当前位置:文档之家› New Claims about Executions and General Deterrence Déjà Vu All

New Claims about Executions and General Deterrence Déjà Vu All

New Claims about Executions and General Deterrence Déjà Vu All
New Claims about Executions and General Deterrence Déjà Vu All

New Claims about Executions and General Deterrence:D′e j`a Vu All Over Again?

Richard Berk?

March11,2005

Abstract

A number of papers have recently appeared claiming to show that

in the United States executions deter serious crime.There are many

statistical problems with the data analyses reported.This paper ad-

dresses the problem of“in?uence,”which occurs when a very small

and atypical fraction of the data dominate the statistical results.The

number of executions by state and year is the key explanatory variable,

and most states in most years execute no one.A very few states in par-

ticular years execute more than5individuals.Such values represent

about1%of the available observations.Re-analyses of the existing

data are presented showing that claims of deterrence are a statistical

artifact of this anomalous1%.

I.Introduction

Research on the possible deterrent value of capital punishment has a long his-tory(Sutherland,1925;Zimring and Hawkins,1973;Gibbs,1975,Ehrlich, 1975;1977;Sellin1980).Of late,a cluster of papers by economists has ?Department of Statistics,8125Mathematical Sciences Building,UCLA,Los Angeles, 90095-1554(berk@https://www.doczj.com/doc/ca1661975.html,).Thanks go to Sam Gross,Je?Fagan,Michael Radelet, and Rick Lempert for a number of very helpful comments on earlier drafts of this paper. Work on this paper was supported by a grant from the National Science Foundaton:SES -0437169—Ensemble Methods for Data Analysis in the Behavioral,Social and Economic Sciences

1

appeared attempting to rebut claims that earlier econometric analyses re-porting deterrence e?ects were subject to fatal model speci?cation errors (Ehrlich and Liu,1999;Cloninger and Marchesini,2001;Mocan and Gitting, 2003;Shepherd,2004;Zimmerman,2004).1In this work,the death penalty is treated as an intervention,either as a binary indicator variable or,more commonly,as the number of executions.Various measures of violent crime are the outcomes.A wide variety of control variables are used.Mocan and Gitting(2003),for example,claim to?nd strong deterrent e?ects.

Such research touches on many vexing issues about which there continues to be widespread controversey(Zimring,2003,Forst,2004;Blume et al., 2004;Gelman et al.,2004).But as an empirical matter,the research is necessarily based on observational data.It follows that there are a host of problems in trying to make credible casual inferences(Rosenbaum,2002). These range from the conceptual leap of treating observational data as an experiment to a large number of nuts-and-bolts statistical di?culties.(See, for example,Box,1976;Leamer,1978;Rubin,1986,Freedman,1987;Manski, 1990;Heckman,1999;Breiman,2001,Berk,2003.)

I have recently obtained the data used in papers authored by Mocan and others.2The full range of statistical concerns is surely relevant,but these data have special properties that make them especially problematic.Here I will focus on the nature of the“treatment.”What can be learned about the impact of the death penalty for the United States as a whole when a very few jurisdictions account for the vast majority of executions?

II.A Look at the Treatment and Response Variables

The data are a pooled cross-section time series of50states over21years (1977-1997),so that there are1050observations in all.Each observational unit is the year within a state.The canonical explanatory variable is the 1For an evenhanded and thorough critique of the earlier deterrence claims see Klein et al.(1978).

2Je?rey Fagan obtained the data from Mocan for replication and reanalysis and passed a copy of the data along to me.By and large,I have taken the data at face value as best I understand them,with important assistance from Fagan on how the variables are de?ned.

I have also spot checked some of the observations.But I cannot guarantee that the data are fully what they purport to be or that there are no errors in the data themselves.

2

number of executions each year for each state.The number of homicides per state per year and the homicide rate per1,000are key response variables.

Mocan and Gittings construct their basic execution variable de?ning a year as October through September.Their rationale is that executions near the end of the usual calendar year cannot be expected to a?ect crime in that same calendar year,given that a year is the temporal unit.Thus,homicides in1980,for example,respond to executions from January through September of1980plus executions from October through December1979.In practice, however,they experiment with one and two year lags of their October-to-September execution variable.For the empirical analyses to follow,I will work with a one year lag.Mocan and Gittings try other lags and several transformations of their basic executions variable.But for the issues I want to raise,concentrating on the number of executions lagged by one year is for now su?cient.Alternative lags and transformations will be brie?y addressed later.The one year lag for execution means that there are1000observations to analyze,not1050.3

For the number of executions,the mean is.35,implying that on the average each state executes one prisoner about every three years.But this is very misleading.The standard deviation is1.35,which given the mean and the lower boundary of0,is a strong indication of skewing.

Figure1shows the empirical distribution for the number of executions. The“dose”ranges from0to18,with859of the1000values(86%)equal to 0.As a result,the median is also0.There are78values(8%)equal to1. There are but11values(1%)larger than5,ranging from7to18executions. Clearly,the distribution is highly skewed,and the mean is dominated by a few extreme values.Most states in most years execute no one.4 The risks of working with highly skewed explanatory variables are well known and thoroughly discussed in any number of accessible statistics text-books(e.g.,Cook and Weisberg,1999).The farther values for the explana-tory variables fall from the centers of their distributions,the more“leverage”they have.When such values tend to be paired with values for the response variable that fall some distance for the center of the response distribution, leverage becomes“in?uence.”The usual objective functions employed in the 3One year’s worth of data is necessarily lost when executions is lagged by one year.All of the observations for the response variables in1977are eliminated.

4Figure1is for the number of executions lagged by one year.For the unlagged number of executions,there are three more values larger than5.The largest,for the most recent year in Texas,is equal to29.If anything,the skewing is increased.

3

Figure1:Empirical Distribution of the Number of Executions Lagged by One Year—Note:There is strong evidence of skewing

4

?tting,such as a quadratic,weight such observations very heavily.These ob-servations can then dominate the results.Removing in?uential observations, or down-weighting them,can dramatically change the conclusions reached.

Figure2:Empirical Distribution of the Number of Homicides—Note:There is strong evidence of skewing

However,in?uential observations are not necessarily“outliers.”An out-lier is not just atypical,but is located some distance from the mass of the data.Such observations are often treated as qualitatively di?erent.When in?uential observations are also outliers,there is even more grounds for con-cern.

It is clear from Figure1that there are several observations with large leverage that are also quite properly labeled outliers.We will soon consider whether they are also in?uential.

Figure2shows the empirical distribution for one of the two response variables:the number of homicides per year.The mean is420,and the standard deviation is607.The pattern in Figure2is much the same as for the number of executions,although a bit less extreme.One implication is

5

Figure3:Empirical Distribution of the Homicide Rate —Note:There is moderate evidence of skewing

6

that there is real potential for a few observations to be very in?uential and to be outliers as well.

Figure3shows the empirical distribution for a second response variable: the homicide rate per1,000people.The mean is.06,and the standard devi-ation is.04.Skewing is reduced substantially,and there is far less evidence of “daylight”between a few extreme values and the mass of the data.Although in?uence remains a genuine issue,the in?uential observations are less likely to include outliers for the homicide rate.

In summary,even before one moves beyond these histograms,there is good reason to worry about impact of highly skewed distributions for vari-ables that are central to the analysis.A very few observations may dominate the results,and some of these observations may also be outliers.

III.Some Bivariate Relationships

Consider now Figure4.The vertical axis is in units of the number of homi-cides per year.The horizontal axis is in units of the number of executions lagged by one year.Along the horizontal axis is a rug plot showing how the data cluster by the number of executions.The solid line represents the ?tted values produced by a B-spline smoother within the generalized addi-tive model(GAM).The dotted lines are the approximate95%con?dence interval.5

The generalized additive model(GAM)is a form of regression analysis in which each predictor(here,only one)is allowed to have its own functional relationship with the response variable.The functional form is determined empirically(Hastie and Tibshirani,1990).6Here,GAM is used solely as a 5The data are either a population or a convenience sample.Any statistical inference, therefore,must rely on model-based sampling(Thompson,2002:section7.2).No justi-?cation for model-based sampling is provided by Mocan and Gittings or by the authors of any of the papers cited earlier.Consequently,it is not clear that statistical inference is appropriate(Berk,2003).Nevertheless,tests and con?dence intervals will be reported, consistent with the practices in this literature.

