当前位置:文档之家› 05_01_伽利略相对论原理 经典力学的时空观

05_01_伽利略相对论原理 经典力学的时空观

05_01_伽利略相对论原理 经典力学的时空观
05_01_伽利略相对论原理 经典力学的时空观

05_01 伽利略相对论原理 经典力学的时空观

1 伽利略相对性原理

力学相对性原理 —— 伽利略指出在相对作均速直线运动的所有惯性系中,物体运动的力学规律完全相同,即具有完全相同的数学表达形式。

绝对时空观 —— 绝对空间就其本质而言,是与任何外界事物无关,而且永远是相同的和不动的—经典力学的时空观,也称为绝对时空观。表现为空间任意两点距离的测量和两个事件发生的时间间隔都是相同的。

伽利略坐标变换式 —— 基于绝对时空观建立起来的经典力学中的伽利略坐标变换。

两个惯性参考系S (OXYZ )和S’ (O’X’Y’Z’),S’系沿X 轴以恒定速度u 相对于S 系运动。如图XCH001_064所示。

'0t t ==:S (OXYZ )和S’ (O’X’Y’Z’)重合,空间一点P 在S’系中,在时刻t 的坐标: x x ut y y z z

t t

'=-??'=??'=??'=? —— 伽利略坐标变换式 位置变换:r r ut '=-

速度变换:v v u '=- 加速度变换:a a '=

力学规律的数学表达式具有伽利略坐标变换的协变性 —— 称为经典力学的相对性原理。 2 牛顿运动定律具有伽利略变换不变性 在惯性参考系S 中:F ma =

在惯性参考系S’中,根据伽利略变换:a a '=

经典力学中:m m '=,F F '= —— F m a '''=

—— 经典力学所有的基本定律均满足伽利略坐标变换的协变性

—— 电磁场理论(麦克斯韦方程组)不具有伽利略坐标变换协变性

例题01 分别以地面S 和匀速运动的车S’为参照系,证明两个球发生对心弹性碰撞所遵守的守恒定律是伽利略的不变式。

设两球和车速度在一条直线上

—— 如图XCH001_152

以地面为参照系S ,两球发生对心弹性碰撞,其构成的

系统的动量和动能守恒,有

1102201122m v m v m v m v +=+

2222110220112211112222

m v m v m v m v +=+ 以车为参照系S’,以001,2

i i i i v v u v v u i '=+??'=+=?代入上面两式,得到

110

2201122()()()()m v u m v u m v u m v u ''''+++=+++ 222211022011221111()()()()2222

m v u m v u m v u m v u ''''+++=+++ 整理后得到:11022011222222110220112211112222

m v m v m v m v m v m v m v m v ''''+=+???''''+=+?? —— 两个球对心弹性碰撞遵守的动量和动能守恒定律,在伽利略变换下具有完全相同的数学形式 —— 力学规律不变

比较相对论时空观和牛顿经典时空观

比较相对论时空观和牛顿经典时空观,浅谈科学发展中的肯 定与否定 “天地万物之逆旅,光阴者百代之过客”,人类生存于天地之间,漫步于时间长河,对于时间与空间的思考萦绕于一代又一代人的心头。随着人类文明的发展,人们对时空观的认识也在不断变化,在这其中相对论时空观和牛顿经典时空观是公认的科学史上有很大影响力的时空观,下面我就对这二者进行比较,谈一谈人类科学发展中的“肯定”与“否定”。 首先,从理论基础来看这两个时空观。这两个时空观是建立在不同的理论基础之上的。牛顿的经典时空观是以经典力学为基础建立起来的,爱因斯坦提出的相对论时空观是以光速c不变为理论基础。 其次,从内容来看这两个时空观。由于二者理论基础的不同,这也就决定了这两个时空观内容的截然不同。这就像种下两个种类不同的种子,那最后长出来的东西肯定是不同的。这两个时空观对时间和空间与物质的关系看法不同。牛顿经典时空观是绝对时空观,认为时间和空间与物质及其运动无关,时间坐标系和空间坐标系是完全脱离物质而独立存在的,时间间隔和空间间隔在不同的惯性系中保持不变,即时间空间观念与物质运动状态无关。而相对论时空观认为有物质才有时间和空间,时间和空间与物体的运动状态有关。这两个时空观对时间与空间的关系看法也不同。牛顿经典时空观认为时间和空间彼此无关,独立各自。而相对论时空观则恰恰相反,它认为两个时间在不同的惯性系看来,它们的空间关系是相对的,时间关系也会是相

对的,时间和空间不是互相独立的而是彼此不可分解的整体,只有空间和时间联系在一起才有意义,光速c是建立不同惯性系间的时间和空间变换的纽带。 毋庸置疑,事实是唯一的,然而这两个时空观却给出了迥然不同的答案。我们是不是能够肯定一方而否认另一方呢?我认为不能。虽然相对论时空观得到了大多数人的认可,但我们不能否定牛顿经典时空观。它为科学的发展做出了重要的贡献。自十七世纪,牛顿力学不断发展并取得巨大成就,以牛顿力学为基础建立了天体力学和应用力学等等。从地面上的各种物体运动到各种现代化交通工具以及天体的运动,都服从牛顿力学规律,这充分说明了牛顿力学规律的正确性。值得指出的是,牛顿的力学为十八世纪的工业革命及其之后的机器生产准备了科学理论。马克思曾经认为,在十八世纪臻于完善的力学是“大工业的真正科学的基础。”毫无疑问,当时这个“科学的基础”的最主要而且也是最重要的部分是牛顿的力学。牛顿的经典力学体系和他的方法论使物理学在十八、十九世纪期间得以迅速发展,并成为那时理论物理学的纲领或规范。迄至今日,人们关于自然过程的物理认识都可以看作是牛顿思想的一种系统的发展。到十九世纪末,牛顿经典力学在解释新实验事实时遇到了困难。相对论的提出成功的解决了这一问题,揭露了时间和空间某种普遍而新颖的联系,引起了人类时空观的变革,为现代科学技术的发展奠定了牢固的基础。这两个时空观各有其各自的价值,没有谁对谁错,我们不能单纯的肯定与否定。这看似不符合逻辑,但在很多时候我们是不能简单的肯定或否定的,

