加深对TCP和UDP的理解; (2)实现两台计算机之间TCP/UDP通信。 二、实验过程 原理: socket是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用以实现进程在网络信。如下图所示:

TCP通信 原理如图: 代码: 服务器端: #pragma comment(lib, "WS2_32.lib")

#include #include #include using namespace std; int main() { int i=0; WSADATA wsaData; SOCKET oldSocket,newSocket; //客户地址长度 int iLen=0; //发送的数据长度 int iSend=0; //接收的数据长度 int ircv =0; //处世要发送给客户的信息 char buf[20]="I am a server"; //接收来自用户的信息 char fromcli[512]; //客户和服务器的SOCKET地址结构 struct sockaddr_in ser,cli; if(WSAStartup(MAKEWORD(2,2),&wsaData)!=0) { cout<<"failed to load winsock"<

数据库实验报告

数据库实验报告

武汉理工大学 学 生 实 验 报 告 书 实验课程名称 数据库系统概论 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 学生学号 实验课成绩

2013 — 2014 学年第二学期实验课程名称:数据库系统概论 实验项目名称SQL SEVER 2000的系 统工具及用户管理 实验 成绩 实验者专业班 级 组别 同组者实验 日期 2014年4 月24日

第一部分:实验分析与设计(可加页) 一、实验内容描述(问题域描述) 实验目的和要求:了解SQL SEVER 2000的功能及组成,熟练掌握利用SQL SEVER 2000工具创建数据库、表、索引和修改表结构及向数据库输入数据、修改数据和删除数据的操作方法和步骤,掌握定义数据约束条件的操作。 二、实验基本原理与设计(包括实验方案设计,实 验手段的确定,试验步骤等,用硬件逻辑或者算法描述) 实验内容和步骤: (1)熟悉SQL SEVER 2000的界面和操作。 (2)创建数据库和查看数据库属性。 (3)创建表、确定表的主码和约束条件。 (4)查看和修改表的结构。 (5)向数据库输入数据,观察违反列级约束时出现的情况。 (6)修改数据。 (7)删除数据,观察违反表级约束时出现的情况。 三、主要仪器设备及耗材 Windows XP SQL SERVER 2000

第二部分:实验调试与结果分析(可加页) 一、调试过程(包括调试方法描述、实验数据记录, 实验现象记录,实验过程发现的问题等) 没有错误 错误:未能建立与WORKEPLACE\XUMENGXING的链接SQL Server 不存在或访问被拒绝 原因:未启动数据库服务 二、实验结果及分析(包括结果描述、实验现象分 析、影响因素讨论、综合分析和结论等) 实验结果部分截图:

计算机网络-实验报告1常用网络命令实验

淮海工学院计算机工程学院实验报告书 课程名:《计算机网络》 题目:常用网络命令实验 班级:Z计121 学号:2014140093 姓名:薛慧君

1.目的与要求 理解IP地址、子网掩码、默认网关和DNS服务器的含义,在给定的网络环境中,使用常用网络命令,掌握通过网络命令对网络进行简单分析、测试的基本方法。 2.实验内容 (1)理解IP地址、子网掩码、默认网关和DNS服务器的含义; (2)熟悉和掌握ipconfig,arp,ping命令的用法,理解arp和ping命令之间的关系,掌握连通性测试的方法; (3)理解和掌握tracert命令的用法; (4)熟悉其他网络命令的功能(自选)。 3.实验步骤 Ipconfig命令 Ipconfig命令用来显示主机内IP协议的配置信息: 用ipconfig /all,则可以得到更多的信息:主机名、DNS服务器、节点类型、网络适配 器的物理地址、主机的IP地址、子网掩码以及默认网关等。

Ping命令 Ping命令用来检测一帧数据从当前主机传送到目的主机所需要的时间: (1)在不删除默认网关的情况下: ①ping本网的主机 ②ping外部网络主机 如果ping某一网络地址https://www.doczj.com/doc/c16145468.html,,出现:"Reply from 111.13.100.91: bytes=32ms time=32ms TTL=50"则表示本地与该网络地址之间的线路是畅通的;如果出现"Request timed out",则表示此时发送的小数据包不能到达目的地。 (2)当删除默认网关时: 可以访问本网主机,但不可以访问外网主机