6A bit more formally:

E(Y|X)=

p

j=1

f j(X j),(1)

where X is a set of p predictors.Each function of X,f j,is determined by a smoother. Locally weighted regression(LOWESS)and spline functions are popular options.B-splines can be thought of as a computationally e?ectively way to smooth a scatter plot with cubic

7

Figure4:Number of Homicides as a Function of the Number of Executions Lagged by One Year(Explained Deviance=7.2%)—Note:The solid line is the smoothed?tted values,with the e?ective degrees of freedom shown as 1.89.The dotted lines contain the approximate95%con?dence interval.The overall relationship between the number of homicides and the lagged number of executions is positive.

8

descriptive tool.

Because the outcome is a count,it may be reasonable as?rst approxi-mation assume that the conditional distribution is Poisson.But then,the output is somewhat more di?cult to interpret.Proceeding with a gaussian conditional distribution leads to essentially the same descriptive results and is more easily understood.7

The numbers attached to the label on the vertical axis are the e?ective degrees of freedom used up by the smoother.(See Berk,2005for an accessible discussion.)The“s”stands for a smoother.Thus,the label on the vertical axis indicates that the?tted values are a smooth function of the number of executions lagged by one year,using up almost2degrees of freedom.A key implication is that the?tted values are a non-linear function of the number of executions.

The relationship is positive overall.With more executions,there are more homicides about a year later.If the smoother is capturing anything causal,the e?ects can lead to increases of over1000homicides.However,the con?dence interval is very wide beyond about5executions(where there are almost no data)and allows for the possibility that the relationship becomes ?at or even slightly negative.8

Figure5repeats the analysis,but using the homicide rate as the response. Standardizing for population size is an e?ort to control for the obvious fact that with more people,there are more potential perpetrators and more po-tential victims.A gaussian conditional distribution is assumed,although once again,a LOWESS smoother leads to about the same story.

The relationship is positive over the range of executions where the mass of data are located,and only turns slightly negative for execution numbers greater than5.But now the con?dence interval starts to have real bite.It is so wide beyond about5executions that it is not clear what the overall trend may be.However,even if the downturn is real,the net e?ect over the entire curve is positive.Going from0executions to15,increases the homicide rate polynomials.The generalized linear model(GLM)is a special case in which all of the functions are linear.GAM allows for the same selection of disturbance distributions as GLM.It also assumes the same canonical link functions.

7The results in Figure4are basically the same using a LOWESS smoother,which makes no assumptions about the conditional distribution of the response.

8By construction,the?tted values for a single predictor have a mean of zero.This may be hard to see in Figure4unless one keeps in mind that the vast majority of observations have no executions.

9

Figure5:Homicide Rate as a Function of the Number of Executions Lagged by One Year(Explained Deviance=7.4%)—Note:The solid line is the smoothed?tted values,with the e?ective degrees of freedom shown as4.74. The dotted lines contain the approximate95%con?dence interval.The rela-tionship is between the homicide rate and the lagged number of executions is generally positive for up to5executions.Above5executions,it is di?cult to tell.

10

substantially.The mean homicide rate is.06(per1000),so that an increase of about.02is important.

IV.Some Multivariate Relationships

What happens to Figures4and5when a more concerted e?ort is made to control for potential confounders?In particular,suppose one wanted covari-ance adjustments for the factors that on the average over the20years led to more homicides in some states than others(e.g,California versus Maine). In e?ect,each state would need its own intercept within the GAM formula-tion.One can do this in a?xed e?ects manner by simply adding an indicator variable for each of the state(less one to avoid linear dependence).9 Figure6shows the adjusted relationship between the number of homicides and the number of executions lagged by one year.The?t is excellent;97% of the deviance can be accounted for.The results cannot be criticized for lack of?t,and it is clear that most of the variation in homicides is simply a function of the average number of homicides in each state from1977to1997. In other words,once one accounts on the average for the number homicides state by state over that period,one has extracted from the data about all of the information there is.Knowing the number of executions adds virtually nothing.Indeed,dropping executions from the model reduces the deviance accounted for from97.0%to96.3%.

If,nevertheless,one is curious about the role of executions,there would seem at?rst to be evidence of a substantial negative relationship consistent with deterrence.However,for5executions or less,the relationship is?at or slightly positive overall.Only for more than5executions is the net e?ect negative.10So any evidence for a deterrent e?ect on the number of homicides depends on11observations out of1000.

Figure7shows the parallel analysis for the homicide rate.The?t is not quite as good,but with87.9%of the deviance accounted for,still excellent. If executions is dropped from the model,the deviance accounted for drops to 9A random e?ects approach for the states would save some degrees of freedom,but would be require several heroic assumptions.The?xed e?ects approach is far more robust, and with1000observations,giving up49degrees of freedom for the states is not a major concern.

10The“wiggles”beyond5executions should not be taken at face value.The data are far too sparse.Only one or two observations are responsible for each bend.

11

Figure6:Number of Homicides as a Function of the Number of Executions Lagged by One Year,Controlling for State(Explained Deviance=97.0%)—Note:The solid line is the smoothed?tted values,with the e?ective degrees of freedom shown as8.71.The dotted lines contain the approximate 95%con?dence interval.There is no consistent relationship between the number of homicides and the lagged number of executions when there are ?ve execution or less.The apparent negative relationship when there are six executions or more is based on only eleven observations out of one thousand and cannot be taken at face value.

12

Figure7:Homicide Rate as a Function of the Number of Executions Lagged by One Year,Controlling for State(Explained Deviance=87.9%)—Note: The solid line is the smoothed?tted values,with the e?ective degrees of reedom shown as6.65.The dotted lines contain the approximate95%con?-dence interval.There is no consistent relationship between the homicide rate and the lagged number of executions when there are?ve execution or less. The apparent negative relationship when there are six executions or more is based on only eleven observations out of one thousand and cannot be taken at face value.

13

87.1%.When allowance is made for average di?erences across states in the homicide rate,one has most of the story.

At?rst glance there appears to be an overall downward trend.However, a close look at the graph again reveals e?ectively no relationship when there are5executions are less.It is the same11observations out of1000that are driving the negative relationship.And consistent with this tiny sub-sample, the95%con?dence interval is very large precisely where the substantial de-clines in the homicide rate are found.Note that the negative relationship could be essentially?at beyond7executions.But even giving the bene?t of the doubt,it is apparent that for the vast majority of states in the vast majority of years,there is no evidence of a negative relationship between executions and homicides.

So far,the temporal dimension has been ignored.Figures8and9show the results when indicator variables for years are used instead of indicator variables for state.These analyses control for average di?erences between years(over states)in the number of homicides and the homicide rate respec-tively.In e?ect,the year indicator variables control for national trends in the number of homicides and the homicide rate.But because year to year variation does not appear to be nearly as important as state to state varia-tion,the results are very much like those reported earlier when no covariates were used.

Figures10and11show the results when indicator variables for states and years are used as indicator variables.These analyses control for average di?erences between states(over years)and between years(over states).Be-cause variation between states dominates the story,these?gures look much the same as Figures6and7.Note that adding years contributes virtually nothing to the explained deviance.

A.Isolating the Role of In?uential Observations Another way to consider the role of the11anomalous observations is to drop them from the analysis.As an illustration,Figure12repeats the analysis shown in Figure11,but deletes the11observations with more than5execu-tions.That is,this?gure uses989of the1000observations.The?t remains good;90.4%of the deviance is accounted for.Visually,Figure12is basically a“blow-up”of the portion of Figure11located in the upper left corner,when the number of executions is5or less.