7.5相对论时空观与牛顿力学的局限性 — 人教版(2019)高中物理必修第二册学案

第七章第5节相对论时空观与牛顿力学的局限性 【学习目标】 1.感受牛顿力学在高速世界与事实的矛盾,知道牛顿力学只适用于低速、宏观物体的运动。知道相对论、量子论有助于人类认识高速、微观领域。 2.知道爱因斯坦狭义相对论的基本假设,知道长度相对性和时间间隔相对性的表达式。 3.了解宇宙起源的大爆炸理论,知道科学真理是相对的,未知世界必将在人类不懈的探索中被揭开更多的谜底。 【课前预习】 一、相对论时空观 1.爱因斯坦两个假设: (1)在不同的惯性参考系中,物理规律的形式都是_________的; (2)真空中的光速在不同的惯性参考系中大小都是_________的。 2.时间延缓效应:如果相当于地面以v运动的惯性参考系上的人观察到与其一起运动的物体完成某个动作的时间间隔为Δτ,地面上的人观察到该物体在同一地点完成这个动作的时间间隔为Δt, 则Δt=____________。由于1?(v c )2<1,所以总有Δt>Δτ,此种情况称为时间延缓效应。 3.长度收缩效应:如果与杆相对静止的人测得杆长是l0,沿着杆的方向,以v相对杆运动的人 测得杆长是l,则l=_________。由于1?(v c )2<1,所以总有l

电动力学样题卷

一、选择题(2分×5=10分) 1、在两个夹角为900的接地导体平板内有一点电荷Q ,用镜像法求解空间电势时其像电荷的数目为( ): (A) 两个 (B) 三个 (C) 四个 (D) 五个 2、电四极矩可反映电荷分布对球对称的偏离,沿Z 轴方向拉长的旋转 椭球体,其内部电荷均匀分布,则电四级矩D 33 ( )。 A). 大于0 B). 小于0 C). 等于0 D). 不确定 3、位移电流实质上是电场的变化率,它是( )首先引入的。 A). 赫兹 B). 牛顿 C). 爱因斯坦 D). 麦克斯韦 4、两个闭合恒定电流圈之间的相互作用力,两个电流元之间的相互作 用力,上述两个相互作用力,哪个满足牛顿第三定律( )。 A). 都满足 B). 都不满足C). 前者满足 D). 后者满足 5、在某区域能够引入磁标势m ?的条件是该区域( )。 A).没有自由电流 B).不被自由电流所连环 C).任何回路都不被自由电流所连环 D). 是没有自由电流分布的复连通域 二、填空题(2分×13=26分) 1、 在理论上预言了电磁波的存在,并指出光波就是一种电磁波。 2、电荷守恒定律的微分形式为 3、线性介质的电磁能量密度w =___________,能流密度S =____ _______,动量密度表达式分别为 。 4、电场、磁场的切向分量的边值关系分别为:______________、______________. 5、如果一个体系电荷分布关于原点对称,则它的电偶极矩 p = ;若电荷分布球对称,则电四极矩的各个分量等 于 。 6、电荷体系激发的势在远处的多级展开式为 2ij i ,j 0i j 1 Q 111 (x )(p D )4R R 6x x R ?πε?=-??++ ??∑ 展开式中第一项的物理意义是 ,第二项的物理意义是 。 7、对于均匀线性介质,静电场中电势?满足的泊松方程 为 。 8、在某区域中,能够引入磁标势的条件是 9、静磁场中磁感应强度B 和矢势A 的关系为 10、空间局部范围内的电流分布激发的势在远处的多级展开式中,第二项为 (1) 03 R A m 4R μπ=-?,其物理意义 是 。 三、判断题(2分×8=16分) 1、稳恒电流场中,电流线是闭合的。 ( ) 2、电介质中E D ε=的关系是普遍成立的。 ( ) 3、跨过介质分界面两侧,电场强度E 的切向分量一定连续。 ( ) 4、能流密度S 在数值上等于单位时间流过单位横截面的能量,其方向代表能量传输方向。( ) 5、在稳恒电路中,供给负载消耗的电磁能量是通过导线内的电子运动传递给负载的。( ) 6、静磁场总能量计算式为??=dV J A W 21,因而可以把J A ?2 1看作为磁场能量密度。( ) 7、A-B 效应的存在说明磁场的物理效应可以用磁感应强度B 完全描述。( ) 8、超导体处于超导态时,体内仍可以存有磁场。 ( ) 四、简答题(4分×6=24分) 1、写出一般形式的电磁场量D 、E 、B 、H 的边值关系。 2、 介质中麦克斯韦方程组的微分形式 3、A-B 效应的存在说明了什么? 4、简述迈斯纳效应。 5、简述超导体的定义,并写出3个超导体的电磁性质。 6、简述稳恒磁场中矢势 A 的物理意义. 五、证明题(任选4个,6分×4=24分) 1、用边值关系证明:在绝缘介质与导体的分界面上,在静电情况下,导体外的电场线总是垂直于导体表面。 2、用边值关系证明:在线性绝缘介质与导体的分界面上,在恒定电流情况下,导体内表面的电场线总是平行于导体表面。 3、证明当两种绝缘介质的分界面上不带自由电荷时,电场线的曲折满 足: 1 2 12εεθθ=tg tg ,其中1ε和2ε分别为两种介质的介电常数,1θ和2 θ分别为界面两侧电场线与法线的夹角。 4、当两种导电媒质内流有稳恒电流时,分界面上电场线曲折满足 22 11 tg tg θσ=θσ,其中σ1和σ2分别为两种媒质的电导率。 5、证明2 1 4()x r πδ? =-,其中||r x =。 6、已知一个电荷系统的偶极矩定义为() (,)V P t x t x dV ρ'''=?, 证明 (,)V dP J x t dV dt ''=? 7、证明 μ → ∞ 的磁性物质表面为等磁势面。 8、对于静磁场,试证明均匀磁介质内部的磁化电流密度

