当前位置:文档之家› 传送带模型和滑块模型

传送带模型和滑块模型

传送带模型和滑块模型
传送带模型和滑块模型

专题:传送带模型和滑块模型

1、板块模型

此类问题通常是一个小滑块在木板上运动,小物块与长木板是靠一对滑动摩擦力或静摩擦力联系在一起的。分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移等,解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图。在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm 与木板长度L 之和,而它们各自的匀加速运动均在相同时间t 内完成。

例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g取10m/s2)解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度

为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,

解得:t1=1s ,v共=2m/s,以后物体与小车相对静止:(∵,物

体不会落后于小车)物体在t=1.5s内通过的位移为:s=a1t12+v共(t-t1)+ a3(t-t1)2=2.1m

解决这类问题的方法是:①研究物块和木板的加速度;②画出各自运动过程示意图;③找出物体运动的时间关系、速度关系、相对位移关系等;④建立方程,求解结果,必要时进行

讨论。要求学生分析木板、木块各自的加速度,要写位移、速度表达式,还要寻找达到共同速度的时间等等

在这三个模型中尤其板块模型最为复杂。其次是传送带模型,一般情况下只需要分析物体的加速度和运动情况,而传送带一般是匀速运动不需另加分析。最后是追及相遇问题,它只是一个运动学问题并没有牵扯受力分析问题,相对是最简单的,只要位移关系速度公式就可以问题。对于上述的三种模型我们不难发现他们的共性是:①分别写出位移、速度表达式;②根据位移、速度的关系求得未知量。我认为在三个模型中只要熟练分析好板块模型其他两个模型在此基础上根据已知条件稍作变通就可以迎刃而解了。这样就可以减少了学生对模型数量的记忆,达到事半功倍的效果。

例3、如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。

分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B一

起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为:.∴A、B一

起加速运动时,拉力F的最大值为:.

变式1例1中若拉力F作用在A上呢?如图2所示。解答:木板B能获得的最大加速度为:

。∴A、B一起加速运动时,拉力F的最大值为:

变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。

解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则:

解得:

例4.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg ,长为L=1.4m ;木板右端放着一小滑块,小滑块质量为m=1kg ,其尺寸远小于L 。小滑块与木板之间的动摩擦因数为

μ==04102.(/)g m s

(1)现用恒力F 作用在木板M 上,为了使得m 能从M 上面滑落下来,问:F 大小的范围是什么?

(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M 上,最终使得m 能从M 上面滑落下来。问:m 在M 上面滑动的时间是多大?

解析:(1)小滑块与木板间的滑动摩擦力

f N m

g ==μμ,小滑块在滑动摩擦力f 作用下向右匀加速运

动的加速度 a f m g m s 124===//μ,木板在拉力F 和滑动摩擦力f 作用下向右匀加速运动的加

速度

a F f M 2=-()/,使m 能从M 上面滑落下来的条件是

a a 21

>,即

N

g m M F m f M f F 20)(//)(=+>>-μ解得,(2)设m 在M 上滑动的时间为t ,当恒力

F=22.8N ,木板的加速度

a F f M m s 22

47=-=()/./ ),小滑块在时间t 内运动位移

S a t 1122

=/,木板在时间t 内运动位移

S a t 2222

=/,因

S S L

21-= 即

s t t t 24.12/42/7.422==-解得

例5.长为1.5m 的长木板B 静止放在水平冰面上,小物块A 以某一初速度从木板B 的左端滑上长木板B ,

直到A 、B 的速度达到相同,此时A 、B 的速度为0.4m/s ,然后A 、B 又一起在水平冰面上滑行了8.0cm 后停下.若小物块A 可视为质点,它与长木板B 的质量相同,A 、B 间的动摩擦因数μ1=0.25.求:(取g =10m/s 2)

(1)木块与冰面的动摩擦因数. (2)小物块相对于长木板滑行的距离.