One can see that little of any importance is going on.There is a?at

14

Figure8:Number of Homicides as a Function of the Number of Executions Lagged by One Year,Controlling for Year(Explained Deviance=7.8%)—Note:The solid line is the smoothed?tted values,with the e?ective degrees of freedom shown as1.97.The dotted lines contain the approximate95% con?dence interval.The relationship between the number of homicides and the lagged number of executions is positive.

15

Figure9:Homicide Rate as a Function of the Number of Executions Lagged by One Year,Controlling for Year(Explained Deviance=11.8%)—Note: The solid line is the smoothed?tted values,with the e?ective degrees of free-dom shown as4.95.The dotted lines contain the approximate95%con?dence interval.The relationship between the homicide rate and the lagged number of executions when there are?ve execution or less positive.The apparent negative relationship when there are six executions or more is based on only eleven observations out of one thousand and cannot be taken at face value. The con?dence interval implies that the sign cannot be credibly determined.

16

Figure10:Number of Homicides as a Function of the Number of Executions Lagged by One Year,Controlling for State and Year(Explained Deviance =97.4%)—Note:The solid line is the smoothed?tted values,with the e?ective degrees of freedom shown as8.66.The dotted lines contain the approximate95%con?dence interval.There is no consistent relationship between the number of homicides and the lagged number of executions when there are?ve execution or less.The apparent negative relationship when there are six executions or more is based on only eleven observations out of one thousand and cannot be taken at face value.

17

Figure11:Homicide Rate as a Function of the Number of Executions Lagged by One Year,Controlling for State and Year(Explained Deviance=90.2%)—Note:The solid line is the smoothed?tted values,with the e?ective degrees of freedom shown as6.43.The dotted lines contain the approxi-mate95%con?dence interval.There is no consistent relationship between the homicide rate and the lagged number of executions when there are?ve execution or less.The apparent negative relationship when there are six exe-cutions or more is based on only eleven observations outout of one thousand and cannot be taken at face value.

18

Figure12:Homicide Rate as a Function of the Number of Executions Lagged by One Year Equal to5or Less,Controlling for State and Year(Explained Deviance=90.4%)—Note:The solid line is the smoothed?tted values, with the e?ective degrees of freedom shown as3.17.The dotted lines contain the approximate95%con?dence interval.There is no consistent relationship between the homicide rate and the lagged number of executions when there are?ve execution or less.

19

relationship in the average homicide rate when there are no executions com-pared to when there is1.The relationship between1and3turns negative. The relationship between3and5turns positive.And any causal e?ects that might be inferred from these trends are tiny in any case.

B.Alternative Adjustments for Confounding

One might argue that controlling for state di?erences with a set of indica-tor variables is ham-?sted.After all,one of the ways that states may di?er is in their inclination and ability to seek the death penalty.Such inclina-tions should not be removed from the treatment content of the number of executions.

In response,the model reported in Figure12was re-estimated.Instead of including the state indicator variables,the homicide rate in1977is used as a predictor,with its functional form estimated in a nonparametric manner. That is,a smoother is once again applied.Also,recall that because the number of executions is lagged by one year,the homicide rate as the response variable begins in1978,one year after the homicide rate used as a control variable.This way,some of the same values are not on both sides of the equal sign.

If including all of the state indicators as predictors risks covariance adjust-ments that are too strong,using the homicide rate in1977risks covariance adjustments that are not strong enough.It is not literally true that the fac-tors a?ecting the homicide rate in each state were stationary from1977to 1997.For example,the“crack epidemic”was a phenomenon primarily of the 1980’s.But by weakening the covariance adjustments,more room is made for deterrence e?ects to surface.

Figure13shows the results.As one would expect,the explained deviance has dropped somewhat(to83%),but the?t remains good.And there is still no evidence for any deterrence.The?tted values are essentially?at.

V.Some Variations on the Theme

What happens if instead of allowing the number of executions to take on a non-linear functional form,one proceeded in the same manner used to produce Figure13,but with an assumed linear relationship?When the11 extreme values are included,there is now a negative regression coe?cient

20

门禁系统使用说明书

安装、使用产品前,请阅读安装使用说明书。 请妥善保管好本手册,以便日后能随时查阅。 GST-DJ6000系列可视对讲系统 液晶室外主机 安装使用说明书 目录 一、概述 (1) 二、特点 (2) 三、技术特性 (3) 四、结构特征与工作原理 (3) 五、安装与调试 (5) 六、使用及操作 (10) 七、故障分析与排除 (16) 海湾安全技术有限公司

一概述 GST-DJ6000可视对讲系统是海湾公司开发的集对讲、监视、锁控、呼救、报警等功能于一体的新一代可视对讲产品。产品造型美观,系统配置灵活,是一套技术先进、功能齐全的可视对讲系统。 GST-DJ6100系列液晶室外主机是一置于单元门口的可视对讲设备。本系列产品具有呼叫住户、呼叫管理中心、密码开单元门、刷卡开门和刷卡巡更等功能,并支持胁迫报警。当同一单元具有多个入口时,使用室外主机可以实现多出入口可视对讲模式。 GST-DJ6100系列液晶室外主机分两类(以下简称室外主机),十二种型号产品: 1.1黑白可视室外主机 a)GST-DJ6116可视室外主机(黑白); b)GST-DJ6118可视室外主机(黑白); c)GST-DJ6116I IC卡可视室外主机(黑白); d)GST-DJ6118I IC卡可视室外主机(黑白); e)GST-DJ6116I(MIFARE)IC卡可视室外主机(黑白); f)GST-DJ6118I(MIFARE)IC卡可视室外主机(黑白)。 1.2彩色可视液晶室外主机 g)GST-DJ6116C可视室外主机(彩色); h)GST-DJ6118C可视室外主机(彩色); i)GST-DJ6116CI IC卡可视室外主机(彩色); j)GST-DJ6118CI IC卡可视室外主机(彩色); k)GST-DJ6116CI(MIFARE)IC卡可视室外主机(彩色); GST-DJ6118CI(MIFARE)IC卡可视室外主机(彩色)。 二特点 2.1 4*4数码式按键,可以实现在1~8999间根据需求选择任意合适的数字来 对室内分机进行地址编码。 2.2每个室外主机通过层间分配器可以挂接最多2500台室内分机。 2.3支持两种密码(住户密码、公用密码)开锁,便于用户使用和管理。 2.4每户可以设置一个住户开门密码。 2.5采用128×64大屏幕液晶屏显示,可显示汉字操作提示。 2.6支持胁迫报警,住户在开门时输入胁迫密码可以产生胁迫报警。 2.7具有防拆报警功能。 2.8支持单元多门系统,每个单元可支持1~9个室外主机。 2.9密码保护功能。当使用者使用密码开门,三次尝试不对时,呼叫管理中 心。 2.10在线设置室外主机和室内分机地址,方便工程调试。 2.11室外主机内置红外线摄像头及红外补光装置,对外界光照要求低。彩色 室外主机需增加可见光照明才能得到好的夜间补偿。 2.12带IC卡室外主机支持住户卡、巡更卡、管理员卡的分类管理,可执行 刷卡开门或刷卡巡更的操作,最多可以管理900张卡片。卡片可以在本机进行注册或删除,也可以通过上位计算机进行主责或删除。