相对论时空观

狭义相对论的时空观 摘要:相对论是近代物理学的两大理论支柱之一,是我们进入大学以来,第一次接触牛顿经典力学以外的新的理论体系。而狭义相对论中的时空观给了我们极大的震撼,让我们明白了牛顿时空观虽然承认时间和空间的客观性但却把时间和空间看作是脱离物质运动而独立存在的,在麦克斯韦方程建立以及明确了光速的恒定性和最大性后这种把时间和空间看做作是脱离物质运动而独立存在的观点显然不再正确。本文阐述了在狭义相对论下的时空观。通过分析牛顿时空观的不足之处来说明狭义相对论下时空观存在的道理,并最终阐释狭义相对论的本质即其本质是在牛顿的三维绝对空间上再加一维时间。通过本文的论述,有利于理解狭义相对论神奇而平凡的一面。 关键词:相对论光速不变洛伦兹变换式 牛顿在他的《原理》一书中写道:“绝对空间就其本质而言,是不依赖于任何外界事物的,它永远是相同的,不变的。绝对的、真实的数学时间,就其自身及其本质而言,是永远均匀地流动的,不依赖于任何外界事物。” 牛顿绝对时空观承认时间和空间的客观性,但却把时间和空间看作是脱离物质运动而独立存在的。这在当时引起了一些科学家和哲学家的思考和怀疑。在十九世纪中叶麦克斯韦方程建立后,绝对时空观更面临着严峻的局面。按麦氏方程中存在的常数c,表明电磁波或光在真空中沿各个方向均以不变的速度c传播,这与伽利略相对性原理发生了矛盾。因为据绝对时空观的经典速度合成定理,在不同惯性系中,光的传播速度不应在各个方向均相同。似乎只有在某一特殊参考系中,麦氏方程才取标准形式,光才在各个方向上均以c传播。人们曾引入“以太”假设,认为“以太”充满宇宙空间并绝对静止,光是“以太”介质中的波动。相应于“以太”的惯性系就是那个特殊参考系。然而,尽管人们赋予“以太”各种各样光怪陆离的性质,仍难自圆其说。且反复实验的结果都是否定的,根本发现不了“以太风”。相反却证明了在任何惯性系中光速都是不变的。迈克尔孙和莫雷原本是千方百计地想观察地球的运动对光的传播速度的影响,他们还认为光是一种在被称为“以太”的媒质中运动的波。这样,它的表现就应该像在池塘表面上运动的水波那样。 当时人们还认为,地球也是在穿过这种以太媒质运动的,很像是一艘在水面上运动的小船。在小船上的乘客看来,小船激起的涟漪朝着小船运动方向向前扩展的速度,要比涟漪向后扩展的速度慢一些,因为在前一种情况下要从涟漪原来的速度减去小船的速度,而在后一种情况下却要把两个速度相加起来。我们把这叫做速度相加定理。但是,迈克耳孙和莫雷却发现,地球的运动对光速根本没有任何影响,不管在哪一个方向上,光的速度都是完全相等的。这个奇怪的结果使他们产生了一种想法:也许是非常不巧,在他们进行那个实验的时候,

爱因斯坦相对论-论动体的电动力学(中文版)

论动体的电动力学 大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。 堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动

体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。 这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。 一运动学部分 §1、同时性的定义 设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。 如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。 如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到7 同火车的到达是同时的事件。”

牛顿绝对时空观和爱因斯坦相对论时空观的统一

牛顿绝对时空观和爱因斯坦相对论时空观的统一 殷业 上海师范大学信息与机电工程学院,上海200234 yinye@https://www.doczj.com/doc/c11956109.html, 摘要:时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。从亚里士多德、伽利略、牛顿到爱因斯坦,每一个伟大的物理学家都对时间和空间是什么做过回答,但这些答案还不是最终答案。本文分析了历史上存在的各种时空观,从笛卡尔的“物质空间”思想出发重新审视了时间和空间的关系,通过分析说明:不同的“物质空间”中时间是不同的,从而获得了对牛顿绝对时空观和爱因斯坦相对时空观的统一认识。 关键词:虚空;物质空间;绝对时间;相对时间;相对论;牛顿力学 中图分类号:O412 文献标识码:A 0. 引言 时空观是物理理论的基石,也是自然科学的基石,因为存在的一切都发生在一定的时间和空间之中。从亚里士多德、伽利略、牛顿[1]到爱因斯坦[2],每一个伟大的物理学家都对时间和空间是什么做过回答,但他们的答案还不是最终答案。以上四位伟人对时空的答案,有一个共同点,就是时间和空间只有一种,但以笛卡尔的“物质空间”思想[3,4,14]为基础的时空观中,时间和空间可分成两种,一种是“虚空”中的时间和空间,对应“牛顿的绝对时间和空间”,另一种是“物质空间”中的时间和空间,对应“爱因斯坦的相对时间和空间”,前一种时间是空间无关的,后一种时间是空间相关的,所以在“物质空间时空观”中牛顿的绝对时空观和爱因斯坦的相对时空观可以得到了统一,下面我们对这两种不同的时间和空间的有关问题进行讨论。 1. 虚空和物质空间 牛顿在“原理”[1]中阐述的绝对空间是:“绝对空间就其自身特性与一切外在事物无关,处处均匀,永不移动”。牛顿的绝对空间有如下几层含义,(1)绝对空间是真实感知空间的抽象;我们可以设想一个玻璃围成的正方体,假设这个玻璃正方体相对绝对空间静止,将玻

