当前位置:文档之家› 电气化铁道技术专业《电力牵引供变电技术》课程设计—

电气化铁道技术专业《电力牵引供变电技术》课程设计—

电气化铁道技术专业《电力牵引供变电技术》课程设计—
电气化铁道技术专业《电力牵引供变电技术》课程设计—

高速铁路牵引变电所电气主接线的设计

摘要:牵引变电所是电气化铁路牵引供电系统的心脏,它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及在电气上是如何连接的,高压侧有几回进线、几台牵引变压器,有几回接触网馈电线。通过电气主接线可以了解牵引变电所等设施的规模大小、设备情况。

1.2 电气化铁路的国内外现状

变电所是对电能的电压和电流进行变换、集中和分配的场所。在电能是社会生产和生活质量中最为重要的能源和动力的今天,变电所的作用是很重要的当前我国进行的输变电建设和城乡电网的建设与改造,对未来电力工业发展有着重要的作用。因此,产品技术要先进,产品质量要过硬,应达到30~40年后也能适用的水平;而且产品必须要国产化。现阶段我过主要是使用常规变电所。常规变电所即采用传统模式进行设计、建造和管理的变电所,一般为有人值班或驻所值班,有稳定的值班队伍。继电保护为电磁型,电器就地控制,不具备四遥、远方操作功能,需要一支训练有素的运行与检修队伍和一整套相应的管理机构、制度进行管理,以满足安全运行的要求。这种模式有许多不足之处。我国的近期目标是既要充分利用原有设备,又要能够适应微机远动自动化系统;既要实现无人值班,又要满足安全经济运行的要求。

国外的变电所研究已经远远超过我国,他们在变电站的运行管理模式上, 已经能做到无人值守。

1.3 牵引变电所

1.3.1 电力牵引的电流制

电力牵引按牵引网供电电流的种类可分为三种电流制,即直流制、低频单相交流制和工频单相交流制。

(1) 直流制

即牵引网供电电流为直流的电力牵引电流制。电力系统将三相交流电送到牵引变电所一次侧,经过牵引变电所降压并整流变成直流电,再通过牵引网供给电力机车使用。直流制发展最早,目前有些国家的电气化铁路仍在应用。我国仅工矿、城市电车和地下铁道采用。牵引网电压有1200V,1500V,3000V和600V,750V等,后两种分别用于城市电车、地下铁道。直流制存在

的主要问题是,直流牵引电动机额定电压受到换向条件的限制不能太高,即牵引网电压很难进一步提高,这就要求沿牵引网输送大量电流来供应电力机车。由于牵引电流增大,接触网导线截面要随着增大(一般得使用两根铜接触线和铜承力索),牵引网电压损失也相应增大,所以牵引变电所之间的距离要缩短,一般只有15~30 km。牵引变电所的数量多,并且为完成整流任务而变得较复杂。由于这些缘故,许多国家已逐渐停止发展直流制。

(2) 低频单相交流制

即牵引网供电电流为低频单相交流的电力牵引电流制。这种电流制是继直流制之后出现的,牵引网供电电流频率为16Hz,牵引网电压为15kV或11kV,电力机车上采用交流整流子式牵引电动机。交流容易变压,因此,可以在牵引网中用高电压送电.而在电力机车上降低电压,供应低电压的交流整流子式牵引电动机。低频单相交流制的出现,与力图提高牵引网电压以降低接触网中的有色金属用量有关。应用低频的条件,一方面是由于欧洲电力工业发展的初期原来就存在低于50Hz的频率;另一方面,交流整流子式牵引电动机因存在变压器电势而对整流过程造成困难,不适宜在较高的频率下运行。因此,在欧洲,低频单相交流制于20世纪50年代前得到较大发展,目前在一些欧洲国家仍在应用。另外,在美国等国家,还采用牵引网供电电流频率为25Hz、电压为11~13kV的低频单相交流制。电力工业主要采用50Hz标准频率后,低频制电气化铁道或者须自建专用的低频率的发电厂,或者在牵引变电所变频后送人牵引网;这就变得复杂化,于是,其发展受到了限制。

(3) 工频单相交流制

即牵引网供电电流为工业频率单相交流的电力牵引电流制。它是在20世纪50年代中期法国电气化铁路应用整流式交流电力机车获得成功之后开始推广的。从那时以来,许多国家都相继采用。这种电流制在电力机车上降压后应用整流装置整流来供应直流牵引电动机。由于频率提高,牵引网阻抗加大,牵引网电压也相应提高。目前,较普遍应用的接触网额定电压是25kV。采用工频单相交流制的优点是,消除了低频单相交流制的两个主要缺点(与电力工业标准频率并行的非标准频率和构造复杂的交流整流子式牵引电动机);牵引供电系统的结构和设备大为简化,牵引变电所只要选择适宜的牵引变压器,就可以完成降压、分相、供电的功能;接触网的额定电压较高,其中通过的电流相对较小,从而使接触网导线截面减小、结构简化;牵引变电所的间距延长、数量减少;工程投资和金属消耗量降低,电能损失和运营费用减少;电力机车采用直流串励牵引电动机,也远比交流整流子式牵引电动机牵引性能好,运行可靠。采用工频单相交流制的缺点是,对电力系统引起的抚恤电流分量和高次谐波含量增加以及功率因数降低;对沿电气化铁路架设的通信线有干扰。但是,经过技术方面和经济方面的综合分析比较,上述优点是主要的。因此,我国电气化铁路采用工频单相25kV交流制。

1.3.2 牵引变电所的供电方式

(1)牵引变电所一次侧的供电方式

牵引变电所一次侧(电源侧,通常为110KV或220KV)的供电方式,可分为一边供电边供电和环形供电。

①一边供电

就是牵引变电所的电能由电力系统中一个方向的电厂送来。

②两边供电

就是牵引变电所的电能由电力系统中两向的电厂送来。

③环形供电

是指若干个发电厂、地区变电站通过高压输电线连接成环形的电力系统,牵引变电所处于环形电力系统的一个环路中。

(2)牵引变电所向接触网的供电方式

单线区段

①一边供电;②两边供电。

双线区段

①同相一边并联供电;②同相一边分开供电;③双边扭结供电。

1.4小结

变电所是对电能的电压和电流进行变换、集中和分配的场所,本章介绍了牵引变电所分类及其国内外现状,对其有了初步的了解。

第2章牵引变电所主结线的选择

牵引变电气主接线是变电所设计的首要部分,也是构成电力系统的重要环节。主接线的确定与电力系统整体及变电所本身运行的可靠性,灵活性和经济性是密切相关的,而且对电气设备的选择,配电装置布置,继电保护和控制方式的拟定有较大影响。因此必须合理的确定主接线。

电气主结线应满足的基本要求

①首先保证电力牵引负荷,运输用动力,信号负荷安全,可靠供电的需要和电能质量。

②具有必要的运行灵活性,使检修维护安全方便。

③应有较好的经济性,力求减小投资和运行费用。

④应力求接线简捷明了,并有发展和扩建的余地。

2.1 高压侧电气主结线的基本形式

(1)单母线接线

图2-1单母线结线图

如图2-1所示,单母线接线的的特点是整个的配电装置只有一组母线,每个电源线和引出线都经过开关电器接到同一组母线上。同一回路中串接的隔离开关和断路器,在运行操作时,必须严格遵守以下操作顺序:对馈线送电时必须先和1QS和2QS在投入1QF;如欲停止对其供电必须先断开1QF然后断开1QS和2QS。

单母线结线的特点是:(1)结线简单、设备少、配电装置费用低、经济性好并能满足一定的可靠性。(2)每回路断路器切断负荷电流和故障电流。检修任一回路及其断路器时,仅该回路停电,其他回路不受影响。(3)检修母线和与母线相连的隔离开关时,将造成全部停电。母线发生故障时,将是全部电源断开,待修复后才能恢复供电。

这种结线方式的缺点是母线故障时、检修设备和母线时要造成停电;适用范围:适用于对可靠性要求不高的10~35kV地区负荷。

(2)单母线分段结线

图2-2为用断路器分段的单母线分段结线图。分段断路器MD正常时闭合,是两

图2-2单母线分段结线图

段母线并列运行,电源回路和同一负荷的馈电回路应交错连接在不同的分段母线上。

这种结线方式的特点是:(1)分段母线检修时将造成该段母线上回路停电。(2)进线上断路器检修时造成该进线停电。

适用范围:广泛应用于10~35kV地区负荷、城市电牵引各种变电所和110kV电源进线回路较少的110kV结线系统。

(3)采用桥形结线

当只有两条电源回路和两台主变压器时,常在电源线间用横向母线将它们连接起来,即构成桥型结线。桥型结线按中间横向桥接母线的位置不同,分为内桥形和外桥形两种,如图2-3所示。前者的连接母线靠近变压器侧,而后者则连接在靠近线路侧。

内桥形结线的线断路器分别连接在两回电源线路上,因而线路退出工作或投入运行都比较方便。桥形母线上的断路器QF在正常状态下合闸运行,1QS和2QS是断开的。当线路1SL发上故障时,1QS和2QS合闸,故障线路的断路器1QF跳闸,其他三个元件(另一线路和两台主变压器)仍可继续工作。内桥结线当任一线路故障或检修时不影响变压器的并列工作。由于线路故障远比变压器故障多,故这种界限在牵引变电所获得了较广泛的应用。当内桥结线的两回电源线路接入系统的环形电网中,并有系统功率穿越桥接母线时,桥断路器(QF)的检修或故障将造成环网断开。为避免这一缺陷,可在线路短路器外侧安装一组跨条,如图中的虚线所示,正常工作时隔离开关将跨条断开,安装两组隔离开关的目的是便于它们轮流停电检修。

图中外桥形结线的特点与内桥刚好相反,当变压器发生故障或运行中需要断开时,只要断开它们前面的断路器1QF或2QF,而不影响线路的正常工作。但线路故障或检修时,将是与该线路连接的变压器短时中断运行,须经转换操作后才能恢复工作。因而外侨形结线适用于电源线路较短、负荷不稳定、变压器需要经常切换(例如两台主变中一台要经常断开或投入)的场合,也可用在有穿越功率通过的与唤醒电网连接的变电所中。

