当前位置:文档之家› 智能优化算法笔试考试试题

智能优化算法笔试考试试题

智能优化算法笔试考试试题
智能优化算法笔试考试试题

ll一、写出遗传算法中的两种交叉运算方法,并分别举例说明。

解:双亲双子法(两父代交叉位之后的全部基因互换)、变化交叉法(从不相同的基因开始选取交叉位,之后的方法同双亲双子法)、多交叉位法(间隔交换)、双亲单子法(2选1)、显性遗传法(按位或)、单亲遗传法(2-opt)等,例子见课本175-179。

二、什么是P问题,什么是NP问题?智能优化算法主要是针对什么问题而提出的?

解:(1)P问题

(2)NP问题

(3)NP-C问题和NP-Hard问题

(4)智能优化算法主要是针对组合优化问题而提出的。

三、描述组合优化问题中的一个典型例子,并建立其数学模型。

解:(1)旅行商问题(Traveling Salesman Problem,TSP)

(2)背包问题

(3)并行机排序问题

四、描述模拟退火算法中的接收准则。

解:在一给定温度下,由一个状态变到另一个状态,每一个状态到达的次数服从一个概率分布,即基于Metropolis 接受准则的过程,该过程达到平衡时停止。在状态s i 时,产生的状态s j 被接受的概率为:

1,

()()()exp(),()()i j ij ij

i j if f s f s A t f if f s f s t ≥??

=??-

解:

方法一:

六、描述Hopfiled 人工神经网络的函数逼近一连续函数的方法。

解:

Step 1. 构造函数逼近的能量函数,使得能量函数有好的稳定性,如Err(w);

Step 2. 由能量函数Err(w),根据

()

i

i

dz Err

dt y

?

-=

?

w

求解出动力系统方程

Step 3. 用数值计算的方法求解动力系统方程的平衡点,用定理判断平衡点是否为稳定点或渐近稳定点,网络达到稳定状态即达到极小值。

七、用遗传算法解决实数编码求连续函数优化问题,写出一种变异的运算方法。解:

再用单点变异法或多点变异法即可完成实数码的变异方法。(随机选一个或几个变异位取反)

八、为什么学“智能优化算法”?学习之后有什么感想?对本课程考核方法有什么建议。

答:最优化问题使人们在工程实践中,科学研究和经济管理等诸多领域中经常遇到的问题。

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

《最优化方法》复习题

《最优化方法》复习题 一、 简述题 1、怎样判断一个函数是否为凸函数. (例如: 判断函数212 2 212151022)(x x x x x x x f +-++=是否为凸函数) 2、写出几种迭代的收敛条件. 3、熟练掌握利用单纯形表求解线性规划问题的方法(包括大M 法及二阶段法). 见书本61页(利用单纯形表求解); 69页例题 (利用大M 法求解、二阶段法求解); 4、简述牛顿法和拟牛顿法的优缺点. 简述共轭梯度法的基本思想. 写出Goldstein 、Wolfe 非精确一维线性搜索的公式。 5、叙述常用优化算法的迭代公式. (1)0.618法的迭代公式:(1)(), ().k k k k k k k k a b a a b a λτμτ=+--??=+-? (2)Fibonacci 法的迭代公式:111(),(1,2,,1)() n k k k k k n k n k k k k k n k F a b a F k n F a b a F λμ---+--+? =+-?? =-? ?=+-?? L . (3)Newton 一维搜索法的迭代公式: 1 1k k k k x x G g -+=-. (4)推导最速下降法用于问题1min ()2 T T f x x Gx b x c = ++的迭代公式: 1()T k k k k k T k k k g g x x f x g G gx +=-? (5)Newton 法的迭代公式:211[()]()k k k k x x f x f x -+=-??. (6)共轭方向法用于问题1min ()2 T T f x x Qx b x c = ++的迭代公式: 1()T k k k k k T k k f x d x x d d Qd +?=-. 二、计算题 双折线法练习题 课本135页 例3.9.1 FR 共轭梯度法例题:课本150页 例4.3.5 二次规划有效集:课本213页例6.3.2,