浅谈多功能酶标仪选择的要素

近年来,随着多功能酶标仪在国内各高校实验室逐渐推广开来,多功能酶标仪品牌和型号也逐渐多了起来,乱花渐欲迷人眼。除了三大传统优势品牌PE、MD和TECAN,还出现了众多后来者插足此市场,如收购了芬兰雷勃的Thermo、从发光起家的Berthold、针对药筛领域的BMG以及新兴的BioTek等品牌。各品牌都有各自的一个甚至多个系列产品线,特性各不相同,选购时各种技术参数、技术指标令人眼花缭乱。 本文尝试从用户实际使用的角度,探讨应该如何看待花样繁多的参数特性,希望能帮助大家找到真正合适自己的多功能酶标仪。 一、滤片Vs光栅 多功能酶标仪的分类方法众多,但最简单的莫过于用他们的滤光方式来作分界线。一般来说,可以分为滤光片型和光栅型两大类。当然也有一些型号,例如Synergy4和EnVision等,一台机器里面同时装上了滤光片和光栅。但是滤片和光栅并不能同时完成同一个检测,还是想用光栅的时候用光栅,该用滤片的时候用滤片;还有一些实验非用其中一个不可,另一模块实现不了的。所以这类仪器本质上还只是把滤片和光栅放在了一起,并没有使两者糅合而产生新的技术突破。 总体来说,滤片技术由于发展已久,配合二向色镜(其实也就是另一模式的滤光反光滤镜)等光路系统,可以实现大部分实验的需要。目前常规多功能酶标仪中最高的检测灵敏度就是用滤光片型做出来的,例如TECAN Infinite F500的荧光检测的灵敏度可以达到0.04 fmol/孔(荧光素,384孔/80ul)。 但是滤光片型仪器由于受限于滤片的波长和数量限制,不可能满足日益增加的实验类型的检测需要,而且有时需要对物质的吸收、激发和发射光谱进行研究,所以后来就诞生了光栅型的仪器。 最先推出光栅的是MD公司,其光栅习惯上称为单光栅。由于光纯度的不足,在光栅的后面又加入了一组带阻滤片,再把杂光过滤一遍,达到了5×10-4的杂光率,基本与纯粹的滤光片系统一致。后来TECAN 又发展出了双光栅技术,通过两次光栅滤光,杂光率降到了10-6。后来,Thermo、BioTek和PE的部分新款仪器等都使用了类似双光栅技术。由于激发和发射各用了一组双光栅,此类机器又被称为四光栅型多功能酶标仪。 光栅型酶标仪的推陈出新,使得用户在波长选择上不再受限,而且在杂光率、带宽控制等性能上还超越了滤光片系统。例如,TECAN公司在2008年底推出使用了第三代四光栅系统的M1000酶标仪,杂光率降到了2×10-7的新低,还实现了带宽2.5~20nm连续可调。这些都是目前滤光片型酶标仪所不能或者较难实现的。 二、杂光率&波长准确性 光栅型滤光系统俨然已经成为了目前通用性多功能酶标仪的主流,多家厂家共同努力,已经把光栅技术推到了历史新高。在光栅的众多技术参数之中,最关键的无疑就是光栅的杂光率和波长选择的准确性了。 杂光率指得就是光源通过光栅后,得到的光线中,“不需要”的波长的光占所标称波长的光的比例,表征了滤光的纯度。由于光线干涉、衍射等的复杂性,无论使用滤光片还是光栅,杂光都是不可避免的。各种滤光技术的本质就是要想办法把杂光尽可能地去掉。一般来说,滤光片型的杂光率在10-4~10-5之间,光栅型的可以做到10-6~10-7。由于此类杂光是非特异的,而且会直接进入最后的检测器,所以有多少的杂光就会引入多少的随机误差。在荧光等检测过程中,由于检测器存在放大效应,杂光率的干扰也会被指数级放大。因此,杂光率就是一个滤光系统的首要性能指标。 光栅的另一个重要指标就是波长选择的准确性。因为很多检测是依赖于物质在某个波长的特征图谱。就像

F6门禁管理系统用户手册

F6门禁管理系统用户手册 目录 1.系统软件 (2) 2.服务器连接 (2) 3.系统管理 (3) 3.1系统登录 (3) 3.2修改密码 (3) 4.联机通讯 (4) 4.1读取记录 (4) 4.2自动下载数据 (5) 4.3手动下载数据 (5) 4.4实时通讯 (6) 4.5主控设置 (6) 5.辅助管理 (8) 5.1服务器设置 (8) 5.2系统功能设置 (9) 5.3读写器设置 (10) 5.4电子地图 (13) 6.查询报表 (14) 6.1开锁查询 (14) 7.帮助 (18) 7.1帮助 (18)

1.系统软件 图1 门禁管理软件主界面 F6版门禁管理系统的软件界面如上图,顶端菜单栏包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”和“帮助”菜单;左侧快捷按钮包括“系统管理”、“联机通讯”、“辅助管理”、“查询报表”、“状态”等主功能项,每个主功能项包含几个子功能,在主界面上可以不依靠主菜单,就可在主界面中找到每个功能的快捷按钮。以下按照菜单栏的顺序进行介绍。 2.服务器连接 如图2点击设置则进入远程服务器设置,此处的远程服务器IP地址不是指数据库服务器,而是指中间层Fujica Server服务管理器的IP地址。 图2 服务连接

图2 远程服务器设置 3.系统管理 3.1系统登录 系统默认的操作员卡号为“0001”,密码为“admin”,上班人员输入管理卡号和密码后可以进入系统,进行授权给他的一切操作。 图3 系统登录 3.2修改密码 修改密码是指操作员登录成功后,可以修改自己登录的密码。先输入操作员的旧密码,再输入新密码并确认,则密码修改成功。

多功能酶标仪技术规格要求

多功能酶标仪技术规格要求 一、采购内容 二、技术要求 1、系统性能 多模式检测模块:可见光/紫外光吸收、荧光强度(顶读&底读)、超高灵敏化学发光、时间分辨荧光和超灵敏Alpha检测。 2、激发光源: 2.1光吸收、荧光强度、TRF模块光源采用高能闪烁氙灯,波长范围230-1000 nm。*2.2 Alpha光源采用680 nm 高能固态激光光源,激光输出功率>200 mw。 *3、检测器:多模式检测模块:同时配置两个PMT:一个红敏PMT和一个独立超高灵敏度PMT。 4、可见/紫外吸收光:双光栅系统可进行光吸收检测,波长范围230-1000 nm,双光栅分光步进(increments)0.5nm。 *5、荧光强度(顶读和底读):高精度四光栅系统,要求前置cut-off滤光片,波长范围250-850nm;分光步进(increments)0.5nm。 *6、超敏感化学发光:独立于荧光检测之外的单独光路,独立超敏感PMT检测器。 7、时间分辨荧光:激发配置320 nm/340 nm滤光片/二向色镜优化组合,保证激发光强度。发射光路为双光栅,满足包括615nm和665 nm在内的单/多波长检测。*8、超灵敏Alpha检测:优化独立Alpha专用光路,采用高能固态激光+独立超灵敏PMT优化高速组合,以达到最佳的检测效率和灵敏度。要能提供Alpha检测试剂盒及特殊应用的定制化服务。 9、温控模块:保证样品检测温度稳定到室温+3至65摄氏度。

10、具有三种振荡模式:线形、圆形、8字形,可设定震荡速度、振幅及振荡时间。具有仪器外(outside)振荡功能,在程序运行的过程中,微孔板可以伸出仪器外部振荡,便于实现程序运行中观察振荡效果,而不必中止程序。 11、具有板孔扫描功能:可选孔内圆形或方形区域中的多点扫描检测,适用于贴壁细胞或不均匀样本检测,以减少因样品分布不均匀造成的检测偏差。软件可自动优化调节检测器Z轴高度,以保证检测的灵敏度,减少孔间信号串扰。 12、配备专业仪器自动化控制及数据分析处理软件,软件友好,易学易用。具备线性拟合、动力学、剂量效应等多种常用的数据计算及分析功能,结果可以Excel、文本、网页、图片等多种格式输出。 三、技术服务要求 3.1设备安装调试 在用户指定的地点完成安装调试,并配合用户进行测试验收。 3.2 技术培训及服务 3.2.1完成设备现场安装调试和验收后,在用户所在地免费提供专业培训,就 设备的操作使用和保养维护等内容进行重点培训。 *3.2.2 要能提供原厂AlphaScreen/AlphaLISA检测试剂以及时间分辨荧光检 测试剂,并具有专业技术开发实验室及服务能力,并由应用技术工程师提供蛋 白-蛋白等分子间相互作用实验的现场操作培训以及后期新实验开发培训。 3.3质保期 整机保修1年,保修期自验收签字之日起计算。 3.4维修响应时间 接到维修通知后,2小时内作出响应,24小时内到场排除故障。