(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大? 解析:(1)A 、B 一起运动时,受冰面对它的滑动摩擦力,做匀减速运动,加速度

2

22 1.0m/s 2v a g s

μ=== 解得木板与冰面的动摩擦因数μ2=0.10(2)小物块A 在长木板上受

木板对它的滑动摩擦力,做匀减速运动,加速度a 1=μ1g =2.5m/s 2

小物块A 在木板上滑动,木块B 受小物

块A 的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,有μ1mg -μ2(2m )g =ma 2 解得加速度a 2=0.50m/s 2

设小物块滑上木板时的初速度为v 10,经时间t 后A 、B 的速度相同为v ,由长木板的运动得v =a 2t

,解得滑

A

v B

行时间2

0.8s v

t a =

=,小物块滑上木板的初速度 v 10=v +a 1t =2.4m/s ,小物块A 在长木板B 上滑动的距离为2212

011211

0.96m 22

s s s v t a t a t ?=-=--=(3)小物块A 滑上长木板的初速度越大,它在长木板

B 上相对木板滑动的距离越大,当滑动距离等于木板长时,物块A 达到木板B 的最右端,两者的速度相等(设为v ′),这种情况下A 的初速度为保证不从木板上滑落的最大初速度,设为v 0.有

2201211

22

v t a t a t L --=,012v v a t

v a t ''-==,由以上三式解得,为了保证小物块不从木板的

右端滑落,小物块滑上长木板的初速度不大于最大初速度0122() 3.0m/s v a a L =+=

2 传送带问题

突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,能够明确对于物块来说当它的速度达到和传送带速度相等时是摩擦力方向、大小改变的转折点。画好草图分析,找准物体和传送带的位移及两者之间的关系。

解决这类题目的方法如下:选取研究对象,对所选研究对象进行隔离处理,就是一个化难为易的好办法。对轻轻放到运动的传送带上的物体,由于相对传送带向后滑动,受到沿传送带运动方向的滑动摩擦力作用,决定了物体将在传送带所给的滑动摩擦力作用下,做匀加速运动,直到物体达到与皮带相同的速度,不再受摩擦力,而随传送带一起做匀速直线运动。传送带一直做匀速直线运动,要想再把两者结合起来看,则需画一运动过程的位移关系图就可让学生轻松把握。总之就是物体只要上了传送带就是想和传送带达到共同的速度,至于能否达到要看实际条件。简化一下即为:①研究物块的加速度;②画出运动过程示意图;③找出物体运动的时间关系、速度关系、位移关系以及传送带的位移关系;④建立方程,求解结果,必要时进行讨论。

滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。

滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。

点评:处理水平传送带问题,首先是要对放在传 送带上的物体进行受力分析,通过比较物体初速度 与传送带的速度的关系,分清物体所受的摩擦力是 动力还是阻力;其次是分析物体的运动状态,即对静 态— 动态— 终态做分析和判断,对其全过程做出

合理的分析、推断,进而用相关的物理规律求解.一、滑块初速为0

,传送带匀速运动

[例1]如图所示,长为L 的传送带AB

始终保持速度为v 0

的水平向右的速度运动。今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB

解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。

滑块C 的加速度为

,设它能加速到为

时向前运动的距离为

C

A B

A

θ

,C 由A 一直加速到B ,由

,C 由A 加速到

用时

,前进的距离

距离内以

速度匀速运动

C 由A 运动到B 的时间

[例2]如图所示,倾角为θ的传送带,以

的恒定速度按图示

方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下端的时间t 。

解析:当A 的速度达到

时是运动过程的转折点。A 初始下

滑的加速度

若能加速到

,下滑位移(对地)为

(1)若

。A 从上端一直加速到下端

(2)若

,A 下滑到速度为

用时

之后

距离内摩擦力方向变为沿斜面向上。又可能有两种情况。

(a )若

,A 达到

后相对传送带停止滑动,以

速度匀速,

总时间

,A达到后相对传送带向下滑,,到达

(b)若

末端速度

用时

总时间

2倾斜的传送带

情景一:如图4(a)所示,传送带顺时针匀速运

行,且足够长.现将物体轻轻放在传送带上的A端,

物体经过一段时间运动到另一端B点.

