当前位置:文档之家› 复变函数论第三版课后习题答案

复变函数论第三版课后习题答案

复变函数论第三版课后习题答案
复变函数论第三版课后习题答案

第一章习题解答

(一)

1

.设z ,求z 及Arcz 。

解:由于3i z e π

-==

所以1z =,2,0,1,3

Arcz k k ππ=-+=± 。

2

.设121z z =,试用指数形式表示12z z 及12

z z 。

解:由于6412,2i i z e z i e ππ

-==== 所以()6

46

4

12

12222i i i

i

z z e e

e

e π

πππ

π

--===

54()14612

26

11222i

i i i z e e e z e πππππ

+-===。 3.解二项方程440,(0)z a a +=>。

解:1

244

4

(),0,1,2,3k i

i z a e ae

k ππ

π+====。

4.证明2

2

21212122()z z z z z z ++-=+,并说明其几何意义。

证明:由于2

2

2

1212122Re()z z z z z z +=++

2

2

2

12

12122Re()z z z z z z -=+-

所以2

2

21212

122()z z z z z z ++-=+

其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3是内

接于单位圆

1

=z 的一个正三角形的顶点。

证 由于1

321

===z z z

,知

321z z z ?的三个顶点均在单位圆上。

因为

3

33

31z z z ==

()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=

21212z z z z ++=

所以, 1212

1-=+z z z z ,

)

())((1221221121212

21z z z z z z z z z z z z z z +-+=--=-

()322121=+-=z z z z

故 3

21

=-z z ,

同理

33231=-=-z z z z ,知321z z z ?是内接于单位圆1=z 的一个正三角形。

6.下列关系表示点z 的轨迹的图形是什么?它是不是区域。 (1) 1212,()z z z z z z -=-≠; 解:点

z 的轨迹是1

z 与2

z

两点连线的中垂线,不是区域。

(2)4z z ≤-; 解:令z x yi =+

由(4)x yi x yi +≤-+,即2222(4)x y x y +≤-+,得2x ≤ 故点

z 的轨迹是以直线2x =为边界的左半平面(包括直线2x =);不是区域。

(3)

1

11

z z -<+ 解:令z x yi =+,

由11z z -<+,得22(1)(1)x x -<+,即0x >; 故点

z 的轨迹是以虚轴为边界的右半平面(不包括虚轴);是区域。

(4)0arg(1),2Re 34

z z π

<-<≤≤且;

解:令z x yi =+

由0arg(1)42Re 3z z π?

<-

1423y x x π?<

,即0123y x x <<-??

≤≤? 故点

z 的轨迹是以直线2,3,0,1x x y y x ====-为边界的梯形(包括直线2,3x x ==;

不包括直线0,1y y x ==-);不是区域。 (5)2,1z z >>且-3; 解:点

z 的轨迹是以原点为心,2为半径,及以3z =为心,以1为半径的两闭圆外部,

是区域。

(6)Im 1,2z z ><且; 解:点

z 的轨迹是位于直线Im 1z =的上方(不包括直线Im 1z =),且在以原点

为心,2为半径的圆内部分(不包括直线圆弧);是区域。

(7)2,0arg 4

z z π

<<<

且;

解:点

z 的轨迹是以正实轴、射线arg 4

z π=及圆弧1z =为边界的扇形(不包括边界),

是区域。 (8)131,2222

i z z i -

>->且 解:令z x yi =+

由12231

22i z z i ?->????->??

,得2

211

()2431()24

x y x y ?+->???

?+->?? 故点

z 的轨迹是两个闭圆2

21131

(),()2424

x

y x y +-=+-=的外部,是区域。

7.证明:z 平面上的直线方程可以写成C z a z a =+(a 是非零复常数,C 是实常数) 证 设直角坐标系的平面方程为

Ax By C +=将

11

Re (),Im ()22x z z z y z z z i

==+==-代入,得

C z B A z B A =-+-)i (21

)i (21

)i (21B A a +=

,则)i (21

B A a -=,上式即为

C z a z a =+。

反之:将,z x yi z x yi =+=-,代入C z a z a =+ 得()()a a x ia ia y c ++-= 则有

Ax By C +=;即为一般直线方程。

8.证明:

z 平面上的圆周可以写成

0.Azz z z c ββ+++=

其中A 、C 为实数,0,A β≠为复数,且2

AC β>。

证明:设圆方程为

22()0A x y Bx Dy C ++++=

其中0,A ≠当2

2

4B D AC +>时表实圆;

2

2

11

,(),()22x y zz x z z y z z i

+==+=-代入,得 11

()()022

Azz B Di z B Di z c +-+++=

即0.Azz z z c ββ+++= 其中11

(),()22

B Di B Di ββ=+=- 且2

2211

()444

B D A

C AC β

=

+>?=; 反之:令,z x yi a bi β=+=+代入2

0()Azz z z c AC βββ+++=>

得22()0,A x y Bx Dy C ++++=其中2,2B a B b == 即为圆方程。

10.求下列方程(t 是实参数)给出的曲线。 (1)

t z i)1(+=; (2)t b t a z sin i cos +=;

(3)

t t z i

+

=; (4)2

2i t t z +=,

解(1)???∞

<<-∞==?+=+=t t y t x t y x z ,)i 1(i 。即直线x y =。

(2)

π

20,

sin cos sin i cos i ≤

a x t

b t a y x z ,即为椭圆12

2=+b y a x ;

(3)

????

?==?+=+=t y t x t t y x z 1

i i ,即为双曲线1=xy ; (4)???

??==?+=+=22221i i t y t x t t y x z ,即为双曲线1=xy 中位于第一象限中的一支。

11.函数

z w 1

=

将z 平面上的下列曲线变成w 平面上的什么曲线()iv u w iy x z +=+=,?

