当前位置:文档之家› 八年级数学一次函数图象变换

八年级数学一次函数图象变换

八年级数学一次函数图象变换
八年级数学一次函数图象变换

一次函数图象变换与分段函数

1、下列各曲线中,反映了变量y 是x 的函数的是( )

2、若实数k ,b 满足kb >0,且b b =-则函数y =kx +b 的图象可能是( )

3、直线y =kx +1必经过点( ) A .(0,1)

B .(1,0)

C .(-1,0)

D .(0,-1)

4、直线y =2x +1与直线y =-3x -4的交点坐标为_______

5、在平面直角坐标系中,(8,a )在直线102

1+-=x y 的图像上,则a =__________ 6、直线y=2x+1与y 轴的交点坐标为 __________

知识点 函数的定义、性质 【知识梳理】

1、一次函数的函数系数与图象的关系

k 的符号 b 的符号 一次函数y =kx +b 的图象经过的象限 一次函数y =kx +b 的图象的示意图

性质

x

y

O x

y

O x

y

O O y

x D.

C.B.A.

2、k值与直线的位置关系

【例题精讲一】一次函数的图形变换

例1. 1、在平面直角坐标系中,A(﹣1,m),B(4,0)直线AB交y轴于点C(0,2),D为线段BC的中点,作直线OD,将直线OD向左水平移动n个单位后经过点A,则n=。

2、直线y=﹣2x+4关于x轴对称的直线的解析式是;关于y轴对称的直线的解析式是。

3、将直线y=3 2 x

﹣绕原点旋转90°后得到的直线的解析式是;直线l:y=48

x-与x轴交于点A,将直线l绕点A旋转90°后得到的直线的解析式是。

4、已知直线y=2x-4与直线l关于x=-1对称,求直线l 的解析式

【例题精讲二】一次函数交点问题

1、如图,函数x y =1和3

4

312+=x y 的图象相较于(-1,1),(2,2)两点,当21y y >时,x 的取值范围是 .

2、直线1y =kx +b 经过点(0,3),与直线2y =mx 交于点P ,P 点横坐标为-1,则不等式组:mx <kx +b <mx +3的解集为________________.

【课堂练习】

1、已知,如图直线y=kx+b 经过点(-2,1),则不等式kx+b>-

2

1

x 的解集为________。 (第1题)(第2题)

2、在平面直角坐标系中,直线y =kx +b 与直线y =mx +n 相交于点A (-1,3),则关于x 的不等式mx +n <kx +b 的解集为__________

【例题精讲二】分段函数

1、为加强公民的节水意识,合理利用水资源,某市对居民用水实行阶梯水价,居民家庭每月用水量划分为两个阶

第15题图

A P

O

y

x

y 2=mx

y 1=kx+b

梯,一、二级阶梯用水的单价之比等于1:1.5,如图折线表示实行阶梯水价后每月水费y元与用水量xm3之间的函数关系。某户5月份按照阶梯水价缴水费108元,其相应的用水量是()

A、27m3

B、28m3

C、29m3

D、30m3

2、甲、乙两人沿着同一路线登山,图中线段OC,折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x (分)之间的函数图象,请根据图像所提供的信息,解答问题:

(1) 求乙登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围

(2) 求出乙出发后多长时间追上甲?此时乙所走的路程是多少米?

3、如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省

A.2元 B.1元C.3元D.1.5元

1、甲乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(千米)与两车行驶的时间x(小时)之间的函数图象如图所示,则A、B两地之间的距离为______千米

2、甲乙二人跑步比赛,甲跑1550米时,乙跑1600米。再过50秒,甲追上乙,100秒时甲到达终点,150秒时乙到达终点。这次比赛全程是_________米。

1、一次相交于(﹣1,1),(2,2)两点。当y1>y2时,x的取值范围是。

2、把直线y=-2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式是

()

A.y=-2x-3 B.y=-2x-6 C.y=-2x+3 D.y=-2x+6

3、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组

ax y b

kx y

?