电动力学练习题2016年

电动力学练习题 一、选择题 1. √=???)(B A ??( C ) A. )()(A B B A ???????+??? B. )()(A B B A ???????-??? C. )()(B A A B ???????-??? D. B A ?????)( 2. √下列不是恒等式的为( C )。 A. 0=???? B. 0f ????=r C. 0=???? D. ??2?=??? 3. √设222)()()(z z y y x x r '-+'-+'-=为源点到场点的距离,r 的方向规定为从源 点指向场点,则( B )。 A. 0=?r B. r r r ?=r C. 0=?'r D. r r r '?=r 4. √ 若m ?为常矢量,矢量3m R A R ?=v v v 标量3 m R R ??=v v ,则除R=0点外,A ?与?应满足关系( B ) A. ▽?A ?=▽? B. ▽?A ?=?-? C. A ?=?? D. 以上都不对 5. √位移电流是 (D ) A 是真实电流,按传导电流的规律激发磁场 B 与传导电流一样,激发磁场和放出焦耳热 C 与传导电流一起构成闭合环量,其散度恒不为零 D 实质是电场随时间的变化率 ( D ) 6. √从麦克斯韦方程组可知变化磁场是 ( D ) A 有源无旋场 B 有源有旋场 C 无源无旋场 D 无源有旋场 7. √磁化电流体密度等于(A ) A M ??r B M ??r C M t ??r D 21()n M M ?-r r r 8. √ 电场强度在介质分界面上(D ) A 法线方向连续,切线方向不连续 B 法线方向不连续,切线方向不连续 C 法战方向连续,切线方间连续 D 法线方向不连续.切线方向连续 9. √ 在稳恒电流或低频交变电流情况下,电磁能是(B ) A 通过导体中电子的走向移动向负载传递的 B 通过电磁场向负载传递的 C 在导线中传播 D 现在理论还不能确定 10. √ 边界上的电势为零,区域内无电荷分布.则该区域内的电势为(B ) A 零 B 任一常数

经典电动力学对于电子电磁质量的计算

经典电动力学对于电子电磁质量的计算在经典电动力学中,认为带电粒子携带了电磁自场,由于自场有内聚能(电磁自能),也会构成电磁质量μ,实验所测量的带电粒子的质量(称为粒子的物理质量),是粒子原有质量m0(通常称为裸质量)与μ之和.因为带电粒子总是同它的自场联系在一起,所以两者是不可分离的. “经典电动力学计算一个半径为R,带电量为Q的均匀球体的静电自能为W自=0.5ρudv=3Q2/(20πε0R). 一个电子的库仑场的能量为w=(ε0/2)∫∞re(e/4πε0r2)24πr2dr,量子电动力学根据电磁场的能量计算电子的电磁质量,然后设电子的质量全部来源于电磁质量,计算出电子的半径a=2.8×10-15米(1).同样设电子的电荷在半径a的球中有一定的分布也可得电磁质量,结果类似.但要维持这种平衡,需要未知的非电磁力平衡,实验还无法验证.在相对论发现后有理由认为电子的电磁质量是电子引力质量的3/4,其余的与某种非电磁力有关.H.Poincare.Rend.Pol.21(1906)129.他作了一些尝试,但也未具体地说明用什么别的力可以使电子不分裂. 已知电子在真空中单位体积内的电场能为: (1) 又知道,点电荷的场强为: (2) 我们将电场强度E带入式(1)之中,就可以得出: (3). 于是,我们可以求出电子在整个空间范围上的电场能

就可以对于上式求定积分,并得出: (5) 在1881年的一篇论文中,汤姆生首次用麦克斯韦电磁理论分析了带电体的运动.他假设带电体是一个半径为a 的导体球,球上带的总电荷为e ,导体球以速度v 运动,得到由于带电而具有的动能为,其中为磁导率.这就相当于在力学质量m 0之外,还有一电磁质量 . 1889年亥维赛改进了汤姆生的计算,得.他推导出运动带电体的速度接近光速时,总电能和总磁能都随速度增加.还得出一条重要结论,当运动速度等于光速时,能量值将为无穷大,条件是电荷集中在球体的赤道线上.1897年,舍耳(G.F.C .Searle )假设电子相当于一无限薄的带电球壳,计算出快速运动的电子电磁质量为: ,其中. 经典电子论最著名的人物是 H. A. Lorentz (1853-1928), 他是一位经典物理学的大师.洛仑兹与阿伯拉罕等物理学家曾提出这种假设:电子质量可能完全是电磁的,即电子裸质量m 0=0,电子的惯性就是它电磁自场的惯性.这样,在电荷按体积均匀分布的假设下,由经典理论算出的电子半径值为r o =2.82×10-13cm ,电子半径实验值小于10 -18cm ,显然用经典理论算出的电子半径并不合符实际. 1903年,阿伯拉罕(M.Abraham )把电子看成完全刚性的球体,根据经典电磁理论,推出如下关系: ,其中m 0为电子的静止质量.现代物理学已经证明电子没有体积,因此经典电动力学关于电磁质量的计算是错误的.