(1)x y =; (2)()112

2

=+-y x

222211y x y i

y x x iy x z w +-+=+==

,2222,y x y v y x x u +-=+=,可得

(1)

()v

y x y y x y y x x u -=+--=+=+=

2

22222是w 平面上一直线;

(2)

()21

211222222=

+?

=+?=+-y x x x y x y x ,

于是

21

=

u ,是w 平面上一平行与v 轴的直线。

13.试证)arg (arg ππ≤<-z z 在负实轴上(包括原点)不连续,除此而外在z 平面上处处连续。

证 设z z f arg )(=,因为f (0)无定义,所以f (z )在原点z =0处不连续。 当z 0为负实轴上的点时,即)0(000<=x x z ,有

?

?

?-=???????????? ??-???

??+=-+

→→→→→ππππx y x y z y x x y x x z z arctan lim arctan lim arg lim 00000

所以z

z z arg lim 0→不存在,即z arg 在负实轴上不连续。而argz 在z 平面上的其它点处的连续性

显然。

14. 设

00=≠z z 求证()z f 在原点处不连接。 证 由于

()01lim lim lim 42

062400=+=+=→→=→x x x x x z f x x x

y z

()21

lim lim 666003

=+=→=→y y y z f y y

x z

( )

? ? ? ? ? + = , 0 , 6 2 3 y x xy z f

可知极限

()z f

z0

lim

→不存在,故

()z f在原点处不连接。

16. 试问函数f(z) = 1/(1 –z )在单位圆| z | < 1内是否连续?是否一致连续?

【解】(1) f(z)在单位圆| z | < 1内连续.

因为z在 内连续,故f(z) = 1/(1 –z )在 \{1}内连续(连续函数的四则运算),因此f(z)在单位圆| z | < 1内连续.

(2) f(z)在单位圆| z | < 1内不一致连续.

令z n= 1 – 1/n,w n= 1 – 1/(n + 1),n∈ +.

则z n, w n都在单位圆| z | < 1内,| z n-w n | → 0,

但| f(z n)-f(w n)| = | n - (n + 1) | = 1 > 0,故f(z)在单位圆| z | < 1内不一致连续.

[也可以直接用实函数f(x) = 1/(1 –x )在(0, 1)不一致连续来说明,只要把这个实函数看成是f(z)在E = { z∈ | Im(z) = 0, 0 < Re(z) < 1 }上的限制即可.]

17. 试证:复数列z n = x n + i y n以z0 = x0 + i y0为极限的充要条件是实数列{x n}及{y n}分别以x0及y0为极限.

【解】(?) 若复数列z n = x n + i y n以z0 = x0 + i y0为极限,

则?ε > 0,?N∈ +,使得?n > N,有| z n -z0| < ε.

此时有| x n -x0| ≤ | z n -z0| < ε;| y n -y0| ≤ | z n -z0| < ε.

故实数列{x n}及{y n}分别以x0及y0为极限.

(?) 若实数列{x n}及{y n}分别以x0及y0为极限,则?ε > 0,

?N1∈ +,使得?n > N1,有| x n -x0| < ε/2;

?N2∈ +,使得?n > N2,有| y n -y0| < ε/2.

令N = max{N1, N2},则?n > N,有n > N1且n > N2,

故有| z n -z0| = | (x n -x0) + i (y n -y0)| ≤ | x n -x0| + | y n -y0| < ε/2 + ε/2 = ε.

所以,复数列z n = x n + i y n以z0 = x0 + i y0为极限.

20. 如果复数列{z n}合于lim n→∞z n = z0≠∞,证明lim n→∞ (z1 + z2 + ... + z n)/n = z0.

当z0≠∞时,结论是否正确?

【解】(1) ?ε > 0,?K∈ +,使得?n > K,有| z n -z0| < ε/2.

记M = | z1-z0 | + ... + | z K-z0 |,则当n > K时,有

| (z1 + z2 + ... + z n)/n-z0 | = | (z1-z0) + (z2-z0) + ... + (z n-z0) |/n

≤ ( | z1-z0 | + | z2-z0 | + ... + | z n-z0 |)/n

= ( | z1-z0 | + ... + | z K-z0 |)/n + ( | z K +1-z0 | + ... + | z n-z0 |)/n

≤M/n + (n-K)/n · (ε/2) ≤M/n + ε/2.

因lim n→∞ (M/n) = 0,故?L∈ +,使得?n > L,有M/n < ε/2.

令N = max{K, L},则当n > K时,有

| (z1 + z2 + ... + z n)/n-z0 | ≤M/n + ε/2 < ε/2 + ε/2 = ε.

所以,lim n→∞ (z1 + z2 + ... + z n)/n = z0.

(2) 当z0≠∞时,结论不成立.这可由下面的反例看出.

例:z n = (-1)n ·n,n∈ +.显然lim n→∞z n = ∞.

但?k∈ +,有(z1 + z2 + ... + z2k)/(2k) = 1/2,

因此数列{(z1 + z2 + ... + z n)/n}不趋向于∞.

[这个结论的证明的方法与实数列的情况完全相同,甚至反例都是一样的.]

2.如果it e

z=,试证明

(1)nt z z n n

cos 21=+; (2)nt z z n

n

sin i 21=-

解 (1)

nt e e e e z z n n sin 21

int int int int =+=+=+

-

(2)

nt e e e e z z n n sin i 21int

int int int =-=-=-

-

4.设iy x z +=,试证

y

x z y x +≤≤+2

证 由于

y

x y x y x y x z +=++≤

+=22

222

()

2

2

22

2222

22

2

y x y

x y x y x y x z +=

++≥+=

+=

y

x z y

x +≤≤+2

6. 设| z | = 1,试证:| (a z + b )/(b * z + a * ) | = 1.(z *表示复数z 的共轭) 【解】此题应该要求b * z + a * ≠ 0.

| a z + b | = | (a z + b )* | = | a * z * + b * | = | a * z * + b * | · | z | = | (a * z * + b *) · z | = | a * z * · z + b * · z | = | a * | z |2 + b * · z | = | b * z + a * |. 故| (a z + b )/(b * z + a * ) | = 1.