?

?

-+=

-=

的解是__________。

(第3题)

(第4

题)

4、如图,点B 、C 分别在两条直线y =2x 和y =kx 上,点A 、D 是x 轴上两点。已知四边形ABCD 是正方形,则k 的值为 。

5、若A (-2,b )、B (-3,c )是函数y =-x 的图象上的两点,则b 与c 的大小关系为( ) A .b <c

B .b >c

C .b =c

D .无法判断

6、一次函数y =kx +b 中y 随x 的增大而减小,b <0,这个函数图象不经过( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

7、若一次函数y=(m-3)x+5的函数值y 随x 的增大而增大,则m 的取值范围( ) A 、m >0 B 、m <0 C 、m >3 D 、m <3

8、直线y =2x -3关于y 轴对称的直线是_______________

9、将直线y =2x +2向左平移1个单位,得到的直线与坐标轴围成三角形的面积是_______________ 10、将直线y =-2x 向右平移2个单位,再向上平移1个单位,得到的直线解析式为( ) A .y =-2x -3

B .y =-2x +3

C .y =-2x +4

D .y =-2x +5

11、如图所示,函数y 1=|x -1|和 y 2=

2

1

x +1的图像相交于(0,1),(4,3)两点.y 1>y 2时,x 的取值范围( ) A .1<x <3 B .0<x <4 C .x <1或者x >3 D .x <0或者x > 4

(第11题)(第12题)

12、如图,一次函数y 1=-x +b 1和y 2=k 2x +b 2的图象交于(-1,2),则不等式组4>-x +b 1>k 2x +b 2的解集为( )

八年级数学辅导: 一次函数图象的几何变换

平移,对称,旋转 一次函数图象的几何变换 【教学目标】 1.熟练掌握一次函数图象经过平移后的函数表达式求解方法. 2.了解一次函数的图象经过简单的旋转、对称的等几何变换后的表达式. 3.培养学生的位置感和推理能力. 【重难点】 重点:求一次函数平移变换后的表达式. 难点:由坐标系中不同的函数图象求相关的几何问题(面积,边长). 【知识要点】 1.直线b kx y +=向左平移m 个单位得到直线 ,向右平移m 个单位得到直线 ,向上平移m 个单位得到直线 , 向下平移m 个单位得到直线 . 2.将直线b kx y +=①关于x 轴对称,得到直线 ; ②关于y 轴对称,得到直线 . ③关于原点对称,得到直线 . 3. 111b x k y +=和222b x k y +=,当,,2121b b k k ≠=两直线平行.当121-=?k k 时,两直线垂直. 【典型例题】 例1. (1)求函数3 6-= x y 向上平移4个单位后得到新函数的解析式. (2)直线121+-=x y 向 平移 个单位可得直线521--=x y 。

例2 已知函数25y x =-的图象与x 轴、y 轴分别交于A 、B 两点,把它向右平移2个单位后与x 轴、y 轴分别交于C 、D 两点,求C ,D 两点的坐标. 例3 已知在直角坐标系中,直线y =+x 轴和y 轴分别交于A 、B 两点,作AB 边关于x 轴、y 轴和坐标原点的对称直线,画出图象,并求这四条直线围成的四边形的面积。 例4 如图,已知直线AB 与y 轴、x 轴分别交于点A (0,4)和点B (2,0),将此直线向左平移与x 轴的负半轴和y 轴的负半轴分别交于点C 、点D ,使DB=DC ,求直线CD 的解析式。 例5 已知直线1l :21y x =-与2l :122 y x =-+,将1l 向左平移3个单位得3l ,将2l 向下平移

(完整版)一次函数图象的平移及解析式的变化规律

一次函数图象的平移及解析式的变化规律 我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律: 一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律: (1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y . (2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y . 注意: (1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±. (2)上面的规律如下页图(51)所示.