智能优化算法程序代码集锦

人工蚂蚁算法%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%% function [x,y, minvalue] = AA(func) % Example [x, y,minvalue] = AA('Foxhole') clc; tic; subplot(2,2,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% plot 1 draw(func); title([func, ' Function']); %初始化各参数 Ant=100;%蚂蚁规模 ECHO=200;%迭代次数 step=0.01*rand(1);%局部搜索时的步长 temp=[0,0]; %各子区间长度 start1=-100; end1=100; start2=-100; end2=100; Len1=(end1-start1)/Ant; Len2=(end2-start2)/Ant; %P = 0.2; %初始化蚂蚁位置 for i=1:Ant X(i,1)=(start1+(end1-start1)*rand(1)); X(i,2)=(start2+(end2-start2)*rand(1)); %func=AA_Foxhole_Func(X(i,1),X(i,2)); val=feval(func,[X(i,1),X(i,2)]); T0(i)=exp(-val);%初始信息素,随函数值大,信息素浓度小,反之亦 然 %%%%%***************************************** **************************** end; %至此初始化完成 for Echo=1:ECHO %开始寻优 %P0函数定义,P0为全局转移选择因子 a1=0.9; b1=(1/ECHO)*2*log(1/2); f1=a1*exp(b1*Echo); a2=0.225; b2=(1/ECHO)*2*log(2); f2=a2*exp(b2*Echo); if Echo<=(ECHO/2) P0=f1; else P0=f2; end; %P函数定义,P为信息素蒸发系数 a3=0.1; b3=(1/ECHO).*log(9); P=a3*exp(b3*Echo); lamda=0.10+(0.14-0.1)*rand(1);%全局转移步长参数Wmax=1.0+(1.4-1.0)*rand(1);%步长更新参数上限 Wmin=0.2+(0.8-0.2)*rand(1);%步长更新参数下限 %寻找初始最优值 T_Best=T0(1); for j=1:Ant if T0(j)>=T_Best T_Best=T0(j); BestIndex=j; end; end; W=Wmax-(Wmax-Wmin)*(Echo/ECHO); %局部搜索步长更新参数 for j_g=1:Ant %全局转移概率求取,当该蚂蚁随在位置不是bestindex时 if j_g~=BestIndex r=T0(BestIndex)-T0(j_g); Prob(j_g)=exp(r)/exp(T0(BestIndex)); else%当j_g=BestIndex的时候进行局部搜索 if rand(1)<0.5 temp(1,1)=X(BestIndex,1)+W*step; temp(1,2)=X(BestIndex,2)+W*step; else temp(1,1)=X(BestIndex,1)-W*step; temp(1,2)=X(BestIndex,2)-W*step; end; Prob(j_g)=0;%bestindex的蚂蚁不进行全局转移 end; X1_T=temp(1,1); X2_T=temp(1,2); X1_B=X(BestIndex,1); X2_B=X(BestIndex,2); %func1 = AA_Foxhole_Func(X1_T,X2_T); %%%%%%%%%%%********* ****************************************** %F1_T=func1; F1_T=feval(func,[X(i,1),X(i,2)]); F1_B=feval(func,[X1_B,X2_B]); %F1_T=(X1_T-1).^2+(X2_T-2.2).^2+1; %func2 = AA_Foxhole_Func(X1_B,X2_B); %%%%%%%%%%%%%******** ******************************************* %F1_B=func2; %F1_B=(X1_B-1).^2+(X2_B-2.2).^2+1; if exp(-F1_T)>exp(-F1_B) X(BestIndex,1)=temp(1,1); X(BestIndex,2)=temp(1,2); end; end; for j_g_tr=1:Ant if Prob(j_g_tr)

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

基于人工智能的路径查找优化算法【精品毕业设计】(完整版)

毕业设计[论文] 题目:基于人工智能的路径查找优化算法 学生姓名: Weston 学号:090171021XXX 学部(系):信息科学与技术学部 专业年级:计算机应用技术 指导教师:XXX 职称或学位: XX 2012 年 5 月 18 日