8. 试证:以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件为

1

1133

2211w z w z w z = 0. 【解】两个三角形同向相似是指其中一个三角形经过(一系列的)旋转、平移、位似这三种初等几何变换后可以变成另一个三角形(注意没有反射变换).例如

z'z 3

1

2

我们将采用下述的观点来证明:

以z 1, z 2, z 3为顶点的三角形和以w 1, w 2, w 3为顶点的三角形同向相似的充要条件是:将它们的一对对应顶点都平移到原点后,它们只相差一个位似旋转.

记f 1(z ) = z - z 1 (将z 1变到0的平移);f 3(z ) = z - w 1 (将0变到w 1的平移); 那么,三角形z 1z 2z 3与三角形w 1w 2w 3同向相似 ? 存在某个绕原点的旋转位似变换f 2(z ) = z 0 z , 使得f 2 ( f 1(z k )) = f 3(w k ),(k = 2, 3),其中z 0∈ \{0}

? 存在z 0∈ \{0},使得z 0(z k - z 1) = w k - w 1,(k = 2, 3) ? (w 2 - w 1)/(z 2 - z 1) = (w 3 - w 1)/(z 3 - z 1) ?

1

31

31212w w z z w w z z ----= 0

?

1

11

013131212w w z z w w z z ----= 0 ?

1

11

33

2211

w z w z w z = 0.[证完] 9. 试证:四个相异点z 1, z 2, z 3, z 4共圆周或共直线的充要条件是 (z 1 – z 4)/(z 1 – z 2) : (z 3 – z 4)/(z 3 – z 2)为实数.

【解】在平面几何中,共线的四个点A , B , C , D 的交比定义为

(A , B ; C , D ) = (AC /CB ) : (AD /DB ).

这是射影几何中的重要的不变量.

类似地,在复平面上,(不一定共线的)四个点z 1, z 2, z 3, z 4的交比定义为

[z 1z 2, z 3z 4] = (z 1 – z 3)/(z 2 – z 3) : (z 1 – z 4)/(z 2 – z 4).

本题的结论是说:复平面上四个点共圆或共线的充要条件是其交比为实数. (?) 分两种情况讨论

(1) 若(z 1 – z 4)/(z 1 – z 2)为实数,则(z 3 – z 4)/(z 3 – z 2)也是实数. 设(z 1 – z 4)/(z 1 – z 2) = t ,t ∈ .则z 4 = (1 – t )z 1 + t z 2,

故z4在z1, z2所确定的直线上,即z1, z2, z4共线.

因此,同理,z1, z2, z3也共线.所以,z1, z2, z3, z4是共线的.

(2) 若(z1–z4)/(z1–z2)为虚数,则(z3–z4)/(z3–z2)也是虚数.

故Arg ((z1–z4)/(z1–z2)) ≠kπ,Arg ((z3–z4)/(z3–z2)) ≠kπ.

而Arg ((z1–z4)/(z1–z2)) – Arg ((z3–z4)/(z3–z2))

= Arg ((z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)) = kπ.

注意到Arg ((z–z4)/(z–z2)) = Arg ((z4–z)/(z2–z))是z2–z到z4–z的正向夹角,

若Arg ((z1–z4)/(z1–z2)) = Arg ((z3–z4)/(z3–z2)),

则z1, z3在z2, z4所确定的直线的同侧,且它们对z2, z4所张的角的大小相同,

故z1, z2, z3, z4是共圆的.

若Arg ((z1–z4)/(z1–z2)) = Arg ((z3–z4)/(z3–z2)) + π,

则z1, z3在z2, z4所确定的直线的异侧,且它们对z2, z4所张的角的大小互补,

故z1, z2, z3, z4也是共圆的.

(?) 也分两种情况讨论

(1) 若z1, z2, z3, z4是共线的,则存在s, t∈ \{0, 1},使得

z4 = (1 –s)z3 + s z2,z4 = (1 –t)z1 + t z2,

那么,z3–z4 = s (z3 –z2),即(z3–z4)/(z3–z2) = s;

而z1–z4 = t (z1 –z2),即(z1–z4)/(z1–z2) = t,

所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2) = t/s∈ .

(2) 若z1, z2, z3, z4是共圆的,

若z1, z3在z2, z4所确定的直线的同侧,那么,

Arg ((z4–z1)/(z2–z1)) = Arg ((z4–z3)/(z2–z3))

因此(z4–z1)/(z2–z1) : (z4–z3)/(z2–z3)是实数.

也就是说(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)是实数.

若z1, z3在z2, z4所确定的直线的异侧,

则Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,

故Arg ((z1–z4)/(z1–z2) : (z3–z4)/(z3–z2))

= Arg ((z1–z4)/(z1–z2)) – Arg ((z3–z4)/(z3–z2))

= Arg ((z1–z4)/(z1–z2)) + Arg ((z3–z2)/(z3–z4))

= Arg ((z4–z1)/(z2–z1)) + Arg ((z2–z3)/(z4–z3)) = (2k + 1)π,

所以,(z1–z4)/(z1–z2) : (z3–z4)/(z3–z2)仍为实数.[证完]

这个题目写的很长,欢迎同学们给出更简单的解法.