高中数学常见函数图像

高中数学常见函数图像1. 2.对数函数:

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k π π=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ??++???? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

一次函数与几何图形综合专题

一次函数与几何图形综合专题思想方法小结: (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结: (1)常数k,b对直线y=kx+b(k≠0)位置的影响. ①当b>0时,直线与y轴的正半轴相交; 当b=0时,直线经过原点; 当b﹤0时,直线与y轴的负半轴相交. b>0时,直线与x轴正半轴相交; ②当k,b异号时,即- k b=0时,直线经过原点; 当b=0时,即- k b﹤0时,直线与x轴负半轴相交. 当k,b同号时,即- k ③当k>O,b>O时,图象经过第一、二、三象限; 当k>0,b=0时,图象经过第一、三象限; 当b>O,b<O时,图象经过第一、三、四象限; 当k﹤O,b>0时,图象经过第一、二、四象限; 当k﹤O,b=0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0) 当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 121b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③?? ?≠=2 121,b b k k ?y 1与y 2平行; ④???==2 121,b b k k ?y 1与y 2重合. 例题精讲: 1、直线y=-2x+2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC=OB (1) 求AC (2) 在 OA 的延长线上任取一点P,作PQ ⊥BP,交直线AC 于Q,试探究BP 与PQ 的数量关系,并证明你的结论。 (3) 在(2)的前提下,作 PM ⊥AC 于M,BP 交AC 于N,下面两个结论:① x

(word完整版)高中数学函数图象高考题.doc

B 1 .函数 y = a | x | (a > 1)的图象是 ( y y o x o A B B ( ) y o 1 x -1 o 函数图象 ) y 1 1 x o x C y y x x o 1 y 1 o x D y -1 o x A B C B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是( ) y A4.已知 y=f(x) 与 y=g(x) 的图象如图所示 yf ( x ) x O 则函数 F(x)=f(x) ·g(x) 的图象可以是 (A) y y y O x O x O x A xa x B C B 5.函数 y (a 1) 的图像大致形状是 ( ) | x | y y y O f ( x) 2x x O 1 O x ( D 6.已知函数 x x x 1 ,则 f x ( 1- x )的图象是 log 1 2 y y y A B C 2 。 。 1 。 - 1 D y y g( x) O x y O x D y O ) x y D 2

O x

A B C D D 7.函数 y x cosx 的部分图象是 ( ) A 8.若函数 f(x) =x 2 +bx+c 的图象的顶点在第四象限,则函数 f /(x)的图象是 ( ) y y y y o x o x o x o x A B C D A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意 a 1 (0,1) ,由关系式 a n 1 f (a n ) 得到的数列 { a n } 满足 a n 1 a n (n N * ) ,则该函数的图象是 ( ) A B C D C10.函数 y=kx+k 与 y= k 在同一坐标系是的大致图象是( ) x y y y y O x O x O x O x A 11.设函数 f ( x ) =1- 1 x 2 (- 1≤ x ≤0)的图像是( ) A B C D

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

一次函数图象的变换

一次函数图象的变换——平移求一次函数图像平移后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住点的坐标变化解决问题。 知识点:“已知一个点的坐标和直线的斜率 k,我们就可以写出这条直线的解析式”。我们知道:y =kx+b经过点(0,b),而(0,b)向上平移m 个单位得到点(0,b+m),向下平移m个单位得到点(0,b-m),向左平移m个单位得到点(0-m,b),向右平移m个单位得到点(0+m,b),直线y =kx+b平移后斜率不变仍然是k,设出平移后的解析式为y =kx+h,把平移后得到的点的坐标带入这个解析式求出h,就可以求出平移后直线的解析式。下面我们通过例题的讲解来反馈知识的应用: 例1:把直线y=2x-1向右平移1个单位,求平移后直线的解析式。 分析:y=2x-1经过点(0,-1),向右平移1个单位得到(1,-1)。平移后斜率不变,即k=2,所以可以设出平移后的解析式为y =2x+h,再将点(1,-1)代入求出解析式中的h,就可以求出平移后直线的解析式。 解:设平移后的直线解析式为y=2x+h 点(0,-1)在y=2x-1上,向右平移1个单位得到(1,-1), 将点(1,-1)代入y=2x+h中得: -1=2×1+h h=-3 所以平移后直线的解析式为y=2x-3 例2:把直线y=2x-1向上平移3个单位,再向右平移1个单位,求平移后直线的解析式。 分析:点(0,-1)在直线y=2x-1上,当直线向上平移3个单位,点变为(0,-1+3),即为(0 , 2 );再向右平移1个单位后,点(0,2)变为点(0+1,2),即点变为(1 , 2 )。设出平移后的解析式为y =kx+h,根据斜率k=2不变,以及点(1 , 2 )就可以求出h,从而就可以求出平移后直线的解析式。 解:设平移后的直线解析式为y=2x+h.