(a) 内桥形(b) 外桥形

图2-3 内桥和外桥结线图

桥型结线能满足牵引变电所的可靠性,具有一定的运行灵活性,使用电器少,建造费用低,在结构上便于发展成单母线或具有旁路母线得到那母线结线。即在初期按桥形结线,将来有可能增加电源线路数时再扩展为其他结线形式。

2.2 牵引负荷侧电气结线特点

牵引负荷是牵引变电所基本的重要负荷,上述电气主结线基本形式多数对牵引负荷侧电气结线也是适用的。但考虑牵引负荷及牵引供电系统的下列特点,有针对性的在电气结线上采取有效措施,以保证供电系统的可靠性和运行灵活性。

(1) 由于接触网没有备用,而接触网故障几率比一般架空输电线路更为频繁,因此牵引负荷侧电气结线对接触网馈线断路器的类型与备用方式较一般电力负荷要求更高。

(2) 牵引侧电气结线于牵引变压器的类型(单相或三相)和接线方式以及主变压器的备用方式有关,在采用移动式变压器做备用的情况下,与移动变压器接入电路的方式有关。

(3) 与馈线数目、电气化铁路年运量、单线或复线,以及变电所附近铁路其他设施如大型枢纽站、电力机车段和地区负荷等的供电要求有关。

对于牵引侧母线本身,由于线路简单,引至馈线配电间隔为单相母线,实践证明很少发生故障,必须检修母线和母线上隔离开关时,可由临近变电所越区供电以代替被检修的母线或母线分段。

为合理解决馈线断路器的备用方式,牵引负荷侧电气结线有下列几种形式:①每路馈线设有备用断路器的单母线结线,如图3-8所示,考虑手车式气体断路器(或真空式)产品接触插头的互换性较差,不设移动备用,工作断路器检修时,即由备用断路器代替,这种方式在馈线数量较少时采用,操作转换较方便,但投资较大。②每两路馈线设一公共备用断路器BQF,通过隔离开关的转换,可使BQF代替任一馈线短路器,并达到按单母线分段运行的作用,如图3-8所示,这种结线的缺点是隔离开关的转换太频繁。③单母线分段带旁路母线的结线,考虑到馈线断路器检修时备用的需要,或者在某些情况下由于电力系统的缘故不允许两回电源线供电的变压器在牵引负荷侧并联运行,母线分段隔离开关经常处于断开位置,故需在每个分段母线上各设一台旁路断路器1BQF、2BQF,分别作为每段母线上连接的馈线断路器的备用,如图3-9所示,其工作原理于图3-10相同。这种结线适用于馈线数目较多的复线,或靠近大型枢纽站向几个方向电气化铁路供电的单线牵引变电所。

牵引变压器的备用方式有移动备用和固定备用两种。前者是整个供电段管辖的几个牵引变电所设置一台或数台可以动的公共备用变压器,供运行中的牵引变压器检修或故障时使用;后者是在每个牵引变电所安装固定的备用变压器,或者牵引变压器台数不变、而增大变压器容量,使在

正常情况下一台工作,一台备用(称为固定全备用)。根据技术经济的全面比较,在一般牵引变电所设有或不设专用铁路岔线作为变压器搬

图2-4 每路馈线设有备用断路器的单母线结线图2-5 具有公共备用断路器的结线

运、检修的情况下,对于三相牵引变压器采用固定全备用的方式都是有利和可取的。特殊情况下需作具体比较。对于单相或V形接线的牵引变电所,一般增加一台固定备用变压器,在牵引负荷侧电气结线只需增加一路电源进线及断路器与配电间隔,比较简单。而采用移动备用变压器的情况下,对单相或V-V形接线的单相变电所牵引侧电气结线的构成,将产生较大影响。

2.3 电气主结线方案的分析

(1)110kV侧结线的选择

方案一:采用单母线结线

优点:结线简单清晰,使用设备少,经济比较好,而且在远期调整时线路变换更比较方便。由于结线简单,操作人员发生误操作的可能性就要小。

缺点:不够灵活可靠,接到母线上任一元件故障时,均使整个配电装置停电。

方案二:采用内桥结线

优点:形结线能满足牵引变电所的可靠性,具有一定的运行灵活性,使用电器少,建造费用低,在结构上便于发展为单母线或具有旁路母线的单母线结线。此结线方案适用于有系统功率穿越,线路检修停电机会较多,主变压器不需经常切换的牵引变电所。

缺点:经济性较单母线要差。

比较结论:作为牵引变电所,必须保证供电的可靠性和灵敏性,根据任务书的依据,采用内桥结线比较合理

(2)25kV侧结线的选择

牵引负荷侧一般采用单母线结线。

2.4 小结

电气主结线是牵引变电所的主体部分,本章主要介绍了牵引变电所单母线结线、单母线分段结线、桥形结线、等几种结线形式及特点,并根据设计任务书要求确定高压侧采用内桥形结线,牵引负荷侧采用单母线结线。

第3章牵引变电所变压器的选择

3.1 牵引变压器的分类

按牵引变压器的联接方式分为单相联结;单相V,v联结;三相V,v联结;三相Y N,d11联结和三相不等容量Y N,d11联结;斯科特联结等。

3.1.1 单相联结牵引变电所

单相牵引变电所的优点:牵引变压器的容量利用率可达100%;主结线简单,设备少,占地面积小,投资省等。

缺点:不能供应地区和牵引变电所三相负荷用电;对电力系统的负序影响最大;对接触网的供电不能实现两边供电。

这种联结只适用于电力系统容量较大,电力网比较发达,三相负荷用电能够可靠地由地方电网得到供应的场合。

3.1.2 单相V,v牵引变电所

单相V,v牵引变压器的优点:牵引变压器容量利用率可达到100%;正常运行时,牵引侧保持三相,所以可供应牵引变电所自用电和地区三相负载;主接线较简单,设备较少,投资较省;对电力系统的负序影响比单相联结小;对接触网的供电可实现两边供电。

缺点:当一台变压器故障时,另一台必须跨相供电,即兼供左右两边供电臂的牵引网。

3.1.3 三相V,v联结牵引变电所

不但保持了单相V,v联结牵引变电所的主要优点,而且完全克服了单相V,v联结牵引变电所的缺点。最可取的是解决了单相V,v联结牵引变电所不便于采用固定备用即其自动投入的问题。同时,三相V,v联结牵引变压器有两台独立的铁芯和对应绕组通过电磁感应进行变换和传递;两台的容量可以相等,也可以不相等;两台的二次侧电压可以相同,也可以不相同,有利于实现分相有载或无载调压。为牵引变压器的选型提供了一种新的连接形式。

3.1.4 三相联结牵引变压器

又简称三相牵引变电所。

这种牵引变电所中装设两台三相,11N Y d 联结牵引变压器,可以两台并联运行;也可以一台运行,另一台固定备用。其原理电路和相量关系分别如图2-6(a )和(b )所示

(a) (b)

图2-6 三相,11N Y d 连接牵引变压器原理电路和向量

三相,11N Y d 联结牵引变电所的优点是:①牵引变压器低压侧保持三相,有利于供应牵引变电所自用电和地区三相电力;②能很好的适应当一个供电臂出现很大牵引负荷时,另一供电臂却没有或只有很小牵引负荷的不均衡运行情况;③三相,11N Y d 联结变压器在我国采用的时间长,有比较多的经验,制造相对简单,价格也较便宜;④一次侧YN 联结中性点可以引出接地,一次绕组可按分级绝缘设计制造,与电力系统匹配方便。对接触网的供电可实现两边供电。

缺点主要是牵引变压器容量利用率不高。当重负荷相线圈电流达到额定值时,牵引变压器的输出容量只能达到其额定容量的75.6%,引入温度系数也只能达到84%。

3.2牵引变压器选择的分析

3.2.1选择原则

(1)为保证供电的可靠性,在变电所中,一般装设两台主变压器;

(2)为满足运行的灵敏性和可靠性,如有重要负荷的变电所,应选择两台三绕组变压器,

选用三绕组变压器占地面积小,运行及维护工作量少,价格低于四台双绕组变压器,因此三绕组

A

B

C

.31b B U C ...I b

.

变压器的选择大大优于四台双绕组变压器;

(3)装有两台主变压器的变电所,其中一台事故后其余主变压器的容量应保证该所全部负荷的70%以上,并保证用户的一级和二级全部负荷的供电。

3.2.2 牵引变压器的接线方式和台数的确定

考虑到该变电所为三相牵引变电所,与系统联系紧密,且在一次主结线中已考虑采用内桥结线方式,故选用采用三绕组变压器,高压侧为Y 形接线,中、低压侧为△连接。由于牵引负荷属于一级负荷,并考虑备用,所以选用两台主变压器,一台自用电变压器。通过本章的学习加深了对牵引变压器的基本知识的理解,对设计和以后的实际工程设计及研究工作奠定了理论基础。

3.2.3牵引变压器安装容量的确定和选择

当牵引变压器的计算容量和校核容量确定以后,选择两者中较大者,并按采用的备用方式,牵引变压器 的系列产品(额定容量优先系数为R10系列),以及有否地区动力负荷等诸因素,即可确定牵引变压器的安装容量。

例如:单线电气化铁路近期年运量为1700万吨∕年,牵引定数G 为2100吨∕列,γ净取0.705,波动系数K 1取1.2,储备系数K 2取1.2,非平行列车运行图区间通过能力N 非=42对∕日。

供电臂1―n=3,∑A1=2005kV ·A ·h, ∑t u1 =28.3min

供电臂2―n=3,∑A2=1700 kV ·A ·h ,∑t u2= 27.3min 。

解:

第一步 计算列车对数N

γG K K N 36510421?Γ==3.45705.021003651017002.12.14

=?????列∕日=23对∕日 第二步 计算I1av,I2av,I1e,I2e

()∑=???=?=--A A N I av 7710200523667.110667.13311

()∑=???=?=--A A N I av 6510170023667.110667.13322

1

111.11nP P K e -+==151.03151.01.11?-+=1.759 其中,151.0144033.28231=??==

∑nT t N P u

T 为全日制时间,即1440min 。

2221.11nP P K e -+==145

.03145.01.11?-+=1.788 其中,145.01440

33.27232

2=??==∑nT t N P u 所以,()

()

A I K I A I K I av e e av e e 11665788.113577795.1222111=?===?== 第三步 计算变压器的计算容量

()

kVA I I I I U K S av av e e t 76836577211613545.279.024********=??++???=++=

采用简化公式:

()()()kVA I I U K S e e t 8594

11665.0113525.279.065.0221=?+???=+= 第四步 计算变压器校核容量

按非平行运行区间通过能力非N 的要求进行校核。计算对应于非N 的重负荷供电臂(1)的最大电流Imax 。

275.01440

33.28421

1=??==∑nT t N P u 非 查附录C 图C —5曲线()p n f I ,max =得:

()A I I 40017035.235.2max =?== 其中,()A t A

I u 1703

.2820054.24.211=?