11. 试证:方程| z -z1 |/| z -z2 | = k ( 0 < k ≠ 1,z1≠z2 )表示z平面的一个圆周,其圆心为z0,半径为ρ,且z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.

【解】到两定点距离成定比的点的轨迹是圆或直线.当比值不等于1时,轨迹是一个圆,这个圆就是平面几何中著名的Apollonius圆.

设0 < k ≠ 1,z1≠z2,z0 = (z1 -k2 z2)/(1-k2),ρ = k | z1 -z2|/| 1-k2 |.

?z∈ ,| z -z0 | = ρ

?| z - (z1 -k2 z2)/(1-k2)| = k | z1 -z2|/| 1-k2 |

?| z(1-k2)- (z1 -k2 z2) | = k | z1 -z2 |

?| (z -z1) -k2 (z-z2)| = k | z1 -z2|

?| (z -z1)/k-k (z-z2) | = | z1 -z2|

?| (z -z1)/k-k (z-z2) | = | (z -z1)- (z-z2) |

?| (z -z1)/k-k (z-z2) |2 = | (z -z1) - (z-z2) |2

?| z -z1 |2/k2 + k2 | z-z2 |2 = | z -z1 |2 + | z-z2 |2

?(1/k2 - 1)| z -z1 |2 = (1-k2 ) | z-z2 |2

?| z -z1 |2/k2 = | z-z2 |2

?| z -z1 |/| z-z2 | = k.[证完]

直接地双向验证,可能需要下面的结论,其几何意义非常明显的.

命题:若复数z, w≠ 0,则| | z | ·w /| w| - | w| ·z /| z| | = | w -z |.

证明:我们用z*表示复数z的共轭.

| | z | ·w /| w| - | w| ·z /| z| |2

= | | z | ·w /| w| |2 + | | w| ·z /| z| |2- 2Re[( | z | ·w /| w|) · (| w| ·z /| z|)* ]

= | z |2 + | w|2- 2Re( w ·z* ) = | w -z |2.

或更直接地,| | z | ·w /| w| - | w| ·z /| z| |

= | | z | ·w /| w| - | w| ·z /| z| | · | z*/| z| | · | w*/| w| |

= | (| z | ·w /| w| - | w| ·z /| z|) ·(z*/| z|) · (w*/| w|) |

= | (| z | · (z*/| z|) - | w| ·(w*/| w|)) | = | w -z |.

12. 试证:Re(z) > 0 ? | (1 -z)/(1 + z) | < 1,并能从几何意义上来读本题.

【解】Re(z) > 0 ?点z在y轴右侧

?点z在点-1和点1为端点的线段的垂直平分线的右侧

?点z在点-1和点1为端点的线段的垂直平分线的与1同侧的那一侧

?点z到点-1的距离大于点z到点1的距离

?|1 + z | > | 1 -z | ?| (1 -z)/(1 + z) | < 1.

不用几何意义可以用下面的方法证明:

设z = x + i y,x, y∈ .

| (1 -z)/(1 + z) | < 1 ?|1 + z | > | 1 -z | ?|1 + z |2 > | 1 -z |2

? 1 + z2 + 2Re(z) > 1 + z2- 2Re(z) ?Re(z) > 0.

[由本题结论,可知映射f(z) = (1 -z)/(1 + z)必然把右半平面中的点映射到单位圆内的点.并且容易看出,映射f(z)把虚轴上的点映射到单位圆周上的点.

问题:f(z)在右半平面上的限制是不是到单位圆的双射?f(z)在虚轴上的限制是不是到单位圆周的双射?]

???-?±≠≥·?≤≡⊕??αβχδεφγηι?κλμνοπθρστυ?ωξψζ∞??????∏∑? ⊥∠ √§ψ

∈???????∠?????§ #?→←↑↓?∨∧??????∑ΓΦΛΩ?

?m∈ +,?m∈ +,★?α1, α2, ..., αn?lim n→∞,+n→∞?ε > 0,∑u n,∑n≥ 1u n,m∈ ,

?ε > 0,?δ> 0,【解】?[0, 2π]l 2 dx,f(x) = (-∞, +∞)[-π, π]∑1 ≤k≤n u n,[0, 2π]

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

实变函数习题解答(1)

第一章习题解答 1、证明 A (B C)=(A B) (A C) 证明:设x∈A (B C),则x∈A或x∈(B C),若x∈A,则x∈A B,且x∈A C,从而x∈(A B) (A C)。若x∈B C,则x∈B且x∈C,于是x∈A B且x∈A C,从而x∈(A B) (A C),因此 A (B C) ? (A B) (A C) (1) 设x∈(A B) (A C),若x∈A,则x∈A (B C),若x∈A,由x∈A B 且x∈A C知x∈B且x∈C,所以x∈B C,所以x∈A (B C),因此 (A B) (A C) ? A (B C) (2) 由(1)、(2)得,A (B C)=(A B) (A C) 。 2、证明 ①A-B=A-(A B)=(A B)-B ②A (B-C)=(A B)-(A C) ③(A-B)-C=A-(B C) ④A-(B-C)=(A-B) (A C) ⑤(A-B) (C-D)=(A C)-(B D) (A-B)=A B A-(A B)=A C(A B)=A (CA CB) =(A CA) (A CB)=φ (A CB)=A-B (A B)-B=(A B) CB=(A CB) (B CB) =(A CB) φ=A-B ②(A B)-(A C)=(A B) C(A C) =(A B) (CA CC)=(A B CA) (A B CC)=φ [A (B CC)]= A (B-C) ③(A-B)-C=(A CB) CC=A C(B C) =A-(B C) ④A-(B-C)=A C(B CC)=A (CB C) =(A CB) (A C)=(A-B) (A C) ⑤(A-B) (C-D)=(A CB) (C CD) =(A C) (CB CD)=(A C) C(B D) =(A C)-(B D)