智能门禁管理系统说明书.doc

ID一体式/嵌入式门禁管理系统 使用说明书

1 软件使用说明 (1)配置要求 在安装软件之前,请先了解您所使用的管理电脑的配置情况。本软件要求安装在(基本配置): Windows 2000,windows xp操作系统; 奔腾II600或更高的处理器(CPU); 10GB以上硬盘; 128MB或更大的内存; 支持分辨率800*600或更高的显示器。 (2)安装说明 在光盘中运行“智能一卡通管理系统”安装程序(ID版),按照安装提示依次操作即可。 安装数据库以后,有两种创建数据库的方式,手动创建和自动创建。手动创建:在数据库SQL Server2000的数据库企业管理器中,建立一个database(数据库)。进入查询分析器/Query Analyzer 运行智能一卡通管理系统的脚本文件,形成门禁数据库表;自动创建:在安装智能一卡通管理软件中自动创建默认门禁数据库,默然数据名:znykt。 上述安装完后,在安装目录下,在first.dsn 文件中设置其参数,计算机server的名字(无服务器时即本机名)和数据库database的名字。 在桌面运行智能一卡通管理系统运行文件,选择卡号888888,密码为123456即可进入系统。 2 人事管理子系统 部门资料设置 首先运行‘智能一卡通管理系统’软件后,进入软件主界面,如下图所示:

然后点击进入“人事管理子系统”,如图所示: 选择<人事管理>菜单下的<部门管理>或点击工具栏内的‘部门管理’按钮,则会出现如下所示界面: 在<部门管理>中可以完成单位内部各个部门及其下属部门的设置。如果公司要成立新的部门,先用鼠标左键单击最上面的部门名,然后按鼠标右键弹出一菜单,在菜单中选择“增加部门”,则光标停留在窗口右边的“部门编号”输入框中,在此输入由用户自己定义的部门编号后,再在“部门名称”输入框中输入部门名称,最后按 <保存>按钮,此时发现窗口左边的结构图中多了一个新增的部门。如果要给部门设置其下属部门,则首选用鼠标左键选中该部门,再按鼠标右键弹出一菜单,在菜单中选择“增加”,最后输入、保存。同时也可以对选中的部门或下属部门进行“修改”或“删除”。特别要注意的是,如果是“删除”,则被选中的部门及其下属部门将被全部删除,所以要特别谨慎。

多功能酶标仪SpectraMaxi3的操作规程

多功能酶标仪SpectraMax i3的标准操作规程Standard Operation of SpectraMax i3 部门Department 签名/日期Signature/Date 起草人:Prepared by 樊小川,Xiaochuan Fan QC 审核人:Reviewed by 黄思佳,Sijia Huang QC 审核人:Reviewed by 褚夫兰,Fulan Chu QA 批准人:Approved by 张伯彦,Boyan Zhang 质量负责人 1 目的 建立多功能酶标仪SpectraMax i3的标准操作程序,规范SpectraMax i3 多功能酶标仪检测时的操作。 2 适用范围

本规程适用于所有对多功能酶标仪SpectraMax i3的操作 3 术语或定义 多功能酶标仪:指功能较强、精度较高的单体台式酶标仪,可检测吸光度(Abs)、荧光强度(FL)、时间分辨荧光(TRF)、化学发光(Lum)等。 4 责任 4.1 仪器负责人负责多功能酶标仪的日常及定期维护,出现故障时负责联系厂家维修,保 证运行正常。 4.2 实验操作人员需严格按照本规程执行,保证仪器正常使用,每次用完后填写仪器使用 记录,且使用后及时清理台面,保持仪器洁净。 5 EHS要求 N/A 6 程序 6.1 仪器安装 仪器与电脑连接完毕并连接电源以后,按仪器背面的按钮可以直接启动仪器,经过几分钟后的仪器自检后就可以开始用于检测。在连有电源的情况下,保持24小时开机,不要罩防尘罩以保持透气,隔1-2月关机重启一次。 6.2 SoftMax Pro软件操作基本步骤 6.2.1 打开软件 点击“SoftMax Pro 6.3”图标,打开SoftMax Pro 软件,出现"Plate Setup Helper"对话框。若无则点击图标。 6.2.2 连接仪器 点击‘Choose a diffecient instrument’,打开‘Instrument Connection’对话框,在“Availible Instruments”菜单中选择仪器连接线与电脑所接的串口号(COM)。 选择所购买的酶标仪型号SpectraMax i3或添加模块卡盒型号。最后点击“OK”键连接。 6.2.3 仪器检测参数设定 点击图标后出现“Settings”对话框,对话框最上方出现Read Mode(读板模式)和Read Type(读板类型)两个选项,读板模式有ABS(光吸收)、FL(荧光强度)、LUM(化学发光)和TRF(时间分辨荧光),读板类型有终点检测(Endpoint)、动力学(Kinetic)、单孔扫描(Well Scan)和光谱扫描(Spectrum)四种。使用者根据实验

多功能酶标仪基本操作规程

多功能酶标仪基本操作规程 一、可见与紫外光原始吸光值的直接测定方法 1、首先打开连接酶标仪的电插板上的全部开关。打开酶标仪主机背面电源线上端的开关。 2、再打开电脑开关。(注意,一定要先开仪器,后开电脑,以免仪器连接出现问题。) 3、在电脑主屏幕上选择[Magellan6]。 4、仪器自检后,酶标板托架自动伸出(注意仪器前部不要放置物品,以免档住托架的伸出)。将酶 标板按数字正确的方向(A1位于左上角)放在托架上。 5、点击仪器下部最右侧的[move plate in] 图标,酶标板将自动进入仪器中。(注意:千万不要用手 将酶标板推入仪器,造成仪器损坏)。 6、在屏幕上选Start measurement。点击绿色箭头。 7、在Select a File窗口左上角选Obtain Raw Date 然后点击绿色箭头。 8、在plate 栏中的plate definition 下拉条中,对板的类型进行选择。酶标的吸光度测定,一般情况 下选xxxxx xx Flat Transparent (x孔,平底,透明板)。(注意测定紫外吸收时要使用可以透过紫外光的透明板)如果板要加盖子,就要再选中Plate with cover。 9、在Measurements 栏内双击Absorbance ,出现Absorbance的对话框。 10、在Absorbance的对话框中: ⑴在Wavelength栏中Measurement项输入测定波长值;Reference项,在需要扣除背景波长时选中并 输入背景波长值。一般情况不选. ⑵在Multiple read per well栏中对于吸光值的测定可不选 ⑶在Read 栏中: Number of flashes 项一般选10;Settle time(使平静时间)项对于96或384孔 板一般选0;对于其他孔数的板可考虑输入适当的值;孔数越少的板,Settle time 设置时间要较长,以防止在测定过程中板移动距离大,对液面平稳的影响。 ⑷在Label栏中Name后输入你为此块板自定义的英文名;也可不设置。 11、在Part of plate 栏中,用鼠标左键拉框,选择要测定的样品孔(使待测定的样品孔变为黄色), (注意:待测孔只可横向或纵向连续选择,不可以被间断)。如果选择错误需要更改,不要做任何删除,只要再直接重新选择即可。点击本栏中的Detail 对所选的样品孔进行确认后,点击OK,(如果选孔有错误,选择Cancel 返回上页再重复以上操作。) 12、点击OK后,箭头变绿,点击绿色箭头,在Measurement 的workspace处输入(日、月、年- 自定义文件名wsp)再点击Start,仪器开始自动测定。 13、测定结束后,点击File 选择print,直接打印测定参数与结果,或在最上方Edit选择Copy to Excel, 然后打开下方出现的Excel表(显示为板式数据)并打印结果。 14、关机,退出当前界面,点击左下角Exit Megellan 回到主屏幕。关电脑,关仪器电源和插板电 源。 二、荧光值的直接测定方法 1、首先打开连接酶标仪的电插板上的全部开关。打开酶标仪主机背面电源线上端的开关。 2、再打开电脑开关。(注意,一定要先开仪器,后开电脑,以免仪器连接出现问题。) 3、在电脑主屏幕上选择[Magellan6]。 4、仪器自检后,酶标板托架自动伸出(注意仪器前部不要放置物品,以免档住托架的伸出)。将酶 标板按数字正确的方向(A1位于左上角)放在托架上。 5、点击仪器下部最右侧的[move plate in] 图标,酶标板将自动进入仪器中。(注意:千万不要用手 将酶标板推入仪器,造成仪器损坏)。 6、在屏幕上选Start measurement。点击绿色箭头。 7、在Select a File窗口左上角选Obtain Raw Date 然后点击绿色箭头。 8、在plate 栏中的plate definition 下拉条中,对板的类型进行选择。荧光酶标的测定,一般情况下 选xxxxx xx Flat black (x孔,平底,黑板。6孔板测定时没有黑板可选,可选择6孔,平底,透明板)。