==∑∑ 计算对应于非N 的轻负荷供电臂(2)的有效电流。

432.1265.03265.01.111.11265.0144033.274222222=?-+=-+==??=

=

∑nP P K nT t N P e u 非 ()

()

A I K I A A N I av e e av 170119432.111910170042667.110667.12223322=?===???=?=∑--非 三相联结变压器最大容量为:

()()()kVA I I U K S e t 22535

17065.040025.279.065.022max max =?+???=+=

三相联结变压器校核容量:

()kVA K S S 150235.122535max ==

校 第五步 确定安装容量

由此得出变压器的安装容量为2×16000(kV A )。

3.2.4 变压器备用方式的选择

牵引变压器在检修或发生故障时,都需要有备用变压器投入,以确保电气化铁路的正常运输。在大运量的双线区段,牵引变压器一旦出现故障,应尽快投入备用变压器,显得比单线区段要求更高。备用变压器投入的快供,将影响到恢复正常供电的时间,并且与采用的备用方式有关。备用方式的选择,必须从实际的电气化铁路线路、运量、牵引变电所的规模、选址、供电方式及外部条件(如有无公路)等因素,综合考虑比较后确定。我国的电气化铁路牵引变压器备用方式有以下两种。

(1)移动备用

采用移动变压器作为备用的方式,称为移动备用。采用移动备用方式的电气化区段,每个牵引变电所装设两台牵引变压器,正常时两台并联运行。所内设有铁路专用岔线。备用变压器安放在移动变压器车上,停放于适中位置的牵引变电所内或供电段段部,以便于需要作为备用变压器投入时,缩短运输时间。在供电段所辖的牵引变电所不超过5—8个的情况下,设一台移动变压器,其额定容量应与所辖变电所中的最大牵引变压器额定容量相同。

当牵引变压器需要检修时,可将移动变压器按计划调入牵引变电所。但在牵引变压器发生故障时,移动变压器的调运和投入约需数小时。此间,靠一台牵引变压器供电往往不能保证铁路正常运输。这种影响,在单线区段或运量小的双线区段可很快恢复正常;但在大运量的双线区段须予以重视。可按牵引变压器一台故障停电后由另一台单独运行,允许超载30%,并持续4小时,而能符合计算容量(满足正常运输)的要求进行检算。

采用移动备用方式,除上述影响外,还需要修建铁路专用岔线。这将导致牵引变电所选址困难、场地面积和土方量增加,相应加大投资。不仅如此,移动变压器车辆进厂检修时,修要把备用变压器从车上拆卸吊下来;车辆修好出厂后,又要把备用变压器吊上车安装好。这项工作十分麻烦和困难,非常费时费力费钱。采用移动备用方式的优点是牵引变压器容量较省。因此,移动备用方式可用于沿线无公路区段和单线区段。

(2)固定备用

采用加大牵引变压器容量或增加台数作为备用的方式,称为固定备用。采用固定备用方式的电气化区段,每个牵引变电所装设两台牵引变压器,一台运行,一台备用。每台牵引变压器容量应能承担全所最大负荷,满足铁路正常运输的要求。

采用固定备用方式的优点是:其投入快速方便,可确保铁路正常运输,又可不修建铁路专用岔线,牵引变电所选址方便、灵活,场地面积较小,土方量较少,电气主接线较简单。其缺点是:增加了牵引变压器的安装容量,变电所内设备检修业务要靠公路运输。因此,固定备用方式适用于沿线有公路条件的大运量区段。

在当前进行电气化铁路牵引供电系统的设计中,牵引变压器的备用方式不再考虑移动备用方式。

3.3小结

本章先介绍了牵引变电所中几种牵引变压器的接线形式及特点,并根据设计任务书要求来确定牵引变压器的结线形式:采用三绕组变压器,高压侧为Y形接线,中、低压侧为△连接。由于牵引负荷属于一级负荷,并考虑备用,所以选用两台主变压器,一台自用电变压器

第4章继电保护的设计

继电保护是电力系统的重要组成部分,是保证电力系统安全可靠运行的必不可少的技术措施之一。继电保护装置是指能反应电力系统中电器元件发生故障或不正常运行状态,并动作于断路器跳闸或发出信号的一种自动装置。它的基本任务是:

(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到破坏,保证其他无故障部分迅速恢复正常运行。

(2)反应电器元件的不正常运行状态,并动作与断路器跳闸、发出信号或减负荷。

由此可见继电保护在电力系统中的主要作用是通过预防事故或缩小事故范围来提高系统运行的可靠性,最大限度地保证向用户安全连续供电。

4.1 继电保护的基本原理与基本要求

基本原理:利用电力系统正常运行状态和不正常运行或故障时各物理量的差别来判断故障和异常,并通过断路器跳闸将故障切除或发出信号。

继电保护装置为了完成它的任务,必须在技术上满足选择性、速动性、灵敏性和可靠性四个基本要求。

(1)可靠性

可靠性包括安全性和信赖性,是对继电保护的最基本要求。所谓安全性是要求继电保护在不需要它动作时可靠不动作,即不发生误动作。所谓信赖性是要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不拒动。

(2)选择性

所谓选择性就是指当电力系统中的设备或线路发生短路时,其继电保护仅将故障的设备或线路从电力系统中切除,当故障设备或线路的保护或断路器拒动时,应由相邻设备或线路的保护将故障切除。在要求保护动作有选择性的同时,还必须考虑保护或断路器有拒动的可能性,因而就需要考虑后备保护的问题。一般情况下远后备保护动作切除故障时将使供电中断的范围扩大。

(3)速动性

所谓速动性就是指继电保护装置应能尽快地切除故障,以减少设备及用户在大电流、低电压运行的时间,降低设备的损坏程度,提高系统并列运行的稳定性。动作迅速而又能满足选择性要求的保护装置,一般结构都比较复杂,价格昂贵,对大量的中、低压设备,不一定都采用高速动作的保护。对保护速动性的要求应根据电力系统的接

线和被保护设备的具体情况,经技术比较后确定。

(4)灵敏性

灵敏性是指电气设备或线路在被保护范围内发生短路故障或不正常运行情况时,保护装置的反应能力。能满足灵敏性要求的继电保护,在规定的范围内故障时,不论短路点的位置和短路类型如何,以及短路点是否有过渡电阻,都能正确反应动作,即要求不但在系统最大运行方式下三相短路时能可靠动作,而且在系统最小运行方式下经过较大的过渡电阻两相或单相短路故障时也能可靠动作。

以上四个基本要求是设计、配置和维护继电保护的依据,又是分析评价继电保护的基础。这四个基本要求之间是相互联系的,但往往又存在着矛盾。因此,在实际工作中,要根据电网的结构和用户的性质,辩证的进行统一。

4.2 电力变压器的保护

变压器故障可分为邮箱内部故障和油箱外部故障。油箱内部故障主要是指发生在变压器油箱内包括高压侧或低压侧绕组的相间短路、匝间短路、中性点直接接地系统侧绕组的单相接地短路。油箱外部最常见的故障主要是变压器绕组引出线和套管上发生的相间短路和接地短路,而油箱内发生相间短路的情况比较少。

变压器的不正常工作状态主要有:负荷长时间超过额定容量引起的过负荷;外部短路引起的过电流;外部接地短路引起的中性点过电压;油箱漏油引起的油面降低或冷却系统故障引起的温度升高;大容量变压器在过电压或低频等异常运行工况下导致变压器过励磁,引起铁芯和其他金属构件过热。

根据上述故障类型和不正常工作状态,对变压器应装设下列保护。

(1)纵差保护或电流速断保护

变压器纵差保护主要是用来反应变压器绕组、引出线及套管上的各种短路故障,是变压器的主保护。保护瞬时动作,断开变压器各侧的断路器。对6.3MV A及以上并列运行的变压器和100MV A单独运行的变压器以及6.3MV A以上厂用变压器应装设纵差保护;其他重要变压器及电流速断保护灵敏度达不到要求时,也可装设纵差保护。

纵差保护是利用故障时产生的不平衡电流来动作的,保护灵敏度高,且动作迅速。

(2)瓦斯保护

对变压器油箱内部的各种故障及油面的降低,应装设瓦斯保护。对800kV A及以上油浸式变压器和400kV A及以上车间内油浸式变压器,均应装设瓦斯保护。当油箱内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧的断路器。

(3)外部相间短路时的保护,采用过电流保护。

反应变压器外部相间短路并作瓦斯保护和纵差保护后备的过电流保护,其适用于降压变压器,保护装置和整定值应考虑事故状态下可能出现的过负荷电流。

(4)外部接地短路时的保护,采用零序电流保护。

对中性点直接接地电网,由外部接地短路引起过电流时,如变压器中性点接地运行,应装设零序电流保护。零序电流保护通常由两段组成,每段可各带两个时限,并均以较短的时限用于缩小事故影响范围,以较长的时限用于断开各侧的断路器。

(5) 过负荷保护

对于400kV A及以上的变压器,当数台并列运行或单独运行并作为其他负荷的电源时,应根据可能过负荷的情况,装设过负荷保护。过负荷保护应接于相电流上,带时限动作于信号。