实变函数论课后答案第三章1

实变函数论课后答案第三章1 第三章第一节习题 1.证明:若E 有界,则m E *<∞. 证明:若n E R ?有界,则存在一个开区间 (){}120,,;n M n E R I x x x M x M ?=-<< . (0M >充分大)使M E I ?. 故()()()111 inf ;2n n n n m n n i m E I E I I M M M ∞∞ * ===??=?≤=--=<+∞????∑∏ . 2.证明任何可数点集的外测度都是零. 证:设{}12,,,n E a a a = 是n R 中的任一可数集.由于单点集的外测度为零, 故{}{}{}()12111 ,,,00n i i i i i m E m a a a m a m a ∞ ∞ ∞ * * * *===??==≤== ???∑∑ . 3.证明对于一维空间1R 中任何外测度大于零的有界集合E 及任意常数μ,只要 0m E μ*≤≤,就有1E E ?,使1m E μ*=. 证明:因为E 有界,设[],E a b ?(,a b 有限), 令()(),f x m E a x b *=?<< , 则()()()()[]()()0,,f a m E m f b m a b E m E ****=?=?=== . 考虑x x x +?与,不妨设a x x x b ≤≤+?≤, 则由[])[]())()[](),,,,,a x x E a x x x x E a x E x x x E +?=+?=+????? . 可知())()[](),,f x x m a x E m x x x E ** +?≤++??? ()[]()(),f x m x x x f x x *≤++?=+?.

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

实变函数第三章习题参考解答

实变函数第三章习题参考解答 1.设f 是E 上的可测函数,证明:R a '∈?,})(|{a x f x E ==是可测集. 解:R a '∈?,因为)(x f 是E 上的可测,所以})(|{a x f x E ==与 })(|{a x f x E ≤=均是可测集.从而 })(|{a x f x E ==})(|{a x f x E ≥==})(|{a x f x E ≤= 可测. 2.设f 是E 上的函数,证明:f 在E 上的可测当且仅当对一切有理数r , })(|{r x f x E >=是可测集. 证:) (?R a '∈?,取单调递减的有理数序列∞=1}{k k r 使得a r k k =+∞ →lim ,则 })(|{})(|{1 k k r x f x E a x f x E >=>=∞ = .由每个k r x f x E >)(|{}的可测性,知 })(|{a x f x E >=可测.从而,)(x f 在E 上的可测. )(?设f 在E 上的可测,即R a '∈?,})(|{a x f x E >=可测.特别地,当r a =时 有理数时,})(|{r x f x E >=可测. 3. 设f 是R '上的可测函数,证明:对于任意的常数α,)(x f α是R '上的可测函数. 为证上述命题,我们先证下面二命题: 命题1.若E 是R '中的非空子集,则R '∈?α,有E m E m *||*αα= 证明:当0=α时,因为}0{=E α,则E m E m *||*αα=.不妨设,0≠α.因为 E I I E m i i i i ?=∞ =∞ =∑1 1 ||inf{* ,i I 为开区间}.0>?ε,存在开区间序列∞=1}{i i I , E I i i ?∞ =1 ,||*||*1αε + <≤∑∞ =E m I E m i i .又因为E I i i ?∞=α1 (注:若),(i i i I βα=,则 ? ??=ααααβααβααα),,(),,(i i i i i I . 所以εααααα+?<==≤ ∑∑∑∞ =∞=∞ =E m I I I E m i i i i i i *||||||||||||*1 1 1 .由ε得任意性,有

实变函数论课后答案第五章1

实变函数论课后答案第五章1 第无章第一节习题 1.试就[0,1]上 的D i r i c h l e 函数()D x 和Riemann 函数()R x 计算[0,1] ()D x dx ? 和 [0,1] ()R x dx ? 解:回忆1 1()0\x Q D x x R Q ∈?=?∈?即()()Q D x x χ= (Q 为1 R 上全体有理数之集合) 回忆: ()E x χ可测E ?为可测集和P129定理2:若E 是n R 中测度有 限的可测集, ()f x 是E 上的非负有界函数,则_ ()()() E E f x dx f x dx f x =???为E 上的可测函数 显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积 由P134Th4(2)知 [0,1] [0,1][0,1][0,1][0,1]()()()10c c Q Q Q Q Q Q Q x dx x dx x dx dx dx χχχ????= + = + ? ? ? ? ? 1([0,1])0([0,1])10010c m Q m Q =??+??=?+?= 回忆Riemann 函数()R x :1:[0,1]R R 11,()0[0,1]n n x m n m R x x x Q ?= ??==??∈-?? 和无大于的公因子1 在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0 .R x a e =于[0,1]上,故()R x 可

测(P104定理3),且 [0,1] ()R x dx ? [0,1]()()Q Q R x dx R x dx -= +? ? 而0()10Q Q R x dx dx mQ ≤≤==??(Q 可数,故*0m Q =)故 [0,1] [0,1][0,1]()()00Q Q R x dx R x dx dx --= = =? ? ? 2.证明定理1(iii)中的第一式 证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()E E E f x dx f x dx g x dx --≥+??? 下面证明之: 0ε?>,有下积分的定义,有E 的两个划分1D 和2D 使 1 ()()2 D E s f f x dx ε -> - ? ,2 ()()2 D E s g g x dx ε -> - ? 此处1 ()D s f ,2 ()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12 ,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时 12(()())()D D D D D f x g x dx s f g s f s g s f s g - +≥+≥+≥+? ()()()()22E E E E f x dx g x dx f x dx g x dx εε ε----≥ -+-=+-? ???(用到下确界的性 质和P125引理1) 由ε的任意性,令0ε→,而得(()())()()E E f x g x dx f x dx g x dx - --+≥+??? 3.补作定理5中()E f x dx =+∞?的情形的详细证明 证明 :令 {} |||||m E E x x m =≤,当 ()E f x dx =+∞ ?时, ()lim ()m m E E f x dx f x dx →∞ +∞==?? 0M ?>,存在00()m m M N =∈,当0m m ≥时,