目录 摘要............................................................... II ABSTRACT ........................................................... III KEY WORDS .......................................................... III 1.前言 (1) 2.概述 (2) 2.1遗传算法优缺点 (2) 2.2遗传算法应用领域 (3) 2.3遗传算法基本流程 (3) 3.传统遗传算法解决旅行商问题 (5) 3.1常用概念 (5) 3.2基本过程 (5) 3.3关键步骤 (5) 3.4总结 (8) 4.改进后的遗传算法 (9) 4.1编码、设计遗传算子 (9) 4.2种群初始化 (9) 4.3评价 (10) 4.4选择复制 (10) 4.5交叉 (11) 4.6变异 (12) 4.7终结 (13) 5.系统设计与实现 (14) 5.1系统设计 (14) 5.2系统实现 (17) 5.3结果分析 (20) 6.总结 (21) 参考文献 (22) 致谢 (23)

基于人工智能的路径查找优化算法 摘要 旅行商是一个古老且有趣的问题它可以描述为:给定n个城市以及它们之间的距离(城市i到城市j的距离),求解从其中一个城市出发对每个城市访问,且仅访问一d ij 次,最后回到出发的城市,应当选取怎样的路线才能使其访问完所有的城市后回到初始的城市且走过的路程最短。 旅行商问题已被证明是属优化组合领域的NP难题,而且在现实中的许多问题都可以转化为旅行商问题来加以解决。解决旅行商问题最一般的方法就是枚举出所有可能的路线然后对每一条进行评估最后选取出路程最短的一条即为所求解。 解决旅行商问题的各种优化算法都是通过牺牲解的精确性来换取较少的耗时,其他一些启发式的搜索算法则依赖于特定的问题域,缺乏通用性,相比较而言遗传算法是一种通用性很好的全局搜索算法。 遗传算法GA( genetic algorithm) 最早由美国密歇根大学的John Holland 提出。具有自组织、自适应、自学习和群体进化功能有很强的解决问题的能,在许多领域都得到了应用。 遗传算法以其广泛的适应性渗透到研究与工程的各个领域,已有专门的遗传算法国际会议,每两年召开一次,如今已开了数次,发表了数千篇论文,对其基本的理论、方法和技巧做了充分的研究。今天,遗传算法的研究已成为国际学术界跨学科的热门话题之一。 关键词:人工智能;遗传算法;TSP;旅行商问题

人工智能课程大作业

作业题目 摘要:机器博弈是人工智能的一个重要研究分支,本文通过设计一个五子棋智能博奕程序,采用传统的博弈树算法,利用剪枝和极大极小树搜索最佳位置,从而实现人机智能博弈。并对现有算法存在的问题进行探究改进,最后给出展示,结果表明效果比较理想。 关键词:人工智能;五子棋;博弈 本组成员: 本人分工:α-β剪枝实现 1 引言 人工智能[1]是一门综合新型的新兴边缘科学,与生物工程、空间技术并列为三大尖端技术,而机器博弈却是其一个重要的研究分支。它研究如何利用计算机去实现那些过去只能靠人的智力去完成的工作,博弈为人工智能提供了一个很好的应用场所。 博弈过程可以采用与或树进行知识表达,这种表达形式称为博弈树。α—β剪枝技术是博弈树搜索中最常采用的策略。 2 算法原理与系统设计 根据五子棋游戏规则,此次五子棋游戏我们采用基于极大极小值分析法的α—β剪枝算法来实现计算机走棋。α—β剪枝技术是博弈树搜索中最常采用的策略,α—β剪枝搜索由极大极小值分析法演变而来[2]。 极大极小分析法其基本思想或算法是: (1) 设博弈的双方中一方为MAX,另一方为MIN。然后为其中的一方(例如MAX)寻找一个最优行动方案。 (2) 为了找到当前的最优行动方案,需要对各个可能的方案所产生的后果进行比较,具体地说,就是要考虑每一方案实施后对方可能采取的所有行动,并计算可能的得分。 (3) 为计算得分,需要根据问题的特性信息定义一个估价函数,用来估算当前博弈树端节点的得分。此时估算出来的得分称为静态估值。 (4) 当端节点的估值计算出来后,再推算出父节点的得分,推算的方法是:对“或”节点,选其子节点中一个最大的得分作为父节点的得分,这是为了使自己在可供选择的方案中选一个对自己最有利的方案;对“与”节点,选其子节点中一个最小的得分作为父节点的得分,这是为了立足于最坏的情况。这样计算出的父节点的得分称为倒推值。 (5) 如果一个行动方案能获得较大的倒推值,则它就是当前最好的行动方案。 上述的极小极大分析法,实际是先生成一棵博弈树,然后再计算其倒推值,至使极小极大分析法效率较低。于是在极小极大分析法的基础上提出了α-β剪枝技术。α-β剪枝技术的基本思想或算法是,边生成博弈树边计算评估各节点的倒推值,并且根据评估出的倒推值范围,及时停止扩展那些已无必要再扩展的子节点,即相当于剪去了博弈树上的一些分枝,从而节约了机器开销,提高了搜索效率。 具体的剪枝方法如下: (1) 对于一个与节点MIN,若能估计出其倒推值的上确界β,并且这个β值不大于MIN的父节