分析:将物块轻轻放在传送带上后,物块所受滑

动摩擦力方向沿斜面向下,受力情况如图3(b)所

示,物块将做匀加速直线运动.当速度达到v后,如

果mgsinθ>f,将继续向下加速运动,直到运动至B

点.如果mgsinθ≤f,物块将随传送带一起匀速运

动至B点,物块受力情况如图4(b)所示.

图4

二、滑块初速为0,传送带做匀变速运动

[例3]将一个粉笔头轻放在以2m/s 的恒定速度运动在足够长的水平传送带上后,传送带上留下一条长度为4m 的划线。若使

该传送带仍以2m/s 的初速改做匀减速运动,加速度大小恒为

1.5m/s 2,且在传送带开始做匀减速运动的同时,将另一粉笔头(与传送带的动摩擦因数和第一个相同)轻放在传送带上,该粉笔头在传送带上能留下一条多长的划线?

解析:在同一v-t 坐标图上作出两次划线粉笔头及传送带的

速度图象,如图所示。第一次划线。传送带匀速,粉笔头匀加

速运动,AB 和OB 分别代表它们的速度图线。速度相等时(B 点),划线结束,图中

的面积代表第一次划线长度

,即B 点坐标为(4,2),粉笔头的加速度

第二次划线分两个AE 代表传送带的速度图线,它的加速度为

可算出E

点坐标为(4/3,0)。OC 代表第一阶段粉笔头的速度图线,C 点表示二者速度相同,

t

v v 0 0

v 1 t 1 t 2 t 3

传送带

粉笔头

C

A B

即C点坐标为(1,0.5)该阶段

粉笔头相对传送带向后划线,划线长度。等速后,粉笔头

超前,所受滑动摩擦力反向,开始减速运动,由于传送带先减速到0,所以后来粉笔头一直匀减速至静止。CF代表它在第二阶段的速度图线。可求出F点坐标为(2,0)此阶段粉

笔头相对传送带向前划线,长度。可见粉笔头

相对传送带先向后划线1m,又折回向前划线1/6m,所以粉笔头在传送带动能留下1m长的划线。

【例题4】倾角为θ的传送带AB段足够长,且长

为L,以匀速率v沿顺时针方向运行,如图6所示.若

将一个质量为m的小物块轻轻放在传送带的A端.

若物块与传送带间的滑动摩擦因数为μ,则把物块

从A端运动到B端,电动机为此而多做的功是多

少?(不计轮轴处的摩擦)

解:设物块做匀加速运动的加速度为a,由牛顿

运动定律得到

μmgcosθ-mgsinθ=ma

a=g(μcosθ-sinθ)

加速阶段的位移为

x1=v2

2a

传送带在此时间内通过的位移为

x2=vt1=v2

此过程产生的热量

Q=f(x2-x1)=fv2

2a=μmgv2cosθ

2g(μcosθ-sinθ)