复变函数论第三版课后习题答案解析

1.设 z 1 3i ,求 z 及 Arcz 。 解:由于 z 1, Arcz 2k , k 0, 1, 。 3 (z 1 z 2)( z 1 z 2) z 1z 1 z 2z 2 (z 1z 2 z 2z 1) 2 z 1z 2 z 1 z 2 3 第一章习题解 答 (一) 2.设 z 1 i , z 3 1 ,试用指数形式表示 1 2 2 z 1z 2 及 z 1 。 z 2 4 i 6i 1 i i 解:由于 z 1 e 3 4 , z 2 3 i 2e 1 2 2 i i ( )i i 所以 z1z2 e 4i 2e 6i 2e ( 4 6)i 2e 12i i z 1 e 4 1 e (4 6)i i z 2 2e 6 2 5i 1 1 e 12 。 2 3.解二项方程 z 4 a 4 0,(a 0) 。 2k i 解: z 4 a 4 (a 4e i )4 ae 4 ,k 0,1,2,3 。 4.证明 z 1 2 2 z 1 z 2 z 1 z 2 证明:由于 2 2 z 1 z 2 z 1 2 2 z 2 2 z 1 z 2 2( z 1 所以 z 1 z 2 其几何意义是: z 2 ) 2 2 ,并说明其几何意义。 2 2 Re(z 1 z 2) z 2 2Re(z 1 z 2) z 1 z 2 2( z 1 z 2 ) 平行四边形对角线长平方和等于于两边长的和的平方。 5.设 z 1, z 2,z 3三点适合条件: z1 z2 z3 0 z 1 z 2 z3 1 。证明 z 1,z 2, z 3是内 接于单位 圆 z 1 的一个正三角形的顶点。 证 由于 z 1 z 2 z3 1 ,知 z 1z 2z 3 的三个顶点均在单位圆上。 因为 所以, z 1z 2 z 1z 2 1 , 所以 z 1 z 2

复变函数习题及解答

第一章 复变函数习题及解答 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1-; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π2π,0,1,2,3k k +=±±L ;主辐角为4π 3; 原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为4π i 32e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθ θθθθθθ+=+=+ 计算下列复数 1)() 10 3 i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2) ()13π/42k π i 6 3 2e 0,1,2k +=; 计算下列复数 (1 (2 答案 (1 (2)(/62/3) i n e ππ+ 已知x

【解】 令 i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得到 2 2 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P Λ的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且()() k k z z =, 故由共轭复数性质有:()() z P z P =.则由已知()0i ≡+b a P .两端取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 证明: 2222 121212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=- 所以 44sin sin n n ππ=- 即为4sin 0n π =所以 4 ,4,(0,1,2,)n k n k k ππ===±±L 将下列复数表为sin ,cos θθ的幂的形式 (1) cos5θ; (2)sin5θ 答案 53244235 (1) cos 10cos sin 5cos sin (2) 5cos sin 10cos sin sin θθθθθ θθθθθ-+-+ 证明:如果 w 是1的n 次方根中的一个复数根,但是1≠w 即不是主根,则必有 对于复数 ,k k αβ,证明复数形式的柯西(Cauchy)不等式:

实变函数第三章复习题及解答

第三章 复习题 一、判断题 1、设()f x 是定义在可测集n E R ?上的实函数,如果对任意实数a ,都有[()]E x f x a >为可测集,则()f x 为E 上的可测函数。(√ ) 2、设()f x 是定义在可测集n E R ?上的实函数,如果对某个实数a ,有[()]E x f x a >不是可测集,则()f x 不是E 上的可测函数。(√ ) 3、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对某个实数a , [()]E x f x a ≥为可测集。(× ) 4、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a =为可测集。(× ) 5、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a , [()]E x f x a ≤为可测集。(√ ) 6、设()f x 是定义在可测集n E R ?上的实函数,则()f x 为E 上的可测函数等价于对任意实数a 和b (a b <), [()]E x a f x b ≤<为可测集。(× ) 7、设E 是零测集,()f x 是E 上的实函数,则()f x 为E 上的可测函数。(√ ) 8、若可测集E 上的可测函数列{()n f x }在E 上几乎处处收敛于可测函数()f x ,则{()n f x }在E 上“基本上”一致收敛于()f x 。(× ) 9、设()f x 为可测集E 上几乎处处有限的可测函数,则()f x 在E 上“基本上”连续。(√ ) 10、设E 为可测集,若E 上的可测函数列()()n f x f x ?(x E ∈),则{()n f x }的任何子列都在E 上几乎处处收敛于可测函数()f x 。(× ) 11、设E 为可测集,若E 上的可测函数列()()n f x f x →..a e 于E ,则()()n f x f x ?(x E ∈)。(× )