量子力学和经典力学的区别与联系(完整版)

量子力学和经典力学的区别与联系 量子力学和经典力学在的区别与联系 摘要 量子力学是反映微观粒子结构及其运动规律的科学。它的出现使物理学发生了巨大变革,一方面使人们对物质的运动有了进一步的认识,另一方面使人们认识到物理理论不是绝对的,而是相对的,有一定局限性。经典力学描述宏观物质形态的运动规律,而量子力学则描述微观物质形态的运动规律,他们之间有质的区别,又有密切联系。本文试图通过解释、比较,找出它们之间的不同,进一步深入了解量子力学,更好的理解和掌握量子力学的概念和原理。 经过量子力学与经典力学的对比我们可以发现,量子世界真正的基本特性:如果系统真的从状态A跳跃到B的话,那么我们对着其中的过程一无所知。当我们进行观察的时候,我们所获得的结果是有限的,而当我们没有观察的时候系统正在做什么,我们都不知道。量子理论可以说是一门反映微观运动客观规律的学说。经典物理与量子物理的最根本区别就是:在经典物理中,运动状态描述的特点为状态量都是一些实验可以测量得的,即在理论上这些量是描述运动状态的工具,实际上它们又是实验直接可测量的量,并可以通过测量这些状态量来直接验证理论。在量子力学中,微观粒子的运动状态由波函数描述,一切都是不确定的。但是当微观粒子积累到一定量是,它们又显现出经典力学的规律。 关键字:量子力学及经典力学基本内容及理论量子力学及经典力学的区别与联系 三、目录 摘要............................................................ ............ ... ... ...... (1) 关键字.................................................................. ...... ... ... ...... (1) 正文..................................................................... ...... ... ... ...... (3) 一、量子力学及经典力学基本内容及理论...... ............ ... ............ ...... ... (3) 经典力学基本内容及理论........................... ...... ......... ...... (3) 量子力学的基本内容及相关理论.................................... ...... (3) 二、量子力学及经典力学在表述上的区别与联系.................. ...... ... ...... (4)

高中物理必修2经典时空观与相对论时空观-例题解析

经典时空观与相对论时空观-例题解析 1.着重体会从绝对时空观无法解释光的传播问题出发,进而提出狭义相对论假设的思想方法. 2.相对论的两个假设无法直接加以验证,但是由它导出的一系列结论却都与实验相符,这种“间接证明”的方法是科学研究中的重要方法. 3.要紧抓住“两个假设”,只有深入理解了这两个“假设”的含义,才能理解应用其他各种相对论效应. 4.要重新科学理解“同时”的含义. 5.注意相对论中各种效应都是相互的. 例如,一把尺子相对地面高速运动时,地面上的观察者测量到尺子的长度变短.如果尺子在地面上不动,而观察者相对于地面高速运动,那么观察者测量到的尺子长度和观察者不运动时相比仍然是缩短的. 时钟变慢的效应也有和“尺缩效应”一样的性质. 6.注意“运动的尺子变短”只是在运动方向上变短,其他方向不变. 【例1】 一只完全密封而不透明的船正在静水中匀速航行,船内的人能够感知船在运动吗?能够测量船的航行速度吗?如果船是加速航行呢? 解析:如果船是真正的匀速航行,船内的人又无法以船外的物体为参考系,则无法感知船在运动,更不可能测量船的速度.这是伽利略相对性原理的要求. 如果船是加速或减速航行,船内的人完全可以利用牛顿定律测量出船的加速度,但依然不能测量出船的瞬时速度. 【例2】 根据相对论理论,一尺子相对参考系静止时长为L 0,当它以速度v 匀 速运动时,参考系上的人测量该尺子的长度将变为: L=L 0221c v (c 是光在真空中的传播速度) (5-1)

称之为长度收缩公式. 如果一观察者测得运动着的米尺长0.5 m(米尺的静止长度为1 m),问此尺以多大的速度接近观察者? 解析:由L=L 0221c v -得: v=c 20 2 1L L -=c 25.01-=0.87c=2.6×108 m/s. 【例3】 根据相对论理论,如果地球上的时钟走过了时间t ,那么,以速度v 相对地球运动的飞船上的时钟走过的时间t ′则为: t ′=t 221c v -(c 是光在真空中的传播速度) (5- 2) 通俗地说,就是运动的时钟变慢了. 设想飞船在甲乙两个相距8亿千米的星球间飞行,甲、乙两星球及飞船上各有一个巨大的钟,现飞船相对星球以0.75c(c 是真空中光速)的速度离开甲星球飞向乙星球,飞船经过甲星球时,三个钟均调整指到3:00整.问,当飞船飞过乙星球的瞬间,飞船内的人看到乙星球上的钟和飞船上的钟分别指向多少? 解析:在乙星球的观察者看来,飞船飞越的时间为: t=8 11 100.375.0108??? s ≈3600 s=1 h 所以,飞船内的人看到乙星球上的时钟指到4:00整. 在飞船内的观察者看来,飞船飞越的时间t ′则为: t ′=t 221c v -=1×275.01-h=0.66 h ≈40 min 所以,飞船内的人看到飞船上的钟指到3:40. 如果飞船上的人测量两星球间的距离,将是:

物理学前沿知识

《九年义务教育三年制初级中学教师教学用书第二册物理》试用修订版上海科学技术出版社华东地区初中物理教材编写协作组编2002年8月第一版第一次印刷 参考资料P346 1、物理学——前沿科学的支柱 自然界是无限广阔庭丰富多彩的。物理学是自然科学中最基本的科学,它研究物质运动的形式和规律,物质的结构及其相互作用,以及如何应用这些规律去改造自然界。因此,物理学又是许多科学技术领域的理论基础。 从本世纪开始,物理学经历了极其深刻的革命,从对宏观现象的研究发展到对微观现象的研究,从研究低速运动发展到研究高速运动,由此诞生了相对论和量子力学,并在许多科技领域中引发了深刻的变革。 物理学在认识、改造物质世界方面不断取得伟大成就,不断揭示物质世界内部的秘密;而社会的发展又对物理学提出无穷无尽的研究课题。例如,原子能的利用,使人类掌握了武器和新能源;激光技术的出现,焕发了经典光学物理的青春,使许多以往光学技术办不到的事情,现还能办到了;半导体科学技术的发展,导致了计算技术、无线电通信和自动控制的革命;超导电性、纳米固体材料和非晶态材料的出现,如金属物理、半导体物理、电介质物理、非晶态物理、表面与界面物理、高压物理、低温物理等。此外,物理学与其他学科之间的渗透,又产生了许多边缘交叉学科,如天体物理、大气物理、生物物理、地球物理、化学物理和最近发展起来的考古物理等。 我们可以说,物理现象存在于人类生活和每个角落,发生在宇宙的每一地方,物理学是推动科学技术发展的重要支柱,它是自然科学中应用广泛、影响深刻、发展迅速的一门基础科学和带头科学。 2、“无限大”和“无限小”系统物理学 “无限大”和“无限小”系统物理学是当今物理学发展一个非常活跃的领域之一。天体物理学和宇宙物理学就属于“无限大”系统物理学的范畴,它从早期对太阳系的研究,逐步发展到银河系,直至对整个宇宙的研究。热大爆炸宇宙模型作为20世纪后半叶自然科学中四大成就之一是当之无愧的。利用该模型可以成功地解释宇宙观测的最新结果,如宇宙膨胀、宇宙年龄下限、宇宙物质的层次结构、宇宙在大尺度范围内是各向同性的等重要结果。可以说,具有暴胀机制的热大爆炸宇宙模型已为现代宇宙学奠定了可靠的基础。但是到目前为止,关于宇宙的起源问题仍没有得到根本解决,还有待于科学工作者进一步的努力和探索。 原子核物理学和粒子物理学等属于“无限小”系统物理学的范畴。它从早期对原子和原子核的研究,逐步发展到对基本粒子的研究。 基本粒子是在物质结构层次中属于比原子核更深层次的物质单元,如光子、质子、中子、π介子等。迄今已确认有400余种基本粒子,它们都是通过宇宙射线和加速器实验发现的。基本粒子的性质可用一系列描述其内禀性质的物理量,如质量、电荷、自旋、宇称、同位旋、轻子数、重子数、奇异数、超荷等表征。基本粒子之间存在着弱相互作用、电磁相互作用和强相互作用(见下面介绍的“物质间的基本相互作用”)。通过这些相互作用,基本粒子可发生创生、湮没以及相互转化等现象。 按照参与相互作用的类型,通常将基本粒子区分为三大类:轻子、强子、和规范玻色子。轻子如电子、μ子和中微子等;它们仅参与弱作用和电磁作用。强子如质了、中子、π介子等,它们参与上述全部三种作用。规范玻色子如光子、中间玻色子(W±,Z0)、胶子等,它们是传递相互作用的媒介粒子,光子传递电磁作用,中间玻色子传递弱作用,胶子传递强作用,目前人们已经知道,强子都是由更小的粒子——“夸克”构成。至今已经发现了多种夸克。

马哲,时空观

一堂哲学课——时空观 所谓时空观,就是有关时间和空间的物理性质的认识,时空观同自然的发展和哲学的发展是密切相关的。时间和空间是哲学的基本概念,也是物理学的基本概念。 本节课一开始,刘老师便讲述了牛顿的绝对时空观,绝对时空观认为时间和空间是两个独立的观念,彼此之间没有联系,分别具有独立性。认为时间与空间的度量与惯性参照系的运动状态无关。在牛顿看来,时间与空间就像一个空盒子,里面装着各种各样的物体。 时空观被定义在很多个层面上,物理意义上的时空,马克思主义哲学意义上时空,亦或是生命体验中的时空。 物理意义上时空观指的是广义相对论,是阿尔伯特·爱因斯坦于1915年发表的用几何语言描述的引力理论,它代表了现代物理学中广义相对论理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立的。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相关系,其关系方式即是爱因斯坦的引力场方程。 马克思哲学意义上的时空观可以分为辩证的自然时空观和社会时空观两个部分。社会时空观是马克思哲学时空观的重要维度,它具有属人性,历史性,可转换性,价值性等一系列新的特点,是我们透视社会历史现象的新视角,新方法,具有重要的理论意义及

实践意义。 至于生命体验中的时空。我们能感受到时间一分一秒流逝,能感受到我们所处的位置。时间和空间都有着我们所熟知的单位度量。 分开来说时间和空间各自的意义,时间是指物质运动的持续性,顺序性,特点是一维性。空间是指物质运动的广延性、伸张性、特点是三维性。所谓持续性,是指任何一个物体的运动都要经历一个或长或短的过程。至于一维性,对于时间的度量只需要一个度量,我们共用这个单位去度量时间,一秒,一分钟,一小时,一天。时间只有一个方向,不可逆转,时光一去不回头,没有所谓的后悔药。穿越,只出现在小说电视里。过去所发生的一切我们都无可奈何。空间具有三维性,三维表现为具有一定的体积。一定的位置。拿数学上的坐标系来说。三维表现在长,宽,高,单位长度,坐标位置。时间和空间都离不开物质的运动。爱因斯坦说,物质消失,时间和空间就消失,物质存在,时间和空间就存在。 时间和空间是存在某种辩证关系的,例如我们定义地球自转一圈为一天,公转一圈为有一年,时间的定义取决于空间天体的运动。定义距离单位光年是指光行走一年的路程。 随着课程的进行,引入了一个新的名词,时间流速,相对论已经有了很好的解释。当速度越接近光速,时间越长,空间越短。光速是速度的极限。速度达到光速,时间和空间停止。速度也是相对运动的,当速度越接近光速,时间流逝得越慢,相当于速度来说,就成了慢镜头了,相对速度变慢,但永远无法超越光速,超越光速