对变压器温度及油箱内压力升高或冷却系统故障,应按现行变压器标准的要求,装设可用于信号或动作于跳闸的装置。

第5章 开关设备与高压电器的选择

开关设备包括断路器、熔断器、隔离开关和负荷开关等电器,虽然在选择时所根据的条件有些是相同的但也各有其特点和要求。

5.1 高压断路器的选择

(1)断路器种类、形式的选择

对于开断电路中负荷电流和短路电流的高压断路器,首先应按使用地点环境、负荷种类及使用技术条件选择断路器的类型与型号,即户内或户外式,以及灭弧介质的种类。对10~20kV 三相系统,广泛采用少油式或SF6断路器(当前者不能满足要求时),交流牵引负荷侧由于故障跳闸频繁,从减少运行维修工作量考虑,较普遍采用真空断路器或SF6断路器,地铁与轻轨交通牵引变电所交流系统,从安全防火和减少维修考虑广泛采用真空断路器。

(2)断路器额定电压e U 、额定电流e I 的选择

应满足

e U ≥ g U ,e I ≥ g I

式中,g U 、g I 分别为网络工作电压(kV )和断路器最大长期负荷电流(kA )。

(3)按开断电流或断路器断流容量选择

高压断路器的额定开断电流ek I 或额定断流容量ed S 应满足以下关系

ek I ≥dt I

或 e d e e k d t

S I S =?≥ 式中,dt I 为为短路后t 秒短路电流有效值(周期分量),对快速断路器,取dt I ="I ;

dt S 为短路后t 秒短路功率,对快速断路器,dt S = "d S 。

(4)短路关合电流的校验在断路器合闸之前,若线路上已存在短路故障,则在断路器合闸的过程中,触头间在未接触时即有巨大的短路电流通过,更易发生触头熔焊和遭受电动力的损坏。且断路器在关合短路电流时不可避免地在接通后又自动跳闸,此时要求能切断短路电流,因此额定关合电流是断路器的重要参数之一。为了保证断路器在关合短路时的安全,断路器的额定关合电流i eg 不应小于短路电流最大冲

击值cj i 。一般断路器额定关合电流不会大于额定动稳定电流i dw ,因此,如 eg i ≥cj i ,则dw i ≥cj i 。

(5)校验短路时的热稳定性

短路电流通过时断路器的热稳定性,由制造厂给出的在t 秒内允许通过的热稳定电流I rt 来表征,即在给定时间t 内,I rt 通过断路器时,其各部分的发热温度不超过规定的短时最大容许发热温度。因此,以短路电流I d 通过断路器时,其热稳定条件为

2rt d I t Q ?≥

式中:I rt 为制造厂规定的t 秒热稳定电流;Q d 为短路电流发热效应。

5.2 高压熔断器的选择

高压熔断器用以切断过负荷电流和短路电流,选择时首先应考虑装置的种类与形式,是屋内还是屋外使用,对污秽地区的屋外式熔断器还应保证绝缘泄露比距的要求,以加强绝缘,选择高压熔断器应满足下列条件:

(1)按额定电压e U ≥ g U 选择

对于充有石英砂起限流作用的熔断器,只在等于其额定电压的电网中使用,因它要在达到最大电流之前阶段电流,产生较大过电压(2倍及以上)。

(2) 按熔管和熔体额定电流选择

熔断器额定电流的选择包括熔管额定电流I erg 和熔体额定电流I ert ,两者的选择,并满足

I erg ≥I ert

(3)熔断器开断电流校验

I ek ≥I cj 或I ek ≥I z

前者适用于无限流作用的熔断器的校验,后者适用于有限流作用的熔断器,可按短路起始周期分量电流有效值进行校验。

(4)熔断器选择性配合的校验

为保证网络中前后两级熔断器之间或熔断器与线路继电保护之间动作的选择性,应进行熔体选择性相互配合的校验。可利用制造厂提供的各种型号熔体熔断时的安—秒特性曲线,进行动作电流与时间相互配合的校验,以保证熔断器动作的选择性。

对于保护电压互感器用的高压熔断器、只需按额定电压和断流容量两项进行选择。

5.3 隔离开关的选择

屋外隔离开关的类型很多,它对配电装置的运行和占地面积影响较大,应从使用要求和运行等多方面考虑选择其形式。

(1) 额定电压:U e ≥U g

(2)额定电流:I e ≥I g ·max

(3) 热稳定: tdz 为等值发热时间,t 为产品给定的热稳定时间。 (4)动稳定:I dw ≥i cj

er I ≥I

5.4 测量装置

测量装置包括电压互感器与电流互感器,是测量、监视和保护系统中所必需的电器。对它们的选择,除了从装置种类、屋内或屋外安装、结构形式等考虑外,还应分别按不同互感器所依据的技术条件来选择。

5.4.1 电压互感器的选择

对电压互感器选择时依据的技术条件为:

(1)额定电压,所选电压互感器的额定一次侧电压U1e 必须与互感器接入处电网的额定电压相一致;互感器的额定二次侧电压符合测量仪表和继电器的额定电压,

一般等于100 V 或V 。接成开口三角形的辅助二次绕组电压则有100 V 、110/3V 等。

(2)根据用途、负载的性质选择电压互感器的类型及其接线方式,例如仪表负荷为三相瓦特表和三相瓦时计时,对一次侧电压为10 kV 的电压互感器,可用三相式Y 形接线或两台单相互感器连成v 形接线向上述仪表供电,而对电压为35kV 以上的电压互感器,则采用两台单相V 形接线方式比三个单相互感器连成Y 形接线要经济。

(3)根据所要求的准确度等级确定电压互感器的容量,并应使

W 2≤W 2e

式中:2W 、2e W 分别为每相负荷容量和互感器的二次侧额定容量(V A);电压互感

器的误差随负荷大小而变化,负荷(2W )增大,误差随之增大。因此电压互感的准确度等级与其绕组的输出容量相适应,输出容量增大,则其准确度等级降低。

因电压互感器各相的负荷一般不相等,在考虑准确度等级时,应取最大一相的负荷作为选择容量的依据。对电压互感器不需校验短路时的稳定性,因它在主结线中是与主回路并联,主结线及其主回路发生短路时,电压互感器不会通过短路电流。

5.4.2 电流互感器的选择

电流互感器选择时所依据的技术条件如下:

(1)额定一次电压和额定电流

电流互感器的额定一次电压U1e 必须与互感器安装处的额定电压Ueg 相一致,它与额定电流应满足:

U 1e ≥Ueg ,I1e ≥Ig ·max

式中:1e I ,max g I 分别为互感器原边额定电流和装置的最大长期工作电流。

在环境温度条件下,连续通过电流互感器的原边电流应尽量接近额定电流1e I ,过大将使误差增大。互感器的二次额定电流一般为5A ,与仪表、继电器的标准电流

相符。

(2)准确度级与铁芯数

电流互感器不同铁芯时,二次绕组的准确度级不同,供电度表需用0.5级,一般仪表用1.0级,估计电参数的仪表只需3级准确度,若只有一种用途,则可只选一个铁芯的互感器。

电流互感器的准确度级与一定容量相对应,若负载增大超过某一准确度级所对应的额定容量,则准确度级下降。

(3)按额定容量校验二次负载

电流互感二次边通过额定电流2e I 和负载总阻抗2Z 时的功率

(

)VA Z I W e 2222= (4-1) 其中, 2e I = 5A ,负载总阻抗2Z 由下式决定

∑++=j d i R R Z Z 2 (4-2) 式中, i

Z ∑为所连接仪表串联线圈的总阻抗(Ω) ; d R , j R 分别为二次连接导线电阻和连接头接触电阻(Ω),通常取j R =0.1(Ω)

。 将(2)式代(1)式,则选择电流互感器应满足

()∑++=≥j d i e e R R Z I W W W 22222, (4-3)

(4)式中i Z ∑、j R 不变,d R 为可变的,应选择一定的导线截面(S )以符合(3)式要求,即

()2

2222e j i e e d I R Z I W R ∑+-≤ (4-4)

则导线截面 S=ρL /d R (mm 2)

式中,ρ为导线的电阻系数,Ω?2mm/m ;L 为连接导线的计算长度,m 。

导线计算长度 L 与互感器的连接方式有关。 如图4.1,设互感器的实际安装距离为l 米,则单相接线L =2Ι[图4.1(a )],三相星形接线L =Ι,中性线的电流可忽略不计[ 图4.1(c)]。

两相星形接线L =,[图 4.1(b )],可由电压降的关系求得,最后选出的截面,从保证机械强度要求,对铜导线不应小于1.5 mm 2。

电气化铁道技术专业毕业实习报告范文

电气化铁道技术专业 毕 业 实 习 报 姓名:杜宗飞 学号:2011090118 专业:电气化铁道技术 班级:电气化铁道技术01班 指导教师:赵建明 实习时间:XXXX-X-X—XXXX-X-X 20XX年1月9日

目录 目录 (2) 前言 (3) 一、实习目的及任务 (3) 1.1实习目的 (3) 1.2实习任务要求 (4) 二、实习单位及岗位简介 (4) 2.1实习单位简介 (4) 2.2实习岗位简介(概况) (5) 三、实习内容(过程) (5) 3.1举行计算科学与技术专业岗位上岗培训。 (5) 3.2适应电气化铁道技术专业岗位工作。 (5) 3.3学习岗位所需的知识。 (6) 四、实习心得体会 (6) 4.1人生角色的转变 (6) 4.2虚心请教,不断学习。 (7) 4.3摆着心态,快乐工作 (7) 五、实习总结 (8) 5.1打好基础是关键 (8) 5.2实习中积累经验 (8) 5.3专业知识掌握的不够全面。 (8) 5.4专业实践阅历远不够丰富。 (8) 本文共计5000字,是一篇各专业通用的毕业实习报告范文,属于作者原创,绝非简单复制粘贴。欢迎同学们下载,助你毕业一臂之力。