北京理工大学级数学专业最优化方法期末试卷试题A卷MT.doc

课 程 编 号 : 0 7 0 0 0 2 0 3 北 京 理 工 大 学 2 0 0 7 - 2 0 0 8 学 年 第 二 学 期 2005 级数学专业最优化方法终考试卷( A 卷) 1. (20 分 )某化工厂有三种资源 A 、 B 、 C ,生产三种产品甲、乙、丙,设甲、乙、丙的产量分别为 x 1,x 2,x 3 ,其数学模型为: max z 3 x 1 2 x 2 5 x 3 1 2 x 2 3 430 ( A 资源限制 ) x x 3 x 1 2 x 3 460 ( B 资源限制 ) s.t 4 x 2 420 (C 资源限制 ) x x 1 , x 2 , x 3 0 请回答如下问题: ( 1)给出最优生产方案; ( 2)假定市场信息表明甲产品利润已上升了一倍,问生产方案应否调整? (3)假定增加一种添加剂可显着提高产品质量,该添加剂的资源限制约束为: x 1 2 x 2 3x 3 800 问最优解有何变化? 2. (12 分 )用 Newton 法求解 min f ( x ) 4 x 12 x 22 2 x 12 x 2 ,初始点取为 x 0 (1, 1)T ,迭代一步。 3.(10 分 )用 FR 共轭梯度法求解三个变量的函数 f ( x ) 的极小值,第一次迭代的搜索方向为 p 0 (1, 1,2)T ,沿 p 0 做精确线搜 索,得 x 1 ( x 11 , x 21 , x 31 )T , 设 f ( x 1 ) 2, f ( x 1 ) 2 ,求从 x 1 出发的搜索方向 p 1 。 x 11 x 21 4. (15 分 ) 给定下面的 BFGS 拟 Newton 矩阵修正公式: H k 1 ( I s k y k T )H k ( I s k y k T )T s k s k T , y k T s k y k T s k y k T s k 其中 s k x k 1 x k , y k g k 1 g k 用对应的拟 Newton 法求解: min f ( x ) x 1 2 2x 1 x 2 2 x 22 4 x 1 ,初始点取为 x 0 (0,0) T , H 0 I 。 5. (15 分 )写出问题 取得最优解的 Kuhn-Tucker ( K - T )必要条件,并通过 K - T 条件求出问题 K - T 点及相应 Lagrange 乘子。 6(12 分 ).求约束问题 在 x (0,0) T 及 x 2 (1,0) T 处的下降方向集合、可行方向集合以及可行下降方向集合,并画图表示出来 1 7( 8 分)考察优化问题 min f ( x ) s.t. x , D 设 D 为凸集, f ( x ) 为 D 上凸函数,证明: f ( x) 在 D 上取得极小值的那些点构成的集合是凸集。 8( 8 分)设 min f ( x ) 1 x T Ax b T x c ,其中 A 为对称正定矩阵, x * 为 f ( x ) 的极小值点,又设 x 0 ( x*) 可表示为 2 x 0 x * p ,其中 R 1, p 是 A 对应于特征值 的特征向量,证明:若从 x 0 出发,沿最速下降方向做精确一维搜索, 则一步达到极小值点。 课程编号 :07000203 北京理工大学 2008-2009 学年第一学期 2006 级数学专业最优化方法终考试卷( A 卷) 1. (15 分 ) 用单纯形法求解线性规划问题 2. (10 分 )写出线性规划问题 的对偶问题并证明该对偶问题没有可行解。 3. (15 分 )考虑用最速下降法迭代一步 min f ( x) x 12 2x 22 , 初始点取为 x 0 ( 1, 1)T 。( 1)采用精确一维搜索;( 2) 采用 Wolfe 条件进行不精确一维搜索,其中 0.1, 0.9 。 4. (15 分 )用 DFP 拟牛顿法求解 min f ( x) x 12 2x 22 初始点取为 x 0 1 ,初始矩阵 H 0 2 1 。 1 1 1 5. (15 分 )证明集合 S { x | x 1 2x 2 4, 2x 1 x 2 6} 是凸集,并计算原点 (0,0) 到集合 S 的最短距离。 6. (15 分 ?) 考虑问题 (1)用数学表达式写出在点 ( 1 , 5)T 处的下降可行方向集。 3 3 ( 2)假设当前点在 (0,0) T 处,求出用投影梯度法进行迭代时当前的下降可行方向(搜索方向)。 7( 7 分)证明:在精确一维搜索条件下,共轭梯度法得到的搜索方向是下降方向。