量子力学基础和原子结构

第一章量子力学基础和原子结构 §1-1量子力学建立的实验和理论背景 1. 黑体辐射问题和普朗克的量子假说 黑体辐射问题:黑体可以吸收全部外来辐射。黑体受热会辐射能量。若以Eν表示黑体辐射的能量,Eνdν表示频率在ν到v+d(范围内、单位时间、单位表面积上辐射的能量。以E(对(作图,得到能量分布曲线。从经典物理推出的公式无法解释黑体辐射的能量分布曲线:1)从粒子角度,由经典热力学得到维恩公式,只适用于高频范围;2)从波动角度,由经典电动力学和统计物理理论得到瑞利-金斯公式,只适用于低频范围。 普朗克的量子假说:普朗克首先提出一个经验公式,和实验结果一致。在寻求理论上的解释时,发现经典物理学是无法解决这个问题。要使新的公式成立,必须假设能量在发射和吸收的时候,不是连续不断,而是分成一份一份的。而经典物理认为一切自然的过程都是连续不断的。 = 1 \* GB3 ①假设黑体内的分子、原子以不同的频率做简谐振动,这种做简谐振动的分子、原子称为谐振子。 = 2 \* GB3 ②对于振动频率为(0的谐振子,能量具有最小单位(0,该谐振子的能量E只能是(0的整数倍,而不能是其它值,即 E=nε0n=1,2,3…(1-1-1) ③能量的最小单位ε0称为能量子,或量子,它和振动频率ν0有如下关系: ε0=hν0(1-1-2) 其中h为常数,大小为6.626×10-34J?s,称为普朗克常数, ④谐振子吸收或发射能量时,能量的变化为 ?E=|E1-E2|=|n1ε0-n2ε0|=|n1-n2|ε0(1-1-3) 即,能量的吸收和发射不是连续的,必须以量子的整数倍一份一份的进行。这种物理量的不连续变化称为量子化。

哲学中的时空观

物理与哲学时空观 摘要:关于时空观念,在很早以前就被前辈所注意,很多的哲学家、思想家都在思考、讨论这个问题。康德、普里戈金、佛家、《周易》等,中外各家都有自己的看法,观点有同也有异。但是,都可以称之为“哲学”的时空观,与现物理学所阐述的“经典时空观”或“相对论时空观”大不同。哲学的博大精深,注定了“哲学中的时空观”会更神秘神奇,更能吸引眼球,从而引发人们对于时间与空间的无限遐想,随着对时空的认识不断深入,人们对物理学的时空也有新的理解和猜测。 关键词:哲学、物理、时空观 当今社会,随着科技的发展,人们对于科学普遍重视,但对哲学,重视程度明显不比对于科学技术。在科学理论上,时间与空间观念大致可分为两种:牛顿的经典时空观、爱因斯坦的相对论时空观。但是在哲学体系中,时空观念就有很多很复杂的学说。 1.物理时空观 1.1 经典时空观与相对论时空观 一个明显的概念是一个数轴,然而一维空间不是数轴。可以是一条在二维平面上的曲线,只要我们在这条线上找个原点,确定一下量度,这也是一个不折不扣的一维空间,身在这个空间上的东西不会察觉到这条曲线其实是处于一个二维空间中。同理,这条曲线可以处于更多维空间,而身在其中的人却一无所知。而我们所处的三维空间可能和那条线遭遇相同,我们对自己所于三维空间深信不疑,但有可能这个三维空间可能扭曲在更多维的空间中,我们能否能理解那个更多维的空间呢? 经典力学时空观指引下的牛顿力学理论有局限性,它只能适用于宏观物体的低速运动,对于微观世界和高速运动的物体则无能为力。微观粒子遵从量子力学规律,高速运动遵从相对论力学规律,它是以相对论的时空观为指导的。爱因斯坦相对论的思想本质上是同科学已经显现出来的规律和总趋势相一致的(1)。相对论力学具有更广泛的实际意义,它把经典力学作为物体运动速度远小于光速的一种特例包括在内,所以相对论力学与经典力学是相辅相成的,而不是相互矛