前言 随着社会的快速发展,用人单位对大学生的要求越来越高,对于即将毕业的电气化铁道技术专业在校生而言,为了能更好的适应严峻的就业形势,毕业后能够尽快的融入到社会,同时能够为自己步入社会打下坚实的基础,毕业实习是必不可少的阶段。毕业实习能够使我们在实践中了解社会,让我们学到了很多在电气化铁道技术专业课堂上根本就学不到的知识,受益匪浅,也打开了视野,增长了见识,使我认识到将所学的知识具体应用到工作中去,为以后进一步走向社会打下坚实的基础,只有在实习期间尽快调整好自己的学习方式,适应社会,才能被这个社会所接纳,进而生存发展。 刚进入实习单位的时候我有些担心,在大学学习电气化铁道技术专业知识与实习岗位所需的知识有些脱节,但在经历了几天的适应过程之后,我慢慢调整观念,正确认识了实习单位和个人的岗位以及发展方向。我相信只要我们立足于现实,改变和调整看问题的角度,锐意进取,在成才的道路上不断攀登,有朝一日,那些成才的机遇就会纷至沓来,促使我们成为电气化铁道技术专业公认的人才。我坚信“实践是检验真理的唯一标准”,只有把从书本上学到的电气化铁道技术专业理论知识应用于实践中,才能真正掌握这门知识。因此,我作为一名电气化铁道技术专业的学生,有幸参加了为期近三个月的毕业实习。 一、实习目的及任务 经过了大学四年电气化铁道技术专业的理论进修,使我们电气化铁道技术专业的基础知识有了根本掌握。我们即将离开大学校园,作为大学毕业生,心中想得更多的是如何去做好自己专业发展、如何更好的去完成以后工作中每一个任务。本次实习的目的及任务要求: 1.1实习目的 ①为了将自己所学电气化铁道技术专业知识运用在社会实践中,在实践中巩固自己的理论知识,将学习的理论知识运用于实践当中,反过来检验书本上理论的正确性,锻炼自己的动手能力,培养实际工作能力和分析能力,以达到学以致用的目的。通过电气化铁道技术的专业实习,深化已经学过的理论知识,提高综合运用所学过的知识,并且培养自己发现问题、解决问题的能力 ②通过电气化铁道技术专业岗位实习,更广泛的直接接触社会,了解社会需要,加深对

现代交换技术课程设计报告

现代交换技术课程设计报告

目录 一、设计任务书 (1) 二、电路设计框图及系统概述 (4) 三、各单元电路的原理及功能说明 (8) 四、波形仿真过程及结果分析 (11) 五、课程设计心得体会 (13) 六、参考文献 (14) 七、元器件列表 (14)

一、设计任务书 1 研究内容及研究意义 研究内容 现代通信网由三大部分构成,分别是终端设备、传输设备和交换设备,其中交换设备是整个通信网的核心,它的基本功能是实现将连接到交换设备的所有信号进行汇集、转发和分配,从而完成信息的交换。电路交换是在电话网络中使用的一种交换技术,而数字程控交换机是电路交换机的典型代表。本课程设计要求设计一简易数字交换网络,在通信系统原理实验箱的硬件基础上,完成类似PCM系统有关的时隙内容在时间位置上的搬移,即时隙交换。研究意义 现代交换技术理论课上,我们对数字交换网络的基本结构和工作原理等进行了系统学习,在此基础上设计一个数字交换网络实现时隙的交换,不仅可以让我们从实践中加深对交换思想理论的理解,还能让我们对数字电路和元件以及通信原理的有关内容知识进行有效的巩固,达到温故而知新的效果。通过现代交换技术课程设计,我们可以达到理论知识与实践能力的整合与统一,加强对仿真软件的掌握程度,对我们课程理论学习能力以及实验操作水平的提高有着重要的意义,也培养了我们的设计能力和创新意识。 2 设计原理及设计要求 设计原理 在PCM30/32路数字传输系统中,每个样值均编8位码,一帧分为32个时隙,通常用TS0~TS31来表示,其中30个时隙用于30路话音业务。TS0为帧定位时隙,用于接收分路做帧同步用。TS16时隙用于信令信号传输,完成信令的接续。TS1~TS15以及TS17~TS31s时隙用于话音业务,分别对应第1路到第15路和第16路到第30路话音信号。 在通信系统原理实验箱中,信道传输上采用了类似TDM的传输方式、定长组帧、帧定位码和信息格式。实验电路设计了一帧共含有4个时隙,分别用TS0~TS3表示,每个时隙含8比特码,依次为帧同步时隙、话路时隙、开关信号时隙和M序列时隙。四个时隙复合成一个256kbps数据流,在同一信道上传输。 另一方面,数字交换实质上就是把与PCM系统有关的时隙内容在时间位置上进行搬移,因此数字交换也叫时隙交换。时间接线器可以完成同一条母线不同时隙之间的交换,工作方式有输入控制和输出控制方式两种。本课程设计要求设计一个数字交换电路,具体要通过设计数字电路,实现对帧同步时隙的定位检测,并通过控制端控制实现话路时隙、开关时隙和

电气化铁道主要供电方式

接触网的供电方式 我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。 1、直接供电方式 如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过

的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。

2、吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。 BT供电方式原理结线图 H—回流线;T—接触网;R—钢轨; SS—牵引变电所;BT—吸流 变压器。 牵引网阻抗与机车至牵引变电所的长度不是简单的线性关系。随着机车取流位置的不同,牵引网内的电流分布可有很大不同,例如图中当机车位于供电臂内第一台BT前方时,牵引负荷未通过吸流变压

电气化铁道供电比赛试题及答案

电力牵引供变电技术比赛试卷 一、判断题(每小题2分,共30分) 1.我国电气化铁道牵引变电所由国家区域电网供电。(√)2.超高压电网电压为220kv—500kv。(×)3.采用电力牵引的铁路称为电气化铁路。(√)4.我国电气化铁道牵引变电所供电电压的等级为110kv—220kv。(√)5.电力系的电压波动值:就是电压偏离额定值或平均值的电压差。(√)6.电力牵引的交流制就是牵引网供电电流为直流的电力牵引电流制(×)7.由于铁路电力牵引属于二级负荷,所以牵引变电所须由两路高压输电线供电。(×)8.单相结线牵引变电所的优点之一是:牵引变压器的容量利用率(额定输出容量与额定容量之比值)可达100%。(√)9.单相结线牵引变电所的优点之一是:对电力系统的负序影响最小。(×)10.我国电气化铁路采用工频单相25 kV交流制。(√)11.对于三相YN,dll结线牵引变压器当两供电臂负荷电流大小相等时,重负荷绕组的电流大约是轻负荷绕组的电流的3倍。(√)12.三相YN,d11结线牵引变电所的缺点之一是:不能供应牵引变电所自用电和地区三相电力。 (×) 13.斯科特结线牵引变电所的优点之一是:当M座和T座两供电臂负荷电流大小相等、功率因数也相等时,斯科特结线变压器原边三相电流对称,不存在负序电流。(√)14.单边供电:接触网供电分区由两个牵引变电所从两边供应电能。(×)15.最简单的牵引网是由馈电线、接触网、轨道和大地、回流线构成的供电网的总称。(√) 二.填空题(每小题2分) 1.通常把发电、输电、变电、配电、用电装置的完整工作系统称为电力系统。 2.牵引变电系统由牵引变电所、接触网、馈电线、回流线、轨道、分区所、开闭所、 自耦变压器站、分段绝缘器和分相绝缘器等组成。 供电方式一般在重载铁路、高速铁路等负荷大的电气化铁路上采用。 4.分相绝缘器的作用是:串在接触网上,把两相不同的供电区分开,并使机车平滑过渡; 主要用在牵引变电所出口处和分区所处。

小型程控交换机课程设计

湖南文理学院课程设计报告 课程名称:专业综合课程设计 系部:电气与信息工程学院 专业班级:通信07102班 学生姓名:贺伶燕 指导教师:王立 完成时间:2010年6月24号 报告成绩:

小型程控交换机的设计

目录 摘要 (4) Abstract (5) 第一章小型程控交换机的整体设计 (6) 1.1 程控交换机的简介 (6) 1.2 系统的总体结构设计 (6) 1.3 各模块的功能分析 (6) 1.3.1用户接口电路 (6) 1.3.2语音处理单元 (7) 1.3.3交换网络和中心控制单元 (7) 第二章核心模块——交换网络的介绍 (9) 2.1交换网络的一般结构和工作原理 (9) 2.1.1时间交换单元 (9) 2.1.2空间交换单元 (11) 第三章基于MT8980的交换网络的具体设计与实现 (13) 3.1交换芯片——MT8980 (13) 3.1.1 MT8980的管脚说明 (13) 3.1.2 MT8980的功能说明 (14) 3.2控制单元——AT89S51 (15) 3.2.1 AT89S51的管脚说明 (15) 3.3 MT8980与AT89S51的连接 (16) 3.4 基于MT8089的交换网络实现原理 (17) 总结 (18) 参考文献 (19) 致谢 (20) 附录 MT8980与AT89S51的连线图 (21)

摘要 程控交换机采用了数字通信、微电子、计算机等技术,能提供多种电信业务,适应通信网向数字化、综合化、智能化和个人化方向发展的要求,是当前通信网特别是电话网中应用的交换系统的主体。而专用交换机很多时候造价太高或功能太强大造成浪费,解决这问题的途径就是小型程控交换机。其成本低、易改造、线路利用率高,在综合业务数字网中有很大的开发潜力。本文首先介绍了小型程控交换机的整体结构和简单的工作过程,然后重点对交换网络的设计和实现进行了阐述,即MT8980交换芯片的工作原理和AT89S51单片机对该交换芯片的控制过程,并给出了相应的芯片引脚连线图。 关键词:程控交换;交换网络;MT8980;AT89S51

程控交换机设计方案

程控交换机设计方案

程控交换机设计方案 学号:2013914115 姓名:邓志成班级:13电信----------------------目录------------------ 摘要 第一章绪论 1.1 设计目的 1.2 程控交换系统的介绍 1.3 程控交换系统的整体设计方案 第二章程控交换硬件系统 2.1 话路系统及其实现 2.2 控制系统及其实现 2.3 时分交换电路 第三章程控交换软件系统