物块从B点到A点机械能的增加量为

ΔE=mv2

2+mgLsinθ

把物块从B端运动到A端电动机为此而多做的功是

W=Q+ΔE=

μmgcosθv2

2g(μcosθ-sinθ)+mv2

2+mgLsinθ

点评:处理倾斜传送带问题,也要先对物体进行

受力分析,再判断摩擦力的大小和方向.这类问题特

别要注意,若传送带匀速运行,则不管物体的运动状

态如何,物体与传送带间的摩擦力都不会消失.三、传送带匀速运动,滑块初速与传送带同向

[例4]如图所示,AB是一段位于竖直平面内的光滑轨道,高度为h,末端B处的切线方向水平。一个质量为m的小物体P从轨道顶端A处由静止释

放,滑到B端后飞出,落到地面上的C点,轨迹如图中虚线

BC所示。已知它落地时相对于B点的水平位移OC=l。现在

轨道下方紧贴B点安一水平传送带,传送带的右端与B距离

为l/2。当传送带静止时,让P再次从A点由静止释放,它离

开轨道并在传送带上滑行后从右端水平飞出,仍然落在地面

的C点。当驱动轮转动带动传送带以速度v匀速向右运动时

(其它条件不变)。P的落点为D。不计空气阻力。

(1)求P与传送带之间的动摩擦因数μ。

(2)求出O、D间距离S随速度v变化函数关系式

解析:这是一道滑块平抛与传送带结合起来的综合题。(1)没有传送带时,物体

离开B点作平抛运动

当B点下方的传送带静止时,物体离开传送带右端作平抛运动,时间仍为t,有

由以上各式得

由动能定理,物体在传送带动滑动时,有

(2)当传送带的速度

时,物体将会在传送带上作一段匀变速运动。若尚未

到达传送带右端,速度即与传送带速度相同,此后物体将做匀速运动,而后以速度v离开传送带。v的最大值

为物体在传送带动一直加速而达到的速度。

把μ代入得

。物体将以

离开传送带,得O、D距离

S=

,即

时,物体从传送带飞出的速度为v,

A

B

C

综合上述结果S随v变化的函数关系式

求解本题的关键是分析清楚物体离开传送带的两个极值速度:在传送带上一直匀减速至,及在传送带上一直匀加速至右端的最大速度。以此把传送带速度

右端的最小速度

v划分为三段。才能正确得出S随v 的函数关系式。

四、传送带匀速运动,滑块初速与传送带速度方向相反

沿顺时针方向传动,传送

[例5]如图所示,一水平方向足够长的传送带以恒定的速度

带右端一与传送带等高的光滑水平面。一物体以恒定的速率

沿直线向左滑向传送带后,

经过一段时间又返回光滑水平面,速率为。则下列说法正确的是:

=时才有=

A、只有

若>,则=

B、

<,则=

C、若

不管多大,总有=

D、

=,前

带速度,所受摩擦力仍向右,滑块向右加速。若它能一直加速到右端,速度

。若<,则返回加速过程中,

提是传送带速度一直大于滑块速度,即

到不了最右端滑块速度就与传送带速度相等了,之后以

时,=,所以正确选项为B、C。

组合类的传送带问题

1.如图所示的传送皮带,其水平部分AB长s AB=2m,BC与水平面夹角θ=37°,长度s BC

=4m ,一小物体P 与传送带的动摩擦因数μ=0.25,皮带沿A 至B 方向运行,速率为v =2m/s ,若把物体P 放在A 点处,它将被传送带送到C 点,且物体P 不脱离皮带,求物体从A 点被传送到C 点所用的时间.(sin37°=0.6,g =l0m/s 2)

2.如图所示为一货物传送货物的传送带abc . 传送带的ab 部分与水平面夹角α=37°,bc 部分与水平面夹角β=53°,ab 部分长度为4.7m ,bc 部分长度为3.5m. 一个质量为m =1kg 的小物体A (可视为质点)与传送带的动摩擦因数μ=0.8. 传送带沿顺时针方向以速率v =1m/s 匀速转动. 若把物体A 轻放到a 处,它将被传送带送到c 处,此过程中物体A 不会脱离传送带.(sin37°=0.6,sin53°=0.8,g =10m/s 2) 求:物体A 从a 处被传送到b 处所用的时间;

3.(14分)右图为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A ,B 两端相距3m ,另一台倾斜,传送带与地面的倾角,C, D 两端相距4. 45m ,B, C 相距很近。水平传送以5m/s 的速度沿顺时针方向转动,现将质量为10kg 的一袋大米无初速度地放在A 段,它随传送带到达B 端后,速度大小不变地传到倾斜送带的C 点,米袋与两传送带间的动摩擦因数均为0. 5,g 取10m/s 2,sin37?=0. 6,cos37?=0. 8

(1)若CD 部分传送带不运转,求米袋沿传送带在CD 上所能上升的最大距离;