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

计算智能习题合集

计算智能 习题总集 习题一: 空缺 习题二: 1、在反馈型神经网络中,有些神经元的输出被反馈至神经元的( ) A .同层 B .同层或前层 C .前层 D .输出层 2、在神经网络的一个节点中,由激励函数计算得到的数值是该节点的( ) A .实际输出 B .实际输入 C .期望输出 D .期望值 3、在神经网络的一个节点中,由激励函数计算得到的数值,是与该节点相连的下一个节点的( ) A .实际输出 B .实际输入 C .期望输出 D .期望值 4、下面的学习算法属于有监督学习规则的是( ) A .Hebb 学习规则 B .Delta 学习规则 C .概率式学习规则 D .竞争式学习规则 E .梯度下降学习规则 F .Kohonen 学习规则 5、BP 算法适用于( ) A .前馈型网络 B .前馈内层互联网络 C .反馈型网络 D .全互联网络 6、BP 神经网络采用的学习规则是( ) A .联想式Hebb 学习规则 B .误差传播式Delta 学习规则 C .概率式学习规则 D .竞争式学习规则 习题三: 1、设论域U ={u 1, u 2, u 3, u 4, u 5}, 5 432118.06.04.02.0u u u u u A ++++=,

5 43214.06.016.04.0u u u u u B ++++=, 求 B A B A , , , 。 2、设X ={1, 5, 9, 13, 20}, Y ={1, 5, 9, 13, 20}, ~ R 是模糊关系“x 比y 大得多”。 隶属度函数: 求模糊关系矩阵~ R 3、 4、Zadeh 教授提出了著名的不相容原理,是指复杂系统的那两种矛盾( ) A .精确性和有效性 B .精确性和模糊性 C .模糊性和有效性 D .复杂性和模糊性 5、在模糊推理得到的模糊集合中取一个最能代表这个集合的单值的过程称为( ) A .去模糊 B .模糊化 C .模糊推理 D .模糊集运算 6、判断 1.一个模糊集合可以被其隶属度函数唯一定义( ) 2.隶属度越大表示真的程度越高;隶属度越小表示真的程度越低( ) 3.当隶属度函数有若干点取值为1,其余点取值为0时,该隶属度函数对应的模糊集 合可以看作一个经典集合( ) 7、简答题:试述模糊计算的主要模块及其操作内容。 ???????≥-<-<-≤-=101100100 0),(~y x y x y x y x y x R ,,,