博克门禁系统使用说明书

《门禁系统使用说明书》

陕西********科技有限公司 单位地址:**************************** 联系电话:**************************** 目录 ( 1.1)软件系统---------------------------------------------------------------------------------------1-135 第一章软件基本操作...................................................................................................................... - 5 - 2.1进入操作软件 (5) 2.4人事管理 (7) 2.4.1 企业信息.................................................................................................................................................................. - 7 - 2.4.2添加/编辑部门信息 ................................................................................................................................................ - 9 - 2.4.2.1添加部门 ............................................................................................................................................................... - 9 - 2.4.2.2修改部门 ............................................................................................................................................................ - 10 - 2.4.2.3 删除部门 ........................................................................................................................................................... - 11 -

酶标仪原理及结构-科邦实验室

酶标仪的原理及结构 酶标仪即酶联免疫检测仪,是酶联免疫吸附试验的专用仪器。可简单地分为半自动和全自动2大类,但其工作原理基本上都是一致的,其核心都是一个比色计,即用比色法来分析抗原或抗体的含量。 酶标法是什么 酶联免疫吸附试验方法简称酶标法,是标记技术中的一种,是从荧光抗体技术,同位素免疫技术发展而来的一种敏感,特异,快速并且能自动化的现代技术。 酶标法的基本原理是将抗原或抗体与酶用胶联剂结合为酶标抗原或抗体,此酶标抗原或抗体可与固相载体上或组织内相应抗原或抗体发生特异反应,并牢固地结合形成仍保持活性的免疫复合物。当加入相应底物时,底物被酶催化而呈现出相应反应颜色。颜色深浅与相应抗原或抗体含量成正比。 由于此技术是建立在抗原-抗体反应和酶的高效催化作用的基础上,因此,具有高度的灵敏性和特异性,是一种极富生命力的免疫学试验技术。 酶标仪的原理 酶标仪就是应用酶标法原理的仪器,酶标仪类似于一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同。

光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本.该单色光一部分被标本吸收,另一部分则透过标本照射到光电检测器上,光电检测器将这一待测标本不同而强弱不同的光信号转换成相应的电信号,电信号经前置放大,对数放大,模数转换等信号处理后送入微处理器进行数据处理和计算,Z后由显示器和打印机显示结果。 微处理机还通过控制电路控制机械驱动机构X方向和Y方向的运动来移动微孔板,从而实现自动进样检测过程。而另一些酶标仪则是采用手工移动微孔板进行检测,因此省去了X,Y方向的机械驱动机构和控制电路,从而使仪器更小巧,结构也更简单。 微孔板是一种经事先包理专用于放置待测样本的透明塑料板,板上有多排大小均匀一致的小孔,孔内都包埋着相应的抗原或抗体,微孔板上每个小孔可盛放零点几毫升的溶液。其常见规格有40孔板,55孔板,96孔板等多种,不同的仪器选用不同规格的孔板,对其可进行一孔一孔地检测或一排一排地检测。 酶标仪测定是在特定波长下,检测被测物的吸光值。随着检测方式的发展,拥有多种检测模式的单体台式酶标仪叫做多功能酶标仪,可检测吸光度(Abs)、荧光强度(FI)、时间分辨荧光(TRF)、荧光偏振(FP)、和化学发光(Lum)。 酶标仪从原理上可以分为光栅型酶标仪和滤光片型酶标仪。光栅型酶标仪可以截取光源波长范围内的任意波长,而滤光片型酶标仪则根据选配的滤光片,只能截取特定波长进行检测。 酶标仪的结构 酶标仪所用的单色光既可通过相干滤光片来获得,也可用分光光度计相同的单色器来得到。在使用滤光片作滤波装置时与普通比色计一样,滤光片即可放在微孔板的前面,也可放在微孔板的后面,其效果是相同的。光源灯发出的光经聚光镜,光栏后到达反射镜,经反射镜作90°反射后垂直通过比色溶液,然后再经滤光片送到光电管。 酶标仪可分为单通道和多通道2种类型,单通道又有自动和手动2种之分。自动型的仪器有X,Y方向的机械驱动机构,可将微孔板L的小孔一个个依次送入光束下面测试,手动型则靠手工移动微孔板来进行测量。

门禁系统使用说明书

-- - XX职业技术学院信息工程学院 门禁管理系统 操作说明书

制作人:X珍海 日期:2014年3月25日 目录 (请打开【帮助H】下的【使用说明书】,这样方便您了解本系统) 第1章软件的基本操作3 1.1 登录和进入操作软件3 1.2 设备参数设置4 1.3 部门和注册卡用户操作4 1.3.1 设置部门4 1.3.2 自动添加注册卡功能(自动发卡)5 1.4 基本操作7 1.4.1 权限管理8 1.4.2 校准系统时间11 1.5 常用工具12 1.5.1 修改登陆用户名和密码12 第2章考勤管理功能模块13 2.1 正常班考勤设置13 2.1.1 设置考勤基本规则13 2.1.2 设置节假日和周休日14 2.1.3 请假出差的设置15 2.2 考勤统计和生成报表17 2.2.1 生成考勤详细报表17 2.2.2 启用远程开门错误!未定义书签。

第1章软件的基本操作 1.1登录和进入操作软件 1.点击【开始】>【程序】>【专业智能门禁管理系统】>【专业智能门禁管理系统】或双击桌面钥匙图标的快捷方式,进入登录界面。 2.输入缺省的用户名:abc 与密码:123(注意:用户名用小写)。该用户名和密码可在软件里更改。 3.登录后显示主操作界面

入门指南。如果您没有经验,您可以在该向导的指引下完成基本的操作和设置。我们建议您熟悉后, 关闭操作入门指南,仔细阅读说明书,熟悉和掌握软件的操作。 “关闭入门指南”后,操作界面如下。 1.2设备参数设置 1.3部门和注册卡用户操作 1.3.1设置部门 点击【设置】>【部门】,进入部门界面。 点击【添加最高级部门】。

多功能酶标仪SpectraMax-i3的操作规程

多功能酶标仪SpectraMax-i3的操作规程编号 M-SOP-2-0083 No. 标准操作规程版本号 Standard Operating Procedure 01 Version 多功能酶标仪SpectraMax i3的标准操作规程 多功能酶标仪SpectraMax i3的标准操作规程 Standard Operation of SpectraMax i3 部门签名/日期 Department Signature/Date 起草人: XX, Xiaochuan X Prepared by QC 审核人: XX, Sijia XX Reviewed by QC 审核人: XX, Fulan X Reviewed by QA 批准人: XX, Boyan XX Approved by 质量负责人 颁发部门执行日期质量保证部-QA Issued by Effective Date 替换文件复审日期 Version 00 Replaced For Review Date 分发部门 QA,QC Distributed to 1 of 7 编号 M-SOP-2-0083 No. 标准操作规程版本号 Standard Operating Procedure 01 Version 多功能酶标仪SpectraMax i3的标准操作规程 1 目的 建立多功能酶标仪SpectraMax i3的标准操作程序,规范SpectraMax i3 多功能酶标仪 检测时的操作。 2 适用范围