高一数学三角函数的图象和性质经典例题

解:在单位圆中,作出锐角α在正弦线MP,如图2-9所示 在△MPO中,MP+OM>OP=1即MP+OM>1 ∴sinα+cosα>1 于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分

k∈Z} 【说明】学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期. 【例3】求下列函数的定义域: 解:(1)为使函数有意义,需满足2sin2x+cosx-1≥0

由单位圆,如图2-12所示 k∈Z} 【说明】求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成. (4)为使函数有意义,需满足: 取k=0和-1时,得交集为-4<x≤-π或0≤x≤π ∴函数的定义域为(-4,-π]∪[0,π]

【说明】求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围. 【例4】求下列函数的值域: ∴此函数的值域为{y|0≤y<1} ∵1+sinx+cosx≠0 ∴t≠-1

【说明】求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性. 【例5】判断下列函数的奇偶性: 【分析】先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性. ∵f(1-x)=-sin(-2x)=sin2x=-f(x) (2)函数的定义域为R,且 f(-x)=sin[cos(-x))=sin(cosx)=f(x) ∴函数f(x)=sin(cosx)是偶函数. (3)因1+sinx≠0,∴sinx≠-1,函数的定义域为{x|x∈R且x≠2k

17一次函数-一次函数的图像与几何变换

一次函数 一次函数 图像性质 【培优练习】 1. 在同一直角坐标系中,对于函数:①y=﹣x ﹣1,①y=x+1,①y=﹣x+1,①y=﹣2(x+1)的图象,下列说法正确的是( ) A . 通过点(﹣1,0)的是①和① B . 交点在y 轴上的是①和① C . 相互平行的是①和① D . 关于x 轴对称的是①和① 2. 如果点P(a ,b)关于x 轴的对称点p’在第三象限,那么直线y=ax+b 的图像不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 一次函数y=ax+b 在直角坐标系中的图象如图所示,则化简|a+b|﹣|a ﹣b|的结果是( ) A . 2a B . ﹣2a C . 2b D . ﹣2b 4. 函数y=kx+|k| (k≠0)在直角坐标系中的图象可能是( ) A . B . C . D .

5. 作函数y 1=﹣x+4,y 2=3x ﹣4的图象如图,若y 1>y 2成立,则x 的取值范围为( ) A . x≤2 B . x <2 C . x >2 D . x≥2 6. 一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;①a >0;①当x >2时,y 2>y 1,其 中正确的个数是( ) A .0 B .1 C .2 D .3 7. 下列图象中,不可能是关于x 的一次函数y=mx ﹣(m ﹣3)的图象的是( ) A . B . C . D . 8. 设直线kx+(k+1)y ﹣1=0与坐标轴所构成的直角三角形的面积为S k ,则S 1+S 2+…+S 2008= .