13-14(1)最优化方法期末试卷

2013-2014学年第一学期 数学计算经数专业《最优化方法》(课程)期末试卷 试卷来源:自拟 送卷人:赵俊英 打印:赵俊英 乔凤云 校对:赵俊英 一.填空题(20分) 1.最优化问题的数学模型一般为:____________________________, 可行域D 可以表 为_____________________________, 若____________________,称* x 为问题的全局最优解. 2.()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则=?)(x f , =?)(2 x f . 3.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向. 4. 无约束最优化问题:min (),n f x x R ∈,若k x 是不满足最优性条件的第k 步迭代点,用共轭梯度法求解时,搜索方向k d =______________ 5. 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式为 . 6 .举出一个具有二次终止性的无约束二次规划算法: . 7.函数222 21 12313()226f x x x x x x x x =+++- (填是或不是) 严格凸函数. 二.(18分)简答题: 1. 设计求解无约束优化问题的一个下降算法,并叙述其优缺点. 2. 叙述单折线法的算法思想. 3. 写出以下线性规化问题的对偶: 1234123412341234134min ()2536..873411,762323,324712,0,0,0.f x x x x x s t x x x x x x x x x x x x x x x =-+-??-+++=?? +++≥??+++≤? ≤≥≥??

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

人工智能之遗传算法论文含源代码

30维线性方程求解 摘要:非线性方程组的求解是数值计算领域中最困难的问题,大多数的数值求解算法例如牛顿法的收敛性和性能特征在很大程度上依赖于初始点。但是对于很多高维的非线性方程组,选择好的初始点是一件非常困难的事情。本文采用了遗传算法的思想,提出了一种用于求解非线性方程组的混合遗传算法。该混合算法充分发挥了遗传算法的群体搜索和全局收敛性。选择了几个典型非线性方程组,考察它们的最适宜解。 关键词:非线性方程组;混合遗传算法;优化 1. 引言遗传算法是一种通用搜索算法,它基于自然选择机制和自然遗传规律来模拟自然界的进化过程,从而演化出解决问题的最优方法。它将适者生存、结构化但同时又是 随机的信息交换以及算法设计人的创造才能结合起来,形成一种独特的搜索算法,把一些解决方案用一定的方式来表示,放在一起成为群体。每一个方案的优劣程度即为适应性,根据自然界进化“优胜劣汰”的原则,逐步产生它们的后代,使后代具有更强的适应性,这样不断演化下去,就能得到更优解决方案。 随着现代自然科学和技术的发展,以及新学科、新领域的出现,非线性科学在工农业、经济政治、科学研究方面逐渐占有极其重要的位置。在理论研究和应用实践中,几乎绝大多数的问题都最终能化为方程或方程组,或者说,都离不开方程和方程组的求解。因此,在非线性问题中尤以非线性方程和非线性方程组的求解最为基本和重要。传统的解决方法,如简单迭代法、牛顿法、割线法、延拓法、搜索法、梯度法、共轭方向法、变尺度法,无论从算法的选择还是算法本身的构造都与所要解决的问题的特性有很大的关系。很多情况下,算法中算子的构造及其有效性成为我们解决问题的巨大障碍。而遗传算法无需过多地考虑问题的具体形式,因为它是一种灵活的自适应算法,尤其在一些非线性方程组没有精确解的时候,遗传算法显得更为有效。而且,遗传算法是一种高度并行的算法,且算法结构简单,非常便于在计算机上实现。本文所研究的正是将遗传算法应用于求解非线性方程组的问题。 2. 遗传算法解非线性方程组为了直观地观察用遗传算法求解非线性方程组的效果,我们这里用代数非线性方程组作为求解的对象问题描述:非线性方程组指的是有n 个变量(为了简化讨论,这里只讨论实变量方程组)的方程组 中含有非线性方程。其求解是指在其定义域内找出一组数能满足方程组中的每 个方程。这里,我们将方程组转化为一个函数则求解方程组就转化为求一组值使得成立。即求使函数取得最小值0 的一组数,于是方程组求解问题就转变为函数优化问题 3. 遗传算子 遗传算子设计包括交叉算子、变异算子和选择算子的设计。