相对论电动力学作业答案

1. 证明下述量为洛仑兹不变量: 1) A 2?Φ2/c 2; 2)J 2?c 2ρ2;3)E 2?c 2B 2 解: 1)A μ= A,i Φc 为四维势矢量,因此: A μ,A μ,=A ,2?Φ2 c 2=a μνA νa μλA λ=δνλA νA λ=A νA ν=A 2?Φ2/c 2是不变量 2)J μ= J ,ic ρ 是四维电流密度矢量, J μ,J μ, =J ,2?c 2ρ,2=a μνJ νa μλJ λ=δνλJ νJ λ=J νJ ν=J 2?c 2ρ2是不变量 3)(i c E ,)2+B ,2=F ,μνF ,μν=a μλF λ?a ?νT a μλF λ?a ?νT =F μνF μν=(i c E)2+B 2, 所以E 2?c 2B 2为不变量 2. 试证明:在一惯性系中 E >c B ,则在一切惯性系中都是如此。 证明:由1.(3)的证明,E 2?c 2B 2为不变量,所以若在一惯性系中 E >c B ,则在一切惯性系中都成立 3. 设在S 系中E 沿y 方向,B 沿z 方向,若在S 1系中只有电场没有磁场,求S 1系相对于S 系的速度 解:由题意,B 3,=γ B ? v c ?c E =0,所以v=c 2B E 4. 一无限长理想螺线管在S 系中静止,轴与y 轴平行,螺线管单位长度有n 匝,通有电流 I ,S 1沿S 系的x 方向以匀速v 运动,求S 1系中观察者测量到螺线管外部和内部的电场和磁场 解:螺线管内部磁场: B 2=μ0I 0n 沿y 轴方向 ,B ,=γB 2=γμ0I 0n ,电场为0,螺线管 外部电场磁场均为0 5. 有一平行于x 轴的线密度λ的无限长带电直线,沿x 轴方向以匀速v 运行,一个任意速度 运动的点电荷q 位于(0,b ,0)处,求作用在点电荷q 上的力并求在点(0,b ,0)处 电场与磁场关系 解:设导线所在S 系,点电荷S ,系, 则S 系中,E=I 2πενb =λ2πεb 沿y 轴方向;B=μ0I 2πb =μ0λν2πb 沿z 轴方向。 设点电荷运动沿x 轴,速度u S ,系中,E ,=E 2,=γ E 2?uB 3 =γ(λ2πεb ?u μ0λν2πb ),其中γ= 1?c ; 在S ,系中,F ,=q(E ,+v ,×B ,),其中v ,因为是在自己的参考系中,速度为0

何谓绝对时空观

何谓绝对时空观? 答绝对时间是指时间的量度和参考系无关,绝对空间是指长度的量度与参考系无关。这也就是说,同样两点间的距离或同样的前后两个事件之间的时间,无论在哪个惯性系中测量都是一样的。经典力学总结了低速物体的运动规律,它反映了牛顿的绝对时空观。绝对时空观认为时间和空间是两个独立的观念,彼此之间没有联系,分别具有绝对性。绝对时空观认为时间与空间的度量与惯性参照系的运动状态无关,同一物体在不同惯性参照系中观察到的运动学量(如坐标、速度)可通过伽利略变换而互相联系。这就是力学相对性原理:一切力学规律在伽利略变换下是不变的。绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地、与任何其他外界事物无关地流逝着”;“绝对的空间,就其本性而言,是与外界任何事物无关而永远是相同的和不动的”。这就是牛顿力学的“绝对时间”和“绝对空间”。这种观点统治了人类几千年。直至今日,绝对时空观念还在影响着人类的思维方式和哲学观点,因为绝对时空世界是低速世界,几乎我们全部物理理论都是建立在“低速世界”基础之上的,这是谁也无法改变的事实。在这一“现实”面前,物理学家们所要做的事就是把主观与“客观”的距离缩小到最小范围。 经典力学总结出哪三大守恒定律?请举出实例并分析之。 答经典力学总结出动量守恒定律,机械能守恒定律以及角动量守恒定律。 1.动量守恒定律的实例就是火箭的。根据动量守恒定律,当一个系统向后高速射出一个小物体时,该系统就会获得与小物体相同大小但方向相反的动量,即系统将获得向前的速度。火箭喷管收缩后的燃烧室中气体分子和燃烧室壁的碰撞次数,单位时间单位面积是没有收缩的左图中燃烧室壁的4倍。但是在喷气口上则没有碰撞,这么多的碰撞的动量是来自于哪里呢?很显然,一个气体分子的每一次碰撞必然是遵守动量守恒定律的。采用喷管扩张的技术来对燃气分子的热能进行第二次利用则是变成很简单的问题了。并且会增加火箭燃料的有效利用率。 2.机械能守恒定律的实例就是如无外力做功或外力做功之和为零,系统内又只有保守力(见势能)做功时,则系统的机械能(动能与势能之和)保持不变。外力做功为零,表明没有从外界输入机械功;只有保守力做功,即只有动能和势能的转化,而无机械能转化为其他能,符合这两条件的机械能守恒对一切惯性参考系都成立。这个定律的简化说法为:质点(或质点系)在势场中运动时,其动能和势能的和保持不变;或称物体在重力场中运动时动能和势能之和不变。这一说法隐含可以忽略不计产生势力场的物体(如地球)的动能的变化。这只能在一些特殊的惯性参考系如地球参考系中才成立。如图所示,若不考录一切阻力与能量损失,滚摆只受重力作用,在此理想情况下,重力势能与动能相互转化,而机械能不变,滚摆将不断上下运动3角动量守恒定律的实例就是航天器的运动以及跳水运动员在空中把身体卷曲起来使转动加快,而在接近水面时又将身体放开使转速减少,这些都是角动量守恒定律的应用。 何谓对称性?三大守恒定律分别对应着哪种对称性?为什么守恒定律比牛顿定律适用范围广泛的多? 答 1.有一类对称性是指某个系统或具体事物的对称性,另一种对称性是物理定律的对称性,它是指经过一定的操作后,物理定律的形式保持不变,因此也称不变性,一个物体包含若干等同部分,对应部分相等。不改变物体内部任何两点间的距离而使物体复原的操作,称为对称性操作,物理学中也称反演操作。对称性操作主要有:旋转、反映、反演、象转、反转;旋转和反映是基本对称操作。完成对称操作的几何元素称为对称元素,包括:旋转轴,镜面,对称中心,映轴,反轴;对称轴和对称面是基本的对称元素。2.对应于空间均匀性有动量守恒定律,对应于空间的各项同性有角动量守恒定律,对应于时间平移对称性有能量守恒定律。3.因为牛顿运动定律一般只适

相关主题
文本预览
相关文档 最新文档