(2)若倾斜部分CD 以4m /s 的速率顺时针方向转动,求米袋从C 运动到D 所用的时间。

组合类的传送带

1.【答案】2.4s 。解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律1

1111,,N

F ma F F mg v a t μμ====,得P 匀加速运动

β

α

a

b c

h

A

的时间1

10.8s v v t a g μ=

==.22111112110.8m,22

AB s a t gt s s vt μ===-=,匀速运动时间1

20.6s

AB s s t v

-=

=.P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0.6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0.2mg .可见其加速下滑.由牛顿第二定律

233cos37cos37,0.44m/s mg mg ma a g μ?-?===,2

333

12BC s vt a t =+,解得t 3=1s (另解3

2s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2.4s .

2.解:物体A 轻放在a 点后在摩擦力和重力作用下先做匀速直线运动直到和传送带速度相等,然后和传送

带一起匀速运动到b 点。

在这一加速过程中有加速度

21/4.01

)

6.08.08.0(101sin cos s m m

mg mg a =-???=

-=

α

αμ①,运动时

s a v t 5.211==②,运动距离ab s m a v s <=?==25.14

.02122

121③,在ab 部分匀速运动过程

中运动时间

s v s s t ab 45.31

25

.17.411=-=-=

④,所以物体A 从a 处被传送到b 和所用的时s t t t 95.545.35.221=+=+=⑤,

3.解:(1)米袋在AB 上加速时的加速度20

/5s m m

mg

a ==

μ,米袋的速度达到0v =5m /s

时,

滑行的距离m AB m a v s 35.220

2

0=<==,因此米加速一段后与传送带一起匀速运动到达

B

点,到达C 点时速度v 0=5m /s ,设米袋在CD 上运动的加速度大小为a ,由牛顿第二定律得

ma mg mg =+θμθcos sin 代人数据得

a=10m /s ,所以,它能上滑的最大距离

m a

v s 25.1220== (2顺斜部分传送带沿顺时针方向转动时,米袋速度减为4m /s 之前的加速度

2

1/10)cos (sin s m g a -=+-=θμθ,速度减为4m / s 时上滑位移为

m a v v s 45.021

2

211=-=,

米袋速度等于4m /s 时,滑动摩擦力方向改变,由于

a mg a mg sin cos <μ,故米继续向上减速运动米袋速度小于

4m /s 减为零前的加速度为

22/2)cos (sin s m g a -=--=θμθ 速度减到

0时上

滑位移为m a v s 4202

2

12=-=,可见,米袋速度减速到0时,恰好运行到D 点。米袋从C 运动到

D 所用的时间s a v a v v t t t

1.22

1

10121=-+-=

+=- 14.图中,质量为m 的物块叠放在质量为2m 的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为μ

=0.2.在木板上施加一水平向右的拉力F ,在0~3s 内F 的变化如图所示,

图中F 以

mg 为单位,重力加速度210m/s g =.整个系统开始时静止.

(1)求1s 、1.5s 、2s 、3s 末木板的速度以及2s 、3s 末物块的速度;

(2)在同一坐标系中画出0~3s 内木板和物块的t -v 图象,据此求0~3s 内物块相对于木板滑过的距离。

15.如图所示,足够长的木板质量M =10 kg ,放置于光滑水平地面上,以初速度v 0=5 m/s 沿水平地面向右匀速运动.现有足够多的小铁块,它们的质量均为m =1 kg ,在木板上方有一固定挡板,当木板运动到其最右端位于挡板正下方时,将一小铁块贴着挡板无初速度地放在木板上,小铁块与木板的上表面间的动摩擦因数μ=0.5,当木板运动了L =1 m 时,又无初速地贴着挡板在第1个小铁块上放上第2个小铁块.只要木板运动了L 就按同样的方式再放置一个小铁块,直到木板停止运动.(取g =10 m/s 2)试问: (1)第1个铁块放上后,木板运动了L 时,木板的速度多大? (2)最终木板上放有多少个铁块?

(3)最后一个铁块放上后,木板再向右运动的距离是多少?