实变函数引论参考答案 曹怀信 第二章

。习题2.1 1.若E 是区间]1,0[]1,0[?中的全体有理点之集,求b E E E E ,,,' . 解 E =?;[0,1][0,1]b E E E '===?。 2.设)}0,0{(1sin ,10:),( ???? ??=≤<=x y x y x E ,求b E E E E ,,,' . 解 E =?;{(,):0,11}.b E E x y x y E E '==-≤≤== 3.下列各式是否一定成立? 若成立,证明之,若不成立,举反例说明. (1) 11n n n n E E ∞ ∞=='??'= ???; (2) )()(B A B A ''=' ; (3) n n n n E E ∞=∞==? ??? ??1 1 ; (4) B A B A =; (5) ???=B A B A )(; (6) .)(? ??=B A B A 解 (1) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则1 ( )n n E ∞=''==Q R , 而1.n n E ∞ ='=?但是,总有11 n n n n E E ∞∞=='??'? ???。 (2) 不一定。如 A =Q , B =R \Q , 则(),A B '=? 而.A B ''=R R =R (3) 不一定。如设12={,, ,,}n r r r Q ,{}n n E r =(单点集),则 1 n n E ∞===Q R , 而 1 .n n E ∞ ==Q 但是,总有11 n n n n E E ∞∞ ==??? ???。 (4) 不一定。如(,)A a b =,(,)B b c =,则A B =?,而{}A B b =。 (5) 不一定。如[,]A a b =, [,]B b c =, 则(,)A a b =, (,)B b c =,而 ()(,)A B a c =,(,)\{}A B a c b =. (6) 成立。因为A B A ?, A B B ?, 所以()A B A ?, ()A B B ?。因此, 有()A B A B ?。设x A B ∈, 则存在10δ>,20δ>使得1(,)B x A δ?且2(,)B x B δ?,令12min(,)δδδ=,则(,)B x A B δ?。故有()x A B ∈,即 ()A B A B ?。因此,()A B A B =. 4.试作一点集A ,使得A '≠?,而?='')(A . 解 令1111 {1,,,,,,}234A n =,则{0}A '=,()A ''=?. 5.试作一点集E ,使得b E E ?. 解 取E =Q ,则b E =R 。 6.证明:无聚点的点集至多是可数集. 证明 因为无聚点的点集必然是只有孤立点的点集,所以只要证明:任一只有孤立点的点集A 是最多可数。对任意的x A ∈,都存在0x δ>使得(,){}x B x A x δ=。有理开球(即中心为有理点、半径为正有理数的开球)(,)(,)x x x B P r B x δ?使得(,)x x x B P r ∈,从而 (,){}x x B P r A x =。显然,对于任意的,x y A ∈,当x y ≠时,有(,)(,)x x y y B P r B P r ≠, 从而(,)(,)x x y y P r P r ≠。令()(,)x x f x P r =,则得到单射:n f A + →?Q Q 。由于n + ?Q Q 可

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

复变函数论第三版课后习题答案

第一章习题解答 (一) 1 .设2z =z 及A rcz 。 解:由于32i z e π- = 所以1z =,2,0,1,3 A rcz k k ππ=- +=± 。 2 .设1 21z z = = ,试用指数形式表示12z z 及 12 z z 。 解:由于6 4 12,2i i z e z i e π π - += == = 所以( )646 4 12 12222i i i i z z e e e e π π π π π - - === 54( )14 6 12 2 6 112 2 2i i i i z e e e z e π ππππ+ - = = = 。 3.解二项方程440,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+= ===。 4.证明2 2 2 1212 122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212 122Re()z z z z z z +=++ 2 2 2 121 2 122R e () z z z z z z -=+- 所以2 2 2 12 12122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0 321=++z z z , 1 321===z z z 。证明z 1,z 2,z 3是内 接于单位圆1 =z 的一个正三角形的顶点。 证 由于 1 321===z z z ,知 3 21z z z ?的三个顶点均在单位圆上。 因为 3 33 3 1z z z == ()[]()[]2 12322112121z z z z z z z z z z z z +++=+-+-= 2 1212z z z z ++= 所以, 12121-=+z z z z , 又 ) ())((1221221121212 2 1z z z z z z z z z z z z z z +-+=--=- ()3 22121=+-=z z z z

(0195)《实变函数论》网上作业题及答案

[0195]《实变函数论》 第一次作业 [单选题]1.开集减去闭集是() A:A.开集 B:B.闭集 C:C.既不是开集也不是闭集 参考答案:A [单选题]2.闭集减去开集是() A:开集 B:闭集 C:既不是开集也不是闭集 参考答案:B [单选题]3.可数多个开集的交是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]4.可数多个闭集的并是() A:开集 B:闭集 C:可测集 参考答案:C [单选题]6.可数集与有限集的并是() A:有界集 B:可数集 C:闭集 参考答案:B

[判断题]5.任意多个开集的并仍是开集。 参考答案:正确 [单选题]8.可数多个有限集的并一定是() A:可数集 B:有限集 C:以上都不对 参考答案:C [单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集 B:闭集 C:可数集 参考答案:C [单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是 A:开集 B:闭集 C:有界集 参考答案:A [单选题]10.波雷尔集是() A:开集 B:闭集 C:可测集 参考答案:C [判断题]7.可数多个零测集的并仍是零测集合。 参考答案:正确 [单选题]1.开集减去闭集是()。 A:A.开集 B.闭集 C.既不是开集也不是闭集 参考答案:A [单选题]5.可数多个开集的并是() A:开集 B:闭集

C:可数集 参考答案:A [判断题]8.不可数集合的测度一定大于零。 参考答案:错误 [判断题]6.闭集一定是可测集合。 参考答案:正确 [判断题]10.开集一定是可测集合。 参考答案:正确 [判断题]4.连续函数一定是可测函数。 参考答案:错误 [判断题]3.零测度集合或者是可数集合或者是有限集。 参考答案:正确 [判断题]2.有界集合的测度一定是实数。 参考答案:正确 [判断题]1.可数集合是零测集 参考答案:正确 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 [判断题]9.任意多个闭集的并仍是闭集。 参考答案:错误 第二次作业 [单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:C [单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0 B:2 C:4 参考答案:A [单选题].2.[0,1] 中的全体有理数构成的集合的测度是() A:0 B:1