3.1 软件系统实现流程 3.2 程序的部分代码 第四章方案设计总结 摘要 自从20世纪60年代中期出现模拟程控交换机及70年代初期推出数字程控交换机以来, 程控交换技术迅速发展。同时, 由于人们对信息处理的需求迅速增长, 除电话业务外, 各种非电话业务如传真、用户电报、电子邮件、可视图文及数据通信等迅速兴起, 因此除了电话网外, 还存在其他的专用网络。当用户需要使用不同的通信业务时,必须按照业务类型分别向电信部门申请, 引入不同的专用用户线和中断, 使用不同的规程和方式, 这给用户和管理部门都带来了不便。再者,建设专用网必然存在投资大、线路利用率低、重复建设等弊病。解决这些问题的就是用一个单一的网络综合业务数字网ISDN来提供各种不同类型的业务。小型字程控交换机以其成本低、易改造、线路利用率高等优势, 使其在综合业务数字网中有很大的开发潜力。 关键字:程控交换机通信时分复用

第一章绪论 1.1设计目的 程控交换课程设计旨在提高我们在通信领域内的理论认识和实践动手能力,培养我们综合运用理论知识解决实际问题的能力。巩固和加深对控制理论基本知识的理解和对仪表的认识,培养创新能力,经过搜集资料,初步方案设计,系统组建,撰写设计报告的过程,得到一次科学研究工作的初步训练,提高科研综合素质。为后续课程的学习、毕业设计乃至毕业后的工作打下一个良好的基础 1.2 程控交换系统的介绍 自从20世纪60年代中期出现模拟程控交换机及70年代初期推出数字程控 交换机以来, 程控交换技术迅速发展。同时, 由于人们对信息处理的需求迅速增长, 除电话业务外, 各种非电话业务如传真、用户电报、电子邮件、可视图文及数据通信等迅速兴起, 因此除了电话网外, 还存在其他的专用网络。当用户需要使用不同的通信业务时,必须按照业务类型分别向电信部门申请, 引入不同的专用用户线和中断, 使用不同的规程和方式, 这给用户和管理部门都带来了不便。再者,建设专用网必然存在投资大、线路利用率低、重复建设等弊病。解决这些问题的就是用一个单一的网络综合业务数字网ISDN来提供各种不同类型的业务。小型字程控交换机以其成本低、易改造、线路利用率高等优势, 使其在综合业务数字网中有很大的开发潜力。

电子信息工程大学四年课程

第一学期 课程代码 课程名称 学分 周学时 考核方式 课程性质 课程类别 建议修读学期 课程信息 辅修标识 专业方向 组 代码 模块代码 通过情况 起始结 束周 是否短学期 是否学位课 010011008 工程制图E 5.0 4.0-0.0 考查 专业基础选修 选修课 1 查看 介绍 无方向 √ 05-14 否 030031108 C 语言程序设计B 6.0 4.0-0.0 考试 专业基础课 必修 课 1 查看 介绍 无方向 √ 05-16 是 030051102 C 语言课程 设计 2.0 +1 考查 生产实习 必修课 1 查看 介绍 无方向 √ 19-19 070011005 大学英语1 7.0 4.0-0.0 考试 公共基础课 必修课 1 查看 介绍 无方向 √ 05-18 是 090011003 高等数学B1 9.0 6.0-0.0 考试 公共基础课 必修课 1 查看 介绍 无方向 √ 05-16 是 170011001 体育1 3.0 2.0-0.0 考试 公共基础课 必修课 1 查看 介绍 无方向 未修 05-16 否 170011006 军事理论 2.0 2.0-0.0 考试 公共基础课 必修课 1 查看 介绍 无方向 √ 05-12 否 170051001 军训 2.0 +1 考试 公共基础课 必修课 1 查看 介绍 无方向 √ 03-04 否 980011001 思想道德修 养与法律基础 8.0 4.0-0.0 考查 公共基础课 必修 课 1 查看 介绍 无方向 √ 05-19 1 第二学期 课程代码 课程名称 学分 周学时 考核方式 课程性质 课程类别 建议修读学期 课程信息 辅修标识 专业方向 组 代 码 模块代码 通过情况 起始结 束周 是否短学期 是否学位课 030331001 VB 程序设计 5.0 4.0-0.0 考查 专业基础选修 选修 课 2 查看介绍 无方向 √ 09-18 否 030331002 面向对象程序设计 5.0 4.0-0.0 考试 专业基础课 必修 课 2 查看介绍 无方向 √ 01-10 否 030351003 面向对象课程设计 4.0 0.0-0.0 考查 生产实习 必修 课 2 查看介绍 0 无方向 √ 01-20 否 070011006 大学英语2 9.0 4.0-0.0 考试 公共基础课 必修 课 2 查看介绍 无方向 √ 01-18 是 090011004 高等数学B2 9.0 4.0-0.0 考试 公共基础课 必修 课 2 查看介绍 无方向 √ 01-18 是 090011021 线性代数D 4.0 2.0-0.0 考试 公共基础课 必修 课 2 查看介绍 无方向 √ 01-16 是 090011026 大学物理B 6.0 4.0-0.0 考试 公共基础课 必修 课 2 查看介绍 无方向 √ 01-12 否 170011002 体育2 4.0 2.0-0.0 考查 公共基础课 必修 课 2 查看介绍 无方向 未修 01-16 否 780021001 大学生健康教育 2.0 2.0-0.0 考查 素质教育课 必修 课 2 查看介绍 无方向 √ 01-08 否 980011002 中国近现代史纲要 4.0 2.0-0.0 考查 公共基础课 必修 课 2 查看介绍 无方向 √ 01-16 否 第三学期 课程代码 课程名称 学分 周学时 考核方式 课程性质 课程类别 建议修读学期 课程信息 辅修标识 专业方向 组 代码 模块代码 通过情况 起始结 束周 是否短学期 是否学位课 030031101 电路 8.0 4.0-0.0 考试 专业 基础 课 必修课 3 查看介绍 无方向 未修 01-16 是 030031111 电路实验 2.0 2.0-0.0 考查 专业基础 必修课 3 查看介绍 无方向 未修 03-10

电气化铁道供电系统

电气化铁道供电系统与设计课程设计报告 班级: 学号: 姓名 指导教师: 评语:

1. 题目 某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V-v接线,两供电臂电流归算到27.5kV侧电流如表1所示。 表1 已知参数 供电臂供电臂 长度km 端子平均电流 A 有效电流A 短路电流A 穿越电流A 左臂21.9 β238 318 917 206 右臂24.7 α184 266 1052 217 2. 题目分析及解决方案框架确定 在设计过程中,先按给定的计算条件求出牵引变压器供应牵引负荷所必须的最小容量,然后按列车紧密运行时供电臂的有效电流与充分利用牵引变压器过负荷能力,求出所需要的容量,称为校核容量。这是为确保牵引变压器安全运行所必须的容量。最后计算容量和校核容量,再考虑其他因素(如备用方式等),然后按实际系列产品的规格选定牵引的台数和容量,称为安装容量或设计容量。然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。三相V,v结线牵引变压器是近年新研制的产品,它是将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成的。三相V-v结线牵引变电所中装设两台V,v 结线牵引变压器,一台运行,一台固定备用。三相V-v结线牵引变电所不但保持了单相V-v结线牵引变电所的牵引变压器容量得到充分利用,可供应牵引变电所自用电和地区三相负载,主接线较简单,设备较少,投资较省,对电力系统的负须影响比单线小,对接触网的供电可实现双边供电等优点,最可取的是,解决了单相V-v结线牵引变电所不便于采用固定备用及其自动投入的问题。考虑到V-v接线中装有两台变压器的特点,在确定110kV侧主接线时我们采用桥形接线。按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。按照选取的变压器的容量以及110kV侧的和牵引侧的主接线,可以做出设计牵引变电所的电气主接线。

毕业论文——电气化铁路接触网施工技术

题目:电气化铁路接触网施工技术 系别:电气工程系 专业:电气化铁道铁道技术姓名:\

目录 摘要............................................................... III ABSTRACT .............................................................. IV 第1章前言 (1) 第2章电气化铁道相关规程规则 (2) 2.1接触网安全工作规程(总则) (2) 2.2接触网运行检修规程(总则) (2) 2.3电气化铁路有关人员电气安全规则(总则) (3) 第3章接触网简介 (4) 第4章接触网施工 (5) 4.1接触网基础工程 (5) 4.1.1 施工准备 (5) 4.1.2 接触网工程预概算 (7) 4.1.3 施工测量与定位 (7) 4.1.4 开挖基坑 (9) 4.1.5 混凝土工程 (10) 4.2立杆与整正 (11) 4.2.1 接触网支柱安装 (11) 4.2.2 接触网支柱整正 (12) 4.2.3 硬横梁安装 (14) 4.2.4 隧道内吊柱安装 (17) 4.3支柱装配预配安装 (18) 4.3.1 预配工艺流程 (18) 4.3.2 预配操作方法 (18) 4.4接触网架设 (21) 4.4.1承力索架设 (21) 4.4.2接触线架设 (24) 4.5接触网静态检测和动态检测 (27) 4.5.1静态检测 (27) 4.5.2低速动态检测(冷滑试验) (27) 4.5.3接触网送电(空载带电) (27) 4.5.4动态检测(热滑试验) (28) 结论 (29) 总结与体会 (30) 致谢 (31) 参考文献 (32)