本规程适用于所有对多功能酶标仪SpectraMax i3的操作 3 术语或定义 多功能酶标仪:指功能较强、精度较高的单体台式酶标仪,可检测吸光度(Abs)、荧 光强度(FL)、时间分辨荧光(TRF)、化学发光(Lum)等。 4 责任 4.1 仪器负责人负责多功能酶标仪的日常及定期维护,出现故障时负责联系厂家维修,保 证运行正常。 4.2 实验操作人员需严格按照本规程执行,保证仪器正常使用,每次用完后填写仪器使用 记录,且使用后及时清理台面,保持仪器洁净。 5 EHS要求 N/A 6 程序 6.1 仪器安装 仪器与电脑连接完毕并连接电源以后,按仪器背面的按钮可以直接启动仪器,经过几分钟后的仪器自检后就可以开始用于检测。在连有电源的情况下,保持24小时开机,不要罩防尘罩以保持透气,隔1-2月关机重启一次。 6.2 SoftMax Pro软件操作基本步骤 6.2.1 打开软件 点击“SoftMax Pro 6.3”图标,打开SoftMax Pro 软件,出现 "Plate Setup Helper"对话框。若无则点击图标。

门禁系统管理平台-详细设计说明书

门禁系统管理平台详细设计报告 2015年09月20日

目录 一、基本信息 .................................................................................................................. 错误!未定义书签。 二、市场分析 (4) 1.客户需求分析 (4) (1)国际国内市场需求量预测及客户咨询类似产品情况..... 错误!未定义书签。 (2)客户对该产品的功能、安全、使用环境要求等............. 错误!未定义书签。 2.市场现状分析 (4) 三、详细设计 (4) 1. 模块描述 (4) 2. 功能描述 (4) 3. 信息传输过程 (6) 4. 标准符合性分析 (6) 5. 验证(试制/试验/检测)确认方法、手段的分析 (8) 四、资源论证 (8) 1.人力资源需求分析 (8) 2.开发设备资源需求分析 (9) 3.项目开发成本预算 (9) 五、研发时间安排 (9) 六、项目风险评估 (10) 1.技术方面 (10) 2.人员方面 (10) 3.其它资源 (10) 七、评审结论 (11) 八、公司意见 (11)

一、市场分析 1.客户需求分析 1.2014年7月份由三大运营商出资成立了中国通信设施服务股份有限公司,同年9月份 变更名称为中国铁塔股份有限公司。铁塔公司成立后,2015年12月下旬,2000多亿存量铁塔资产基本完成交接。而从2015年1月1日起,三大运营商停止新建铁塔基站,交由中国铁塔进行建设。据统计,2015年1-11月,中国铁塔累计承接三家电信运营企业塔类建设需求53.2万座,已交付41.8万座。针对如此庞大的存量基站及新建基站。 铁塔公司总部急需对基站人员进出做到统一管理,有效管控。提高效率。因此所产生的市场需求量是很大的。 2.随着互联网及物联网技术的快速发展,原有传统门禁管理系统、单一功能的管理软件已 经无法管理众多不同品牌、不同通讯方式、不同厂家的IC/ID读卡设备,因此客户需要一种开放式、分布式的云管理平台,来管理整个基站门禁系统中的所有设备 2.市场现状分析 ●同行业中,各厂家的产品采用传统的门禁方案,既读卡器和控制器及电磁锁或电插锁对 现场的基站门进行管理。造价昂贵,安装复杂。。 ●目前大部分厂家的管理平台架构单一,系统兼容性差,各家的门禁管理平台只能兼容自 家的控制器。开放性不够。 ●目前很多厂商的平台都是针对某一个硬件厂商的设备来运行的,当项目中有多家设备时 平台的控制力明显不足 二、详细设计 1. 模块描述 铁塔基站门禁系统管理平台系统主要包括三部分:BS/CS客户端、云服务器和手机APP。 其中客户端的主要功能包括: 支持对多家基站锁具设备的识别、获取、登录 支持对不同用户进行权限划分。 支持对锁具根据区域进行分组。 支持多家基站锁具设备的设备配置 支持多家设备通过手机APP开锁、获取状态、日志查询。 支持多家设备的设备时间校准 支持设备更新,当设备更新时,可以方便的只更新涉及到的文件,而不需要重装整个系统 支持电子地图

多功能酶标仪常见配置及全参数

Infinite M200 PRO 1.一般参数: 支持的检测模式:光吸收、荧光顶部底部、时间分辨荧光(TRF)、连续发光、瞬时发光、双色发光、BRET、光吸收和荧光波长扫描 1.1 光源:UV高能闪烁氙灯,10^8次闪烁寿命,自带光强监测、校准,免维护无需预热 1.2 光栅杂光率:<10^-6 1.3 支持板型:6-384孔板,预设常用品牌型号;自动扫描并定义特殊规格板型,NanoQuant微量检测板,4位卧式比色杯,立式比色杯(选配) 1.4 孔内多点读数(光吸收/荧光顶底):6-384孔板,最多15×15个点(依板型模式可有不同),覆盖全孔,7种点布局 1.5 温度控制:环境温度+5℃至42℃(选配) 1.6 振荡:线性或圆形可选;振幅1-6mm,0.5mm步进;1-1000秒可调 1.7 多标记多模式检测:单个实验中可进行无限制的多波长、多模式检测(光吸收、荧光、发光、波长扫描) 1.8 最快读板速度:96孔板:20秒;384孔板:30秒 1.9 波长扫描速度(FI EX/EM):150秒;450-550nm,5nm步进,96孔板 1.10 认证:DLReady,Transcreener Red FI 2.光吸收模块 2.1 波长范围:230-1000nm,1nm连续可调 2.2 波长选择:双光栅 2.3 带宽:<5nm(λ≦315nm),<9nm(λ>315nm) 2.4 波长准确性:<±0.3nm(λ≦315nm),<±0.5nm(λ>315nm) 2.5 波长重复性:<±0.3nm(λ≦315nm),<±0.5nm(λ>315nm) 2.6 检测器:紫外硅光电二级管 2.7 检测范围:0-4 OD 2.8 检测分辨率:0.0001 OD 2.9 检测准确性:<0.5% @260nm 2.10 检测精确性:<0.2% @260nm 2.11 260/280nm精度:±0.07

智能门禁管理系统说明书

IC一体式/嵌入式门禁管理系统 使用说明书

目录 1.系统简介 (3) 2.功能特点 (3) 3、主要技术参数 (4) 4、系统组成 (4) 5、设备连接 (5) 6、门禁管理系统软件 (6) 6.1 软件的安装 (6) 6.2 人事管理子系统 (7) 6.3 一卡通管理系统 (9) 6.4 门禁管理子系统 (12) 7. 调试操作流程 (28) 8、注意事项 (28)