高中数学常见函数图像

高中数学常见函数图像 1.指数函数: 定义 函数 (0x y a a =>且1)a ≠叫做指数函数 图象 1a > 01a << 定义域 R 值域 (0,)+∞ 过定点 图象过定点(0,1),即当0x =时,1y =. 奇偶性 非奇非偶 单调性 在R 上是增函数 在R 上是减函数 2.对数函数: 定义 函数 log (0a y x a =>且1)a ≠叫做对数函数 图象 1a > 01a << 定义域 (0,)+∞ 值域 R 过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶 单调性 在(0,)+∞上是增函数 在(0,)+∞上是减函数 x a y =x y (0,1) O 1 y =x a y =x y (0,1) O 1 y =x y O (1,0) 1 x =log a y x =x y O (1,0) 1 x =log a y x =

3.幂函数: 定义形如αx y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数. 图像 性质过定点:所有的幂函数在(0,) +∞都有定义,并且图象都通过点(1,1).单调性:如果0 α>,则幂函数的图象过原点,并且在[0,) +∞上为增函数.如果0 α<,则幂函数的图象在(0,) +∞上为减函数,在第一象限内,图象无限接近x轴与y轴.

4. 函数 sin y x = cos y x = tan y x = 图象 定义域 R R ,2x x k k ππ??≠+∈Z ???? 值域 []1,1- []1,1- R 最值 当 22 x k π π=+ () k ∈Z 时, max 1y =; 当22 x k π π=- ()k ∈Z 时,min 1y =-. 当()2x k k π =∈Z 时, max 1y =; 当2x k ππ=+ ()k ∈Z 时,min 1y =-. 既无最大值也无最小值 周期性 2π 2π π 奇偶性 奇函数 偶函数 奇函数 单调性 在 2,222k k ππππ? ?-+???? ()k ∈Z 上是增函数;在 32,222k k π πππ? ?++??? ? ()k ∈Z 上是减函数. 在[]() 2,2k k k πππ-∈Z 上 是 增 函 数 ; 在 []2,2k k πππ+ ()k ∈Z 上是减函数. 在,2 2k k π ππ π? ? - + ?? ? ()k ∈Z 上是增函数. 对称性 对称中心 ()(),0k k π∈Z 对称轴 ()2 x k k π π=+ ∈Z 对称中心 (),02k k ππ??+∈Z ?? ? 对称轴()x k k π =∈Z 对称中心(),02k k π?? ∈Z ??? 无对称轴

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1 x y -= (2)x y )21(-= (3)x y 2 log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

高一数学函数图象练习题(精编)

1、已知01,1a b <<<-,则函数 x y a b =+的图像必定不经过………………………( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、函数 (0,1)x y a a a a =->≠的图象可能是( ) 3、设1a >,函数x y a =的图像形状大致是( ) 4、将指数函数()x f 的图象向右平移一个单位,得到如图的()x g 的图象, 则()=x f ( ) A B C D

A. x ??? ??21 B. x ??? ??31 C. x 2 D. x 3 5、下列区间中,函数f(x)=|ln(2-x)|在其上为增函数的是( ) A .(-∞,1] B .[-1,4/3] C .[0,3/2) D .[1,2] 6、已知函数()log a f x x =(0a >且1a ≠).(Ⅰ)若函数()f x 在[23], 上的最大值与最 小值的和为2,(1)求a 的值;(2)将函数()f x 图象上所有的点向左平移2个单位长度,再向下平移1个单位长度,所得函数图象不经过第二象限,求a 的取值范围. 7、把函数()(0,1)x f x a a a =>≠的图象1C 向左平移一个单位,再把所得图象上每一个点的纵坐标扩大为原来的2倍,而横坐标不变,得到图象2C ,此时图象1C 恰与2C 重合, 则 a 为()