供变电技术

供变电技术 一、填空 1.导体,绝缘介质,导体 2.增强电弧的因素作用的结果,我们称为游离,而削弱电弧的因素作用的结果,我们称为去游离。 3.我国牵引供电系统为工频单相交流制供电制式 4电气主结线设计一般分为以下几个阶段:方案论证和确定、初步设计、施工设计。 5、在变电所中,一般装设两类电气参数表计:测量监视仪表和计量仪表。 二、名词解释 1、分区所:交流电气化铁道上为了增加供电的灵活性,提高运行的可靠性,在两个牵引变电所的牵引供电区间加设分区所 7、高压断路器:又称高压开关,它不仅可以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时,通过继电保护装置的作用,切断过负荷电流和短路电流。它具有相当完善的灭弧结构和足够的断流能力。 8、一次设备:是用于完成电能变换、输送、分配等功能的设备,如高压开关、输电线路、母线、避雷器等,可以用一句话来理解:接触高电压的电气设备。 9、母线是从变电所的变压器或配电所的电源进线到各条馈出线路之间的电气主干线,它起着从电源接收电能和给各馈出线分配电能的作用。母线的作用是汇集、分配和传送电能。 10、 GIS :是指六氟化硫封闭式组合电器,国际上称为“气体绝缘金属封闭开关设备”, 它将一座变电站中除变压器以外的一切设备,包括断路器、隔离开关、接地开关、电压互感器、电流互感器、避雷器、母线、电缆终端、进出线套管等,经优化设计有机地组合成一个整体 三、简答题 1、答①答:1)单母线接线的优点:结构简单、清晰、设备少、投资小、运行操作方便且有利于扩建。隔离开关仅在检修电气设备时作隔离电源用,不作为倒闸操作电器。从而避免因用隔离开关进行大量倒闸操作而引起的误操作事故。特点:1)结线简单、设备少、投资省;2)母线失效,检修母线、断路器和隔离开关都会造成不同范围的停电。因此,这种接线只适用于小容量和用户对供电可靠性要求不高的发电厂或变电所中。2)双母线接线,它有两组母线,一组为工作母线,一组为备用母线。两组母线之间通过母线联络断路器(简称母联断路器)连接。采用两组母线后,使运行的可靠性和灵活性大为提高,其特点如下:(1)运行方式灵活。(2)检修母线时,电源和出线都可以继续工作,不会中断对用户的供电。这种接线适用于大容量和用户对供电可靠性要求高的发电厂或变电所中。 ②单母线分为单母线无分段、单母线有分段、单母线分段带旁路母线等形式 2、电力牵引供电系统与电力系统有什么关系? 答:电力牵引供电系统是指从电力系统或一次供电系统接受电能,通过变压、变压或换流后,向电力机车负荷提供所需电流制式(交流或直流)的电能,并完成牵引电能传输、配电等全部功能的完整系统。 工频交流单相电力牵引供电系统主要由牵引变电所、牵引网、分区所、开闭所等部分组成;

现代交换原理课程设计

课程设计报告 课程设计题目:摘挂机检验原理与设计分析 学号:2 学生姓名:刘 专业:通信工程 班级: 指导教师: 2016年12 月17 日

目录 一、设计的目的与要求·························································· 二、设计目的··································································· 三、设计内容和目的···························································· 四、源代码····································································· 五、结果····································································· 六、心得······································································

一、设计的目的与要求 1、教学目的 综合运用所学过的《现代交换原理》课程知识,进行现代通信网交换技术相关的课题设计研究与分析,掌握现代通信网交换节点所采用的技术,硬件组成及软件设计方法。 2、教学要求 从课程设计的目的出发,在实验室现代程控交换原理实验箱或者计算机上进行现代通信网交换技术相关的课题设计研究与分析。掌握相关课题的工作原理,深入研究相关课题系统组成及程序设计与分析 (1)主题鲜明,思路清晰,原理分析透彻,技术实现方案合理可靠; (2)按照现代交换原理相关研究课题技术的原理及系统组成,完成从理论分析、系统软硬件组成、程序设计,调试及功能分析的全过程。 二、设计目的 摘挂机检测实验用来考查学生对摘挂机检测原理的掌握情况。 三、设计内容和步骤 1、设计原理 设用户在挂机状态时扫描输出为“0”,用户在摘机状态时扫描输出为“1”,摘挂机扫描程序的执行周期为200ms,那么摘机识别,就是在200ms的周期性扫描中找到从“0”到“1”的变化点,挂机识别就是在200ms的周期性扫描中找到从“1”到“0”的变化点,该原理的示意图如下所示:

电气化铁道与城轨交通(地铁、轻轨)供电方式比较分析

山东职业学院 毕业论文 题目:电气化铁道与城轨交通(地铁、 轻轨)供电方式比较分析原所在系:电气工程系 原专业班级:电气自动化技术 转入后班级:电气化铁道技术 姓名:xx 指导老师:xxxx 完成日期:2012 3 29

山东职业学院毕业论文评审表 指导教师:论文成绩: 指导教师评语: 指导教师签名: 年月日复审人:论文复审成绩: 复审人评语: 复审人签名: 年月日

山东职业学院毕业论文答辩情况记录 答 辩 题 目 对学生回答问题的评语 正确 基本 正确 经提示 回答 不 正确 未 回答 答辩委员会(或小组)评语: 答辩成绩: 答辩负责人签名: 年 月 日 系毕业论文领导小组审核意见: 组长签名: 年 月 日 注:毕业论文总成绩中,指导成绩占40%,复审成绩占20%,答辩成绩占40%

目录 第1章概述 (1) 第2章牵引供电系统 (2) 2.1 铁路牵引供电系统的供电方式 (2) 2.1.1 直接供电方式 (2) 2.1.2 吸流变压器(BT)供电方式 (2) 2.1.3 自耦变压器(AT)供电方式 (3) 2.1.4 直供+回流(DN)供电方式 (3) 2.2 城市电网对地铁的供电方式 (4) 2.2.1 集中供电方式 (4) 2.2.2 分散供电方式 (5) 2.2.3 混合供电方式 (5) 第3章牵引网的供电 (6) 3.1 铁路牵引网的供电方式 (6) 3.1.1 单边供电 (6) 3.1.2 上下行并联供电 (6) 3.1.3 双边供电 (7) 3.2 城轨牵引网的供电方式 (7) 3.2.1 第三轨 (7) 3.2.2 第四轨 (7) 3.2.3 架空电缆 (8) 总结 (9) 致谢 (10) 参考文献 (11)

《电气化铁道供电专业》教学计划

西安高速铁道技工学校 电气化铁道供电专业 教学计划 一、培养目标 本专业培养拥护党的基本路线,为轨道交通电气化施工与运营企业、电气化铁道供配电设备生产企业培养适应生产、建设、管理、服务第一线需要的,德、智、体、美等方面全面发展的,掌握本专业必备的基础理论知识,具有本专业相关领域工作的岗位能力和专业技能,具有良好职业素养,适应电气化铁道行业生产一线的技术、管理等职业岗位要求的高端技能型专门人才。 通过学习,使学生具有良好的政治素质和道德素养,热爱祖国,具有正确的人生观,养成良好的社会公共道德和职业道德。掌握本专业必备的数学、外语、计算机应用等文化基础知识;掌握计算机操作和用于分析设计电路的计算机工具软件的使用方法;毕业后能运用所学理论知识和技能,在轨道交通企业、铁路局、有自备铁路的大型生产企业、轨道交通电气化设备生产企业,从事电力调度、供配电设备生产调试检修、变电所值班等具体工作,核心岗位为接触网工、变电站值班员、电力线路工、电气试验工、维修电工。 二、培养规格 1.知识结构 基本知识 (1)具有一定的社会科学和人文知识; (2)具有本专业必需的电工、电子技术基础理论知识; (3)具有本专业必需的机械和电气的基础知识; (4)具有可编程序控制器应用的基础知识; (5)具有供配电技术的基础知识; (6)具有接触网施工与维护的基本知识; (7)具有变电所运行与维护的基本知识; (8)具有必要的电气化铁道相关设备的维护与轨道交通运营的基本知识。 专业知识 (1)具有供用电技术及电气设备的控制、运行及维护专业知识; (2)具有牵引变配电、接触网施工运营维护、高电压试验及电力线路施工专业知识; (3)具有牵引变电所运行与维护的专业知识; (4)具有高压电气设备测试的专业知识。 2.能力结构 专业能力 (1)具有对铁路及城市轨道交通牵引供电系统的施工、运营、检修与管理的能力;

程控交换机课程设计

电子工程系 课程设计报告 题目:程控交换机机房勘测 年级:2014级 专业:电子信息工程技术 学号: 01 学生姓名: 指导教师: 日期: 2016.11.21—2016.12.18

目录 1.前言 (2) 2.任务描述 (2) 2.1机房设备布局原则 (3) 2.2机房电缆布置原则 (4) 2.3机房平面设计图与走线图的注意事项 (5) 4.实现过程 (6) 5.结果 (6) 前言 设计工作中,做任何事情都要有依有据——各种标准、规范、上一级部门的文件、设备厂家的资料等等,机房勘察是整个工程的前期阶段,对整个工程施工的质量、进度和以后的维护工作有十分重要的作用与意义,“良好的开始等于成功的一半”,所以说机房勘察质量的好坏和准确与否将直接影响到以后机房的使用和布局。 2.、任务描述 1. 根据机房空间大小和用户终局容量,进行交换机房平面布局规划,确定本次工程所配置的设备的具体安装摆放位置。并对将来扩容发展位置进行规划。 2. 根据设备安装位置,确定机房电缆走线路由、走线方式,明确每类电缆的安装连接方式,确定电缆走线所经过的走线梯、走线孔洞、配线架的具体位置; 3. 根据合同配置情况和设备的安装方案,确定各类工程安装材料的规格、型号、