1.系统简介 在高科技发展的今天,以铁锁和钥匙为代表的传统房门管理方式已经不能满足要求,而集信息管理、计算机控制、Mifare 1 IC智能(射频)卡技术于一体的智能门禁管理系统引领我们走进新的科技生活。 Mifare 1 IC智能(射频)卡上具有先进的数据通信加密并双向验证密码系统,卡片制造时具有唯一的卡片系列号,保证每张卡片都不相同。每个扇区可有多种密码管理方式。卡片上的数据读写可超过10万次以上;数据保存期可达10年以上,且卡片抗静电保护能力达2KV以上。具有良好的安全性,保密性,耐用性。 IC卡嵌入式门禁管理系统以IC卡作为信息载体,利用控制系统对IC卡中的信息作出判断,并给电磁门锁发送控制信号以控制房门的开启。同时将读卡时间和所使用的IC卡的卡号等信息记录、存储在相应的数据库中,方便管理人员随时查询进出记录,为房门的安全管理工作提供了强有力的保证。 IC卡嵌入式门禁管理系统在发行IC卡的过程中对不同人员的进出权限进行限制,在使用卡开门时门禁控制机记录读卡信息,在管理计算机中具有查询、统计和输出报表功能,既方便授权人员的自由出入和管理,又杜绝了外来人员的随意进出,提高了安全防范能力。 IC卡嵌入式门禁管理系统,在线监控IC卡开门信息、门状态,给客户以直观的门锁管理信息。 IC卡嵌入式门禁(简称门禁读卡器,门禁控制机,控制器)是目前同行业产品中体积较小的门禁,可以嵌入到市场上几乎所有的楼宇门禁控制器中,解决了因为楼宇门禁控制器内部空间小所带来的麻烦,是楼宇门禁控制器的最佳配套产品;它绝不仅仅是简单的门锁工具,而是一种快捷方便、安全可靠、一劳永逸的多功能、高效率、高档次的管理系统。它能够让你实实在在享受高科技带来的诸多实惠和方便。 2.功能特点 2.1.IC卡嵌入式门禁具有的功能: 2.1.1使用MIFARE 1 IC卡代替钥匙,开门快捷,安全方便。 2.1.2经过授权,一张IC卡可以开启多个门(255个以内)。 2.1.3可以随时更改、取消有关人员的开门权限。 2.1.4读卡过程多重确认,密钥算法,IC卡不可复制,安全可靠。 2.1.5具有512条黑名单。

酶标仪工作原理及使用方法

酶标仪简介: 酶标仪即酶联免疫检测仪是酶联免疫吸附试验的专用仪器又称微孔板检测器。可简单地分为半自动和全自动2大类,但其工作原理基本上都是一致的,其核心都是一个比色计,即用比色法来进行分析。测定一般要求测试液的最终体积在250μL以下,用一般光电比色计无法完成测试,因此对酶标仪中的光电比色计有特殊要求。 酶标仪原理: 酶标仪实际上就是一台变相光电比色计或分光光度计,其基本工作原理与主要结构和光电比色计基本相同. 图示是一种单通道自动进样的酶标仪工作原理图.光源灯发出的光波经过滤光片或单色器变成一束单色光,进入塑料微孔极中的待测标本.该单色光一部分被标本吸收,另一部分则透过标本照射到光电检测器上,光电检测器将这一待测标本不同而强弱不同的光信号转换成相应的电信号.电信号经前置放大,对数放大,模数转换等信号处理后送入微处理器进行数据处理和计算,最后由显示器和打印机显示结果. 微处理机还通过控制电路控制机械驱动机构X方向和Y方向的运动来移动微孔板,从而实现自动进样检测过程.而另一些酶标仪则是采用手工移动微孔板进行检测,因此省去了X,Y方向的机械驱动机构和控制电路,从而使仪器更小巧,结构也更简单. 微孔板是一种经事先包理专用于放置待测样本的透明塑料板,板上有多排大小均匀一致的小孔,孔内都包埋着相应的抗原或抗体,微孔板上每个小孔可盛放零点几毫升的溶液. 光是电磁波,波长100nm~400nm称为紫外光,400nm~780nm之间的光可被人眼观察到,大于780nm称为红外光。人们之所以能够看到色彩,是因为光照射到物体上被物体反射回来。绿色植物之所以是绿色,是因为植物吸收的大部分为红橙光和蓝紫光,但对绿色不吸收,反射出来,所以植物呈现为绿色。酶标仪测定的原理是在特定波长下,检测被测物的吸光值。 随着检测方式的发展,拥有多种检测模式的单体台式酶标仪叫做多功能酶标仪,可检测吸光度(Abs)、荧光强度(FI)、时间分辨荧光(TRF)、荧光偏振(FP)、和化学发光(Lum)。 酶标仪从原理上可以分为光栅型酶标仪和滤光片型酶标仪。光栅型酶标仪可以截取光源波长范围内的任意波长,而滤光片型酶标仪则根据选配的滤光片,只能截取特定波长进行检测。 检测单位 光通过被检测物,前后的能量差异即是被检测物吸收掉的能量,特定波长下,同一种被检测物的浓度与被吸收的能量成定量关系。

门禁管理系统使用说明书

门禁管理系统使用说明书

乌石化汽车定量装车系统 门禁管理系统使用说明书 河北珠峰仪器仪表设备有限公司 2013.08.03

目录 一、系统组成 (5) 二、道闸 (5) 1.主要特点 (5) 2. 设备组成 (6) 3. 基本工作原理 (7) 4. 设备使用说明 (7) 三、车辆检测器 (8) 1.车辆检测器的安装 8 2.主要技术参数 8 3.车辆检测器的接线图 8 4.车辆检测器灵敏度设置 9 四、门禁控制器 (9) 五、读卡器 (10) 六、车牌识别 (11) 七、摄像机 (12) 八、门禁控制管理软件 (13) 九、常见问题及解决方法 (14)

一、系统组成 门禁管理系统由行人出入口读卡器、行人大门电磁锁、车辆出入口道闸、摄像机、白光灯、车牌识别仪、控制主机、数据存储服务器等组成。 门禁控制系统组成 二、道闸 车辆出入口道闸采用深圳捷顺生成的JSDZ0203数字式道闸,该道闸采用先进的直流伺服技术和全电路无触点控制技术,使整机运行更加平稳、可靠。而且采用了数字化电路自学习检测功能,有效地杜绝砸车现象,使系统运行更安全可靠。并配备了标准的外接电气接口,可配置车辆检测器以及上位机,实现系统的自动控制。可广泛适用于道路管理、道路收费及停车场管理等系统中。1.主要特点 1)外形美观大方,结构轻巧;部件标准化,可方便更换;箱体铝合金制作,防 水防锈。 2)集光、电、机械控制于一体,操作灵活、方便,使用安全、可靠。

3)系统具有极限位置自锁功能或人为抬杆报警功能(可根据要求设定)。 4)采用先进的直流伺服控制技术,确保系统动作更加准确、平稳。 5)全电路无触点控制,确保系统运行更加安全、可靠。 6)采用PWM调速实现了无极变速,可根据现场需要在速度段内任意调整。 7)按钮滚动菜单设置方式,方便快捷设置闸机运行参数,可根据现场需要进行 设置。 8)采用数字化电路的自学习功能,采集闸杆运行数据并进行计算来判断闸杆是 否碰到障碍物,若检测碰到障碍物,闸杆则会立即自动升起。 9)强、弱电智能控制系统,除具有一般电气控制功能外,既可使用三联按钮、 遥控装置进行手动控制,也可通过车辆检测器进行自动控制,而且系统对外配置标准485电气接口,可通过电脑对其进行远程控制与管理。 10)手动开闸记忆功能:在系统自动运行中,非正常人为开闸数据将被系统自动 记录下来备查询,有效防止人为作弊。 11)开闸次数记忆功能:在系统自动运行中,道闸将会记忆上位机发出的开闸指 令次数,闸杆会保持开状态直到车辆检测器感应车次与开闸指令次数等同时才进行关闸动作。 12)手摇自动升杆功能:在意外断电情况下可用手摇摇柄轻轻摇动使关到位的闸 杆偏离水平方向约30度,闸杆则会自行升起。 13)温度控制功能:闸机可自动检测工作环境温度,并启动温控装置进行温度调 整,保证设备在高低温环境下正常工作。 14)各运动部件均已调整到最佳运动和平衡状态,故本机性能稳定,运行平稳, 噪声小,使用寿命长。 2. 设备组成 JSDZ0203道闸主要由主机、闸杆插头、闸杆等组成,而主机则由机箱、机芯和电控系统等组成 ,见下图。

相关主题
文本预览
相关文档 最新文档