A .4 B .2 C .1 2 D .14 8、已知函数31()()log 5x f x x =-,若0x 是函数()y f x =的零点,且100x x <<, 则1()f x ( A ) A .恒为正值 B .等于0 C .恒为负值 D .不大于0 9、关于x 的方程0|34|2=-+-a x x 有三个不相等的实数根,则实数a 的 值是_________________。 10、已知关于x 的方程 012=-+-a x x 有四个不等根,则实数a 的取 值范围是________ 11、若存在负实数使得方程 11 2-=-x a x 成立,则实数a 的取值范围是 ( ) A .),2(+∞ B. ),0(+∞ C. )2,0( D. )1,0(

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

高一数学-三角函数的图像和性质练习题(简单)

高一数学-三角函数的图像和性质练习题(简 单) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

三角函数的图像和性质练习题 1.若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B .2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2 π+2k π(k ∈Z ) 2.使cosx= m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 3.函数y=3cos (52 x - 6π)的最小正周期是( ) A .5π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( ) A .-1 B .21 C .-21 D .-5 5.下列函数中,同时满足①在(0, 2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x D .y=|sinx| 6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6 7.函数y=sin(π4 -2x)的单调增区间是( ) A. [kπ- 3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8 ] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8 ] (k∈Z) 8.函数 y=15 sin2x 图象的一条对称轴是( ) A.x= - π2 B. x= - π4 C. x = π8 D. x= - 5π4 9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________. 10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____. 11.关于函数f(x)=4sin(2x+π3 ),(x∈R),有下列命题:

一次函数图象的变换对称.doc

一次函数图象的变换——对称求一次函数图像关于某条直线对称后的解析式是一类重要题型,同学们在做时经常做错,下面我介绍一种简便的方法:抓住对称点的坐标解决问题。 知识点: 1、与直线y=kx+b关于x轴对称的直线l,每个点与它的对应点都关于x轴对称,横坐标不变纵坐标互为相反数。设l上任一点的坐标为(x,y),则(x, -y)应当在直线y=kx+b上,于是有-y=kx+b,即l:y=-kx-b。 2、与直线y=kx+b关于y轴对称的直线l,每个点与它的对应点都关于y轴对称,纵坐标不变横坐标互为相反数。设l上任一点的坐标为(x,y),则(-x, y)应当在直线y=kx+b上,于是有y=-kx+b,即l:y=-kx+b。下面我们通过例题的讲解来反馈知识的应用: 例:已知直线y=2x+6.分别求与直线y=2x+6关于x轴,y轴和直线x=5对称的直线l的解析式。 分析:关于x轴对称时,横坐标不变纵坐标互为相反数; 关于y轴对称时,纵坐标不变横坐标互为相反数; 关于某条直线(垂直坐标轴)对称时,则相关点 解:1、关于x轴对称 设点(x , y )在直线l上,则点(x , -y )在直线y=2x+6上。 即:-y=2x+6 y=-2x-6 所以关于x轴对称的直线l的解析式为:y=-2x-6. 关于直线对称。 2、关于y轴对称 设点(x,y)在直线l上,则点(-x,y)在直线y=2x+6上。 即:y=2(-x) +6 y=-2x+6 所以关于y轴对称的直线l的解析式为:y=-2x+6.

3、关于直线x=5对称(作图) 由图可知:AB=BC则C点横坐标:-x+5+5=-x+10 所以点C (-x+10, y) 设点(x,y)在直线l上, 则点(-x+10, y)在直线y=2x+6上。 即:y=2(-x+10)+6 y=-2x+26 所以关于直线x=5对称的直线l的解析式为:y=-2x+26. 总结:根据对称求直线的解析式关键在找对称的坐标点。 关于x轴对称,横坐标不变纵坐标互为相反数; 关于y轴对称,纵坐标不变横坐标互为相反数; 关于某条直线(垂直对称轴)对称,可见例题 中分析的方法去求对称点。 练习:1、和直线y=5x-3关于y轴对称的直线解析式为,和直线y=-x-2关于x轴对称的直线解析式为。 2、已知直线y=kx+b与直线y= -2x+8关于y轴对称, 求k、b的值。 答案:1、y=-5x-3;y=x+2 分析:设点(x,y)在直线上,则点(-x,y)在关于y轴对称的直线y=5x-3上,所以直线为y=-5x-3;设点(x,y)在直线上,则点(x,-y)在