接头、长度和数量及其它安装成套件的规格和数量; 4. 根据勘测结果完成各类勘测文档、图纸的制作。 2.1机房设备布局原则 1. 机房布置方案要结合设备结构特点,既考虑本期工程,同时要考虑将扩容的位置。 2. 机房布置要考虑机柜安装与固定的可操作性,要方便电缆走线。 3. 首先要确定机房的主走道,主走道的宽度不少于1.0米。 4. 机柜靠主走道侧列对齐,当需增加一排机柜时,尽可能从主走道侧开始摆起。切记一排机柜不要从两边向中间摆或从另一侧向主走道侧摆。 5. 机房的行间距尽可能保持一致,行间距一般不少于0.8米。对于我司目前发货的B型拼装机柜(特别是128模中心局),行间距也不能太大(受行间走线槽制约,行间距应在650mm~950mm之间)。 6. 机柜摆放应尽可能少破坏防静电地板。当为了保持行间距需破坏较多地板时,需与局方协商,由局方负责人二者选一。 7. 电源分配柜应尽可能设在一排机柜的第一列。 8. 重要设备如AM/CM、BAM、重要中继的TSM架要离值班室或控制室近一些,以便维护人员进出维护及观察。 9. 维护终端、告警箱一般要设在控制室。 10. 同一期同类机柜在不影响以后扩容的前提下,尽可能摆放在一排。当一排摆放不下时,可考虑将同一用户模块的机柜提出,另起一排。无需扩容或扩容对位置无明显要求的机柜(如:OLT机柜)应设于靠主走道侧(不一定是第一架)。 11. 同一模块的机柜应尽可能位于同一排。同一机房有多个模块时,管理模块可居中考虑。条件允许的情况下,接上级局的中继模块尽可能与管理模块就近同排摆放。 12. 一般情况下,新上机柜正面需与原有机柜正面保持一致。对于新建机房,条件允许的情况下,机柜正面需面向控制室。 13. 机柜的安装位置应具有唯一性,在标注一排机柜的位置时,严禁一排机柜的左右(上下)侧距不同的参照物同时出现标注。 14. 在不影响行间距的情况下,机柜的正面需与地板的边缝对齐。

电气化铁道主要供电方式

电气化铁道主要供电方 式 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

接触网的供电方式 我国电气化铁路均采用单边供电方式,即牵引变电所向接触网供电时,每一个供电臂的接触网只从一端的牵引变电所获得电能(从两边获得电能则为双边供电,可提高接触网末端网压,但由于其故障范围大、继电保护装置复杂等原因尚未有采用)。复线区段可通过分区亭将上下行接触网联接,实现“并联供电”,可适当提高末端网压。当牵引变电所发生故障时,相邻变电所通过分区亭实现“越区供电”,此时供电范围扩大,网压降低,通常应减少列车对数或牵引定数,以维持运行。 1、直接供电方式 如前所述,电气化铁路采用工频单相交流电力牵引制,单相交流负荷在接触网周围空间产生交变电磁场,从而对附近通信设施和无线电装置产生一定的电磁干扰。我国早期电气化铁路(如宝成线、阳安线)建设时,处于山区,地方通信技术不发达,铁路通信采用高屏蔽性能的同轴电缆,接触网产生的电磁干扰影响极小,不用采取特殊防护措施,因此上述单边供电方式亦称为直接供电方式(简称TR供电方式)。随着电气化铁路向平原和大城市发展,电磁干扰

矛盾日显突出,于是在接触网供电方式上采取不同的防护措施,便产生不同的供电方式。目前有所谓的BT、AT和DN供电方式。从以下的介绍中可以看出这些供电方式有一个共同特点,即在接触网支柱田野侧,与接触悬挂同等高度处都挂有一条附加导线。电力牵引时,附加导线中通过的电流与接触网中通过的牵引电流,理论上讲(或理想中)大小相等、方向相反,从而两者产生的电磁干扰相互抵消。但实际上是做不到的,所以不同的供电方式有不同的防护效果。 2、吸流变压器(BT)供电方式 这种供电方式,在接触网上每隔一段距离装一台吸流变压器(变比为1:1),其原边串入接触网,次边串入回流线(简称NF 线,架在接触网支柱田野侧,与接触悬挂等高),每两台吸流变压器之间有一根吸上线,将回流线与钢轨连接,其作用是将钢轨中的回流“吸上”去,经回流线返回牵引变电所,起到防干扰效果。 由于大地回流及所谓的“半段效应”,BT供电方式的防护效果并不理想,加之“吸——回”装置造成接触网结构复杂,机车受流条件恶化,近年来已很少采用。

080500《电气化铁道供电专业》教学计划

西安高速铁道技工学校 电气化铁道供电专业教学计划 一、培养目标 本专业培养拥护党的基本路线,为轨道交通电气化施工与运营企业、电气化铁道供配电设备生产企业培养适应生产、建设、管理、服务第一线需要的,德、智、体、美等方面全面发展的,掌握本专业必备的基础理论知识,具有本专业相关领域工作的岗位能力和专业技能,具有良好职业素养,适应电气化铁道行业生产一线的技术、管理等职业岗位要求的高端技能型专门人才。 通过学习,使学生具有良好的政治素质和道德素养,热爱祖国,具有正确的人生观,养成良好的社会公共道德和职业道德。掌握本专业必备的数学、外语、计算机应用等文化基础知识;掌握计算机操作和用于分析设计电路的计算机工具软件的使用方法;毕业后能运用所学理论知识和技能,在轨道交通企业、铁路局、有自备铁路的大型生产企业、轨道交通电气化设备生产企业,从事电力调度、供配电设备生产调试检修、变电所值班等具体工作,核心岗位为接触网工、变电站值班员、电力线路工、电气试验工、维修电工。 二、培养规格 1.知识结构 基本知识 (1)具有一定的社会科学和人文知识; (2)具有本专业必需的电工、电子技术基础理论知识; (3)具有本专业必需的机械和电气的基础知识; (4)具有可编程序控制器应用的基础知识; (5)具有供配电技术的基础知识; (6)具有接触网施工与维护的基本知识; (7)具有变电所运行与维护的基本知识; (8)具有必要的电气化铁道相关设备的维护与轨道交通运营的基本知识。 专业知识 (1)具有供用电技术及电气设备的控制、运行及维护专业知识; (2)具有牵引变配电、接触网施工运营维护、高电压试验及电力线路施工专业知识; (3)具有牵引变电所运行与维护的专业知识; (4)具有高压电气设备测试的专业知识。 2.能力结构 专业能力 (1)具有对铁路及城市轨道交通牵引供电系统的施工、运营、检修与管理的能力;

电气供变电技术复习要点

高压开关电器有哪几种?其作用分别是什么? 答: ①断路器(QF):用来在电路正常工作和发生故障(如发生短路)时关合和开断电路。 ②隔离开关(QS):主要用于将高压设备与电源隔离,以保证检修工作人员的安全。 ③熔断器(FU):用来在电路发生过载或短路时依靠熔体的熔断开断电路。 ④负荷开关(QL):用来在电路正常工作或过载时关合和开断电路,但不能开断短路电流。 ⑤电抗器(L):主要用来限制电路中的短路电流。某些类型的熔断器也有限制短路电流的作用。 ⑥避雷器(F):用来限制电路中出现的过电压。 避雷针和避雷器有什么区别? 答: 避雷针是直接接地的,防直击雷伤害。 避雷器是间接接地的,利用过电压放电现象让雷击过电压通过避雷器进入大地。在低电压时电阻很高,在高电压下电阻很小,防过电压。 基本的灭弧方法有哪几种? 答: ①加速触头分离速度,迅速拉长电弧。 ②采用未游离的流体(如油或压缩空气等吹动电弧)。 ③用磁吹法灭弧。 ④把长电弧分成短电弧。 高压断路器有哪些类型? ①油断路器,包括多油断路器与少油断路器。 ②气体断路器,包括六氟化硫(SF6)断路器和压缩空气断路器(简称空气断路器)。 ③真空断路器。 高压断路器的作用是什么? 高压断路器在开断、关合电路方面的技术要求有哪些? 对高压断路器操动机构的主要要求有哪些? ①合闸:应考虑到能源的电压、气压和液压等在一定的范围内变化时,必须有足够的能力来带动断路器可靠地关合正常电路和预伏短路故障电路。 ②保持合闸:操作机构必须有保持合闸的部分。 ③分闸:为了减少分闸信号的能量,达到快速分闸、简化继电保护回路的要求,在操动机构中有分闸省力机构。 ④自由脱扣:手动操作机构必须具有自由脱扣装置,才能保证及时开断短路故障,以保障操作人员的安全。 ⑤防跳跃:对于非手动操作的操动机构必须具有防止跳跃的能力,使得断路器关合短路而又自动分闸后,即使合闸命令尚未解除,也不会再次合闸。

电气化铁道技术

电气化铁道技术 电气化铁道技术(电力机车方向)专业 A.培养目标:本专业培养具有电力机车乘务与检修基本知识和基本技能的高级应用型技术人才。毕业生具有扎实的理论基础知识,较强的实际工作能力,适应到铁路机务段、机车厂、工厂铁路专用线、城市轨道交通、地铁等部门从事机车试验、运用、维修保养等工作。 B.培养要求:本专业主要培养学生从事电力机车试验、运用和检修等专业技能。主要学习电工技术、电子技术、电力机车基本构造、电力机车工作原理、电力机车故障处理及城市轨道交通等基本知识,接受外语、计算机办公及绘图、金工等基本技能训练和机车常规试验、运用、检查保养等专业技能训练。达到培养目标者,经职业技能鉴定合格后可获得国家相关部门颁发的职业资格证书。 C.主要课程:自动控制原理、电机与电力拖动、电力机车电机、电力机车电器、电力机车控制、电力机车制动系统、电力机车总体及走行、行车规章、机车运用管理、列车牵引计算、电力机车构造检修乘务实训等。 电气化铁道技术(铁道供电方向)专业 A.培养目标:本专业培养具有铁路电力设备基本知识和基本技能的高级应用型技术人才。毕业生具有扎实的基础理论知识,较强的实际工作能力,适应到铁路供电中心、电气化工程局、工矿企业、城市轨道交通、铁路机务段、机车厂等部门从事电力技术与管理工作。 B.培养要求:本专业主要培养学生从事操作、使用及维修电力设备等专业技能。主要学习电路基础、模拟和数字电子技术基础、高电压技术、牵引变电所、继电保护与自动装置、远动技术、接触网、牵引供电规程与安全等基本知识,接受外语、计算机办公及绘图、金工、电工电子等基本技能训练和牵引变电所故障处理方法、变压器、电动机接线、接触网施工方法等专业技能训练。达到培养目标者,经职业技能鉴定合格后可获得国家相关部门颁发的职业资格证书。 C.主要课程:自动控制原理、电工仪表与测量、牵引变电所、高压电器、继电及微机保护、电气化铁道供电系统、远动技术、接触网、牵引供电规程与安全、电力设备操作技能实训等。

相关主题
文本预览
相关文档 最新文档