智能算法综述

摘要:随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛,本文介绍了当前存在的一些智能计算方法,阐述了其工作原理和特点,同时对智能计算方法的发展进行了展望。关键词:人工神经网络遗传算法模拟退火算法群集智能蚁群算法粒子群算1什么是智能算法智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。 2人工神经网络算法“人工神经网络”(ARTIFICIALNEURALNETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。 2.1人工神经网络的特点人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。用神经网络的术语来说,即是人脑具有1014~1015个互相连接的存储潜力。虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。 [!--empirenews.page--]正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。 2.2几种典型神经网络简介 2.2.1多层感知网络(误差逆传播神经网络) 在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛

最优化方法考试试题

华南农业大学期末考试试卷(A 卷) 2010--2011学年第 1 学期 考试科目: 运筹学与最优化方法 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、 用单纯形法求解下列线性规划问题(共 15 分) 12121212max 105349 ..528,0z x x x x s t x x x x =++≤?? +≤??≥?

二、灵活运用单纯形法和对偶单纯形法解下列问题(共 15 分) 12121212max 62 ..33,0z x x x x s t x x x x =++≥?? +≤??≥? 三、解下列0-1型整数规划问题(共 10 分) 12345123451345124512345max 325232473438..116333,,,,01 z x x x x x x x x x x x x x x s t x x x x x x x x x =+--+++++≤??+-+≤?? -+-≥??=?或

四、利用库恩-塔克(K-T )条件求解以下问题(共 15 分) 22121122 121212 max ()104446..418,0f X x x x x x x x x s t x x x x =+-+-+≤??+≤??≥? 五、用内点法求解下列非线性约束最优化问题(共 15 分) 21 121 2min ()6923..3 f X x x x x s t x =-++≥??≥?

六、给定初始点(0)(1,1)T X =,用最速下降法迭代一次研究下列函数的极大值。(共 15 分) 22 121122()46222f X x x x x x x =+--- 七、某人因工作需要购置了一辆摩托车,他可以连续使用或任一年末将旧车卖掉,换一辆新车,下表列出了于第i 年末购置或更新 的车至第j 年末的各项费用的累计(含更新所需费用、运行费用及维修费用等),试据此确定该人最佳的更新策略,使从第一年至第五年末的各项费用的累计之和为最小。(共 15 分)

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

智能优化算法作业

一、优化算法及其应用 1.简介 共轭梯度法(Conjugate Gradient )是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse 矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。 2.算法原理 共轭梯度法是利用目标函数梯度逐步产生共轭方向作为线搜索方向的方法,每次搜索方向都是在目标函数梯度的共轭方向,搜索步长通过一维极值算法确定。 设二次函数为1 ()2T T f X C b X X AX =++,其中C 为常数,,b X 为n 维列向 量,A 为对称正定矩阵,用共轭梯度法求()f X 的极小点: 共轭梯度法探索的第一步是沿负梯度方向。即()k X 点按()()()k k S f X =-?方向找到(1)k X +,然后沿着与上一次探索方向()k S 相共轭的方向(1)k S +进行探索直达到最小点*X 。 令()(1)(1)()k k k k S f X S β++=-?+。 上式的意义就是以原来的负梯度()()()k k f X S -?=的一部分即()k k S β,加上新的负梯度()(1)k f X +-?,构造(1)k S +。 在上式中k β的选择,应使n 维欧氏空间n E 中的两个非零向量()k S 与(1)k S +关于矩阵A 共轭。即 (1)() (0,1,2,...1)T k k S AS k n +??==-?? 因 1()2 T T f X C b X X AX =++ ,故有()f X b AX ?=+ 若令 ()()()()k k k g f X b AX =?=+ ()(1)(1)(1)k k k g f X b AX +++=?=+

相关主题
文本预览
相关文档 最新文档