高中函数图像大全

指数函数 概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质: 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶 性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a >1时,图像在R 上是增函数;当0<a <1时,图像在R 上是减函数。 4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法: 1. 当底数相同时,则利用指数函数的单调性进行比较; 2. 当底数中含有字母时要注意分类讨论; 3. 当底数不同,指数也不同时,则需要引入中间量进行比较; 4. 对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。 对数函数 1.对数函数的概念 由于指数函数y=a x 在定义域(-∞,+∞)上是单调函数,所以它存在反函数, 我们把指数函数y=a x (a >0,a ≠1)的反函数称为对数函数,并记为y=log a x(a >0,a ≠1). 因为指数函数y=a x 的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x 的定义域为(0,+∞),值域为(-∞,+∞). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x . 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数 y=log 2x ,y=log 10x ,y=log 10x,y=log 2 1x,y=log 10 1x 的草图

函数图象的三种变换(可编辑修改word版)

函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下 3 种: 一、平移变换 例1 设f(x)=x2,在同一坐标系中画出: (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1 和y=f(x)-1 的图象,并观察三个函数图象的关 系.解(1)如图 (2)如图 点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移 1 个单位长度得到; y=f(x-1)的图象可由y=f(x)的图象向右平移1 个单位长度得到; y=f(x)+1 的图象可由y=f(x)的图象向上平移1 个单位长度得到; y=f(x)-1 的图象可由y=f(x)的图象向下平移1 个单位长度得到. 小结: 二、对称变换 例2 设f(x)=x+1,在同一坐标系中画出y=f(x)和y=f(-x)的图象,并观察两个函数图象的关系. 解画出y=f(x)=x+1 与y=f(-x)=-x+1 的图象如图所示. 由图象可得函数y=x+1 与y=-x+1 的图象关于y 轴对 称.点评函数y=f(x)的图象与y=f(-x)的图象关于y 轴 对称;函数y=f(x)的图象与y=-f(x)的图象关于x 轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例 3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数

将x 轴下方图象翻折上去 并作其关于y 轴对称的图象 图象的关系. 解 y =f (x )的图象如图 1 所示,y =|f (x )|的图象如图 2 所示. 点评 要得到 y =|f (x )|的图象,把 y =f (x )的图象中 x 轴下方图象翻折到 x 轴上方,其余部分不变. 例 4 设 f (x )=x +1,在不同的坐标系中画出 y =f (x )和 y =f (|x |)的图象,并观察两个函数图象的关系. 解 如下图所示. 点评 要得到 y =f (|x |)的图象,先把 y =f (x )图象在 y 轴左方的部分去掉,然后把 y 轴右边的对称图象补到左方即可. 小结: y = f (x ) ??保?留x ?轴上?方图?象?→ y =|f (x )|. y = f (x ) ???保留?y 轴右?侧?图象??→ y =f (|x |). 如图: 四 函数图象自身的对称性 1. 函数 y = f (x ) 的图象关于直 x = a + b 对称? f (a + x ) = f (b - x ) ? f (a + b - x ) = f (x ) 2 2. 函数 y = f (x ) 的图象关于点(a , b ) 对称? 2b - f (x ) = f (2a - x ) ? f (x ) = 2b - f (2a - x ) ? f (a + x ) + f (a - x ) = 2b 3.若 f (x ) = - f (-x ) ,则 f (x ) 的图象关于原点对称,若 f (x ) = f (-x ) ,则 f (x ) 的图象 关于 y 轴对称。 基础训练 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)当 x ∈(0,+∞)时,函数 y =|f (x )|与 y =f (|x |)的图象相同. ( × ) y y=f(|x|) a o b c x y y=|f(x)| a o b c x y y=f(x) a o b c x

相关主题
文本预览
相关文档 最新文档