(完整)《复变函数与积分变换》期末考试试卷及答案,推荐文档

2 3 ∞ ?复变函数与积分变换?期末试题(A) 1.1 -i 一.填空题(每小题3 分,共计15 分) 的幅角是();2. Ln(-1 +i) 的主值是(1 );3.f (z) =1 +z 2 , z - sin z f (5)(0) =(); f (z) = 1 , 4.z = 0 是 z 4 的()极点;5.z Re s[f(z),∞]=(); 二.选择题(每小题3 分,共计15 分) 1.解析函数f (z) =u(x, y) +iv(x, y) 的导函数为(); (A)f '(z) =u x +iu y ;(B)f '(z) =u x-iu y; (C) f '(z) =u x +iv y ; (D) f '(z) =u y +iv x. 2.C 是正向圆周z = 3 ,如果函数f (z) =(),则?C f (z)d z = 0 . 3 ;(B)3(z -1) ;(C) 3(z -1) ;(D) 3 . (A) z - 2 z - 2 (z - 2)2 (z - 2)2 3.如果级数∑c n z n 在z = 2 点收敛,则级数在 n=1 (A)z =-2 点条件收敛;(B)z = 2i 点绝对收敛; (C)z = 1 +i 点绝对收敛;(D)z = 1 + 2i 点一定发散.4.下列结论正确的是( ) (A)如果函数f (z) 在z0点可导,则f (z) 在z0点一定解析; 得分

e (B) 如果 f (z ) 在 C 所围成的区域内解析,则 ? C f (z )dz = 0 (C ) 如果 ? C f (z )dz = 0 ,则函数 f (z ) 在 C 所围成的区域内一定解析; (D ) 函数 f (z ) = u (x , y ) + iv (x , y ) 在区域内解析的充分必要条件是 u (x , y ) 、v (x , y ) 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) ∞为sin 1 的可去奇点 z (B) ∞为sin z 的本性奇点 ∞为 1 的孤立奇点; ∞ 1 (C) sin 1 z (D) 为 的孤立奇点. sin z 三.按要求完成下列各题(每小题 10 分,共计 40 分) (1)设 f (z ) = x 2 + axy + by 2 + i (cx 2 + dxy + y 2 ) 是解析函数,求 a , b , c , d . z (2).计算 ? C z (z - 1)2 d z 其中 C 是正向圆周: z = 2 ; 得分

实变函数论考试试题及答案

实变函数论考试试题及答案 证明题:60分 1、证明 1lim =n m n n m n A A ∞ ∞ →∞ ==UI 。 证明:设lim n n x A →∞ ∈,则N ?,使一切n N >,n x A ∈,所以I ∞ +=∈ 1 n m m A x Y I ∞=∞ =?1n n m m A , 则可知n n A ∞ →lim YI ∞ =∞ =?1n n m m A 。设YI ∞ =∞ =∈1n n m m A x ,则有n ,使I ∞ =∈n m m A x ,所以 n n A x lim ∞ →∈。 因此,n n A lim ∞ →=YI ∞=∞ =1n n m m A 。 2、若n R E ?,对0>?ε,存在开集G , 使得G E ?且满足 *()m G E ε-<, 证明E 是可测集。 证明:对任何正整数n , 由条件存在开集E G n ?,使得()1*m G E n -<。 令I ∞ ==1n n G G ,则G 是可测集,又因()()1**n m G E m G E n -≤-< , 对一切正整数n 成立,因而)(E G m -*=0,即E G M -=是一零测度集,故可测。由)(E G G E --=知E 可测。证毕。 3、设在E 上()()n f x f x ?,且1()()n n f x f x +≤几乎处处成立,Λ,3,2,1=n , 则有{()}n f x .收敛于)(x f 。 证明 因为()()n f x f x ?,则存在{}{}i n n f f ?,使()i n f x 在E 上.收敛到()f x 。设 0E 是()i n f x 不收敛到()f x 的点集。1[]n n n E E f f +=>,则00,0n mE mE ==。因此 ()0n n n n m E mE ∞∞==≤=∑U 。在1 n n E E ∞ =-U 上,()i n f x 收敛到()f x , 且()n f x 是单调的。 因此()n f x 收敛到()f x (单调序列的子列收敛,则序列本身收敛到同一极限)。 即除去一个零集1n n E ∞ =U 外,()n f x 收敛于()f x ,就是()n f x . 收敛到()f x 。

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y =Θ ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y =Θ ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 656121213 1 3121311+-=-++=??? ??++

复变函数与积分变换课后习题答案详解

… 复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) / ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππ2222e cos isin i i 44-??????=-+-= +-=- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+); 3 3 31313;;;.n i i z i ???? -+-- ? ? ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 3 2 2 222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ () ()()()(){ }3 3 2 3 2 1i 31i 311313313388-+??-+? ???== --?-?+?-?- ? ?????? ? ?? ?? ()1 80i 18 = += ∴1i 3Re 1?? -+= ? ??? , 1i 3Im 0??-+= ? ???. ④解: ∵ () ()() ()()2 3 3 23 1313 3133i 1i 38 ??--?-?-+?-?- ?? ??-+? ? = ? ??? ()1 80i 18 = += ∴1i 3Re 1??-+= ? ?? ? , 1i 3Im 0??-+= ? ??? . ⑤解: ∵()()1, 2i 211i, k n k n k k n k ?-=?=∈?=+-???. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i 415-+=+=. 2i 2i -+=-- ②解:33-= 33-=- ③解:()()2i 32i 2i 32i 51365++=++=?=. ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 2 22++== ()1i 11i 222i ++-??= = ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+, 则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数. 若z =x ,x ∈,则z x x ==.

相关主题
文本预览
相关文档 最新文档