Arp命令 用arp -a 查看arp列表里的mac地址 Tracert命令 tracert这个程序的功能是判定数据包到达目的主机所经过的路径、显示数据包经过的中继节点清单和到达时间。

西北工业大学自动控制原理实验报告

实验一、二 典型环节的时间特性研究 一、目的要求 1.掌握典型环节的模拟运算电路的组成原理。 2.掌握惯性环节,比例微分环节,比例积分环节,比例,微分,积分环节,振荡环节的时间特性的实验验方法和特点。 二、实验电路及运算观察、记录 1惯性环节: 其中:T=R1C ,K=R1/R0 (1)模拟电路 图 (1) 典型惯性环节模拟电路 (2)注:‘S ST ’不能用“短路套”短接 (3)安置短路套 (4)测孔联线 (5)虚拟示波器(B 3)的联接:示波器输入 端CH 1接到A6单元信号输出端OUT (U0). 注:CH 1选“X1”档。时间量程选‘X4’档 (6)运行、观察、记录 打开计算机→我的电脑→D 盘→Aedk →LABACT.exe 进入LABACT 程序。 选择自动控制菜单下的线性系统实域分析→典型环节模拟研究分析→ 开始试验,弹出示波器显示界面,按下信号发生器(B1)阶跃信号按 钮时(0→+5v 阶跃),点击开始。测完特征后点“停止”,开始读数。 用示波器观测A6输出端(Uo )的实际响应曲线(t ),且将结果记下。 改变电容C 值(即改变时间常数),加Ui ,测Uo ,并将结果记录下来和 第一次的比较。 2.比例微分环节: )1() ()(S Kp s Ui s Uo T D += 其中: ,R3很小 (1)模拟电路

图 典型比例微分环节模拟电路 (2)输入连线 a.为了避免积分饱和,将函数发生器(B5)所产生的周期性方波信号(OUT ),代替信号发生器(B1)中的阶跃输出0/5V 作为环节的信号输入(Ui )。 b.将函数发生器(B5)中的插针‘S ST ’用短路套短接。 c.将S1拨动开关置于最上档(阶跃信号)。 d.信号周期由拨动开关S2和“调宽”旋钮调节,信号幅度由“调幅”旋钮调节(正输出宽度在70ms 左右,幅度在400mV 左右)。 注:CH1选’X1’档。时间量程选’/2’档。 (6)运行,观察,记录6单元信号输出端OUT(Uo) 操作和惯性环节实验相同,用示波器观察A6输出端(Uo)的实际响应曲线Uo(t),并将结果记下来,改变参数R1值,重新测试结果,并记录比较。 3.比例积分环节 )11()()(S Kp s Ui s Uo T I += 其中,R R Kp 01= ,C R T I 11= (1) 模拟电路

高频课设调频发射机报告

通信电子线路课程设计 小功率调频发射机的设计与制作 设计报告 姓名: 学号: 专业: 指导教师:

20 年 月 日 小功率调频发射机的设计与制作 一、设计任务与要求 1、主要技术指标: 1、中心频率:012f MHz = 2、频率稳定度 4 0/10f f -?≤ 3、最大频偏 10m f kHz ?> 4、输出功率 30o P mW ≥ 5、电源电压 9cc V V = 二、 原理及图 1、 小功率调频发射机原理: 通常小功率发射机采用直接调频方式,并组成框图如下所示: 高频振荡级:产生频率稳定、中心频率符合指标要求的正弦波信号; 缓冲级:对调频振荡信号进行放大,提供末级所需的激励功率,起一定隔离作用,避免功放级的工作状态影响振荡频率稳定度; 功放级:确保高效率输出足够大的高频功率,馈送到天线发射。 1.频振荡级:

由于是固定的中心频率,可考虑采用频率稳定度较高的克拉泼振荡电路。克拉泼电路是电容三点式振荡器的改进型电路,下图为它的实际电路和相应的交流通路: 实用电路交流通路 如图可知,克拉泼电路比电容三点式在回路中多一个与C1 C2相串接的电容C3,接入C3后,虽然反馈系数不变,但接在AB两端的电阻RL’=RL//Reo 折算到振荡管集基间的数值减小。因而,放大器的增益亦即环路增益将相应减小,C3越小,环路增益越小。减小C3来提高回路标准是以牺牲环路增益为代价的,如果C3取值过小,振荡器就会因不满足振幅起振条件而停振。 2.缓冲级: 由于对该级有一定增益要求,考虑到中心频率固定,因此可采用以LC并联回路作负载的小信号谐振放大器电路。 并联谐振回路如图所示

西工大计算机网络作业3

1.当两台计算机分别和中继器、二层交换机、三层交换、路由器相连时,请分别画出计算 机与交换设备五层参考模型; 计算机1 上图为计算机和路由器连接.。三层交换机与上图连接相同。二层路由器与计算机连接只经过数据链路层和物理层,中继器与计算机连接只经过物理层。 2.学习SOCKET编程,写出TCP、UDP通信流程;将实例程序两个同学一组,实现两台计算机之间通信。并写出学习报告; TCP通信流程 客户端服务器

UDP通信流程 客户端服务端 利用socket实现TCP,UDP通信的流程如上图所示。 SOCKET实验报告 一.实验目的 学习SOCKET编程,理解计算机通信的流程,分别实现TCP,UDP协议下两台计算机之间的通信。

Socket编程机制 客户端: (1)客户端程序在运行后,首先需要使调用WSAStartup 函数,确保进程加载socket 应用程序所必须的环境和库文件,如Ws2_32.dll。 (2)调用函数Socket 创建SOCKET,在创建时需指定使用的网络协议、连接类型等。 (3)填充SOCKADDR 结构,指定服务端的地址、端口等。 (4)调用connect 函数连接到服务端。 (5)如果连接成功,就可以使用send 和recv 函数发送和接收数据。 (6)在数据传输完成后,可调用closesocket 函数关闭Socket。 (7)调用WSACleanup 函数释放资源。 服务端: (1)程序在运行后,首先需要使调用WSAStartup 加载Ws2_32.dll。 (2)调用函数socket 创建用于监听的SOCKET,在创建时需指定使用的网络协议、连接类型等。 (3)1 调用bind 函数将Socket 绑定到网络地址和端口。 (4)调用listen 函数开始监听。 (5)调用accept 函数等待客户端连接。在客户端连接后,accept 函数返回,得到连接Socket。在accept 函数返回后,可立即再调用,以处理其他客户端的连接。 (6)得到连接Socket 后,可调用send 和recv 发送、接收数据。 (7)在数据传输完成后,可调用closesocket 函数关闭Socket。 (8)调用WSACleanup 函数释放DLL。 函数用法: 1.WSAStartup 函数的功能是加载Ws2_3 2.dll 等Socket 程序运行的环境。其返回值用来 判断程序是否调用成功。 2.WSACleanup 函数释放Ws2_32.dll 库,函数无参数。 3.Socket 函数的功能是建立一个绑定到指定协议和传输类型的Socket。用来指定网络地 址的类型,传输类型,传输协议。 4.send函数的功能是向连接的另一端发送数据。参数为套接字,发送的数据,发送数据长 度。Send成功则返回实际发送的数据,失败则返回SOCKET_ERROR. 5.recv函数的功能时是从连接的另外一端接收数据。 6.closesocket函数用于关闭socket。 7.bind函数的功能是将socket与网络地址和端口绑定起来。 8.listen的函数是将socket的状态设置为监听,以使客户端程序可以连接。 9.accept函数的功能是接收客户端的连接,accpet函数直到客户端有连接后才会返回。

相关主题
文本预览
相关文档 最新文档