14(1)设木板和物块的加速度分别为a 和a ',在t 时刻木板和物块的速度分别为t v 和t 'v ,木板和物

块之间摩擦力的大小为f

,依牛顿第二定律、运动学公式和摩擦定律得

f ma '=

f m

g μ=,当t t '

② 2121()

t t a t t '''=+-v v ③

(2)F f m a -=

2121()

t t a t t =+-v v ⑤

由①②③④⑤式与题给条件得

1 1.5234m/s, 4.5m/s,4m/s,4m/s ====v v v v

2m m

F

1 2 1 3

t/0 0.4

F/m g

1.5

v/(m ?s-1)

1 2

3

t/s 0

4.5 1.5 4 2 物块 木板

234m/s,4m/s ''==v v

(2)由⑥⑦式得到物块与木板运动的t -v 图象,如右图所示。在0~3s 内物块相对于木板的距离s ?等于木板和物块t -v 图线下的面积之差,即图中带阴影的四边形面积,该四边形由两个三角形组成,上面的三角形面积为0.25(m),下面的三角形面积为2(m),因此

2.25m s ?=

15.【解析】 (1)第1个铁块放上后,木板做匀减速运动,

即有:μmg =Ma 1,2a 1L =v 20-v 2

1

代入数据解得:v 1=2 6 m/s.

(2)设最终有n 个铁块能放在木板上,则木板运动的加速度大小为: a n =μnmg M

第1个铁块放上后:2a 1L =v 20-v 2

1 第2个铁块放上后:2a 2L =v 21-v 22

第n 个铁块放上后:2a n L =v 2n -1-v 2n

由上可得:(1+2+3+…+n )·2μmg M L =v 20-v 2n 木板停下时,v n =0,得n =6.6. 即最终有7个铁块放在木板上.

(3)从放上第1个铁块至刚放上第7个铁块的过程中,由(2)中表达式可得: 6×(6+1)2·2μmg M

L =v 20-v 2

6

从放上第7个铁块至木板停止运动的过程中,设木板发生的位移是d ,则: 2·7μmg

M d =v 26-0

联立解得:d =47

m.

1、如图所示,水平放置的传送带以速度υ=2m/s 向右运行,现将一小物体轻轻地放在传送带A 端,物体与传送带间的动摩擦因数μ=0.2,若A 端与B 端相距4m ,求物体由A 到B 的时间和物体到B 端时的速度?

2、如图,在倾角为30°的传送带上有一物体,运动过程中物体与传送带间

无相对滑动,在下列情况中物体受到的静摩擦力方向沿传送带向上的有( )

A.物体随传送带匀速向上运动.

B.物体随传送带匀速向下运动.

C.物体随传送带匀加速向下运动,加速度大小为4m/s2.

D.物体随传送带匀加速向下运动,加速度大小为6m/s2.

3、如图所示,传送带与水平方向成θ=30°角,皮带的AB 部分长L =3.25m ,皮带以v =2m/s 的速率顺时针方向运转,在皮带的A 端上方无初速地放上一个小物体,小物体与皮带间的滑动摩擦系数μ= 0.

求:(1)物体从A 端运动到B 端所需时间;(2)物体到达B 端时的速度大小.

4、如图所示,传送带的水平部分长为L ,传动速率为v ,在其左端无初速释放一小木块,若木块与传送带间的动摩擦因数为μ,则木块从左端运动到右端的时间不可能是 ( ) A .L/v+v/2μg B .L/v C . μg D .2L/v

5、如图所示,绷紧的传送带与水平面的夹角θ=30°,皮带在电动机的带动下,始终保持v 0=2m/s 的速率运行. 现把一质量为m=l0kg 的工件(可看作质点)轻轻放在皮带的底端,经时

间1.9s ,工件被传送到h=1.5m 的高处,取g=10m/s 2

.求:

(1)工件与皮带间的动摩擦因数. (2)电动机由于传送工件多消耗的电能.

5题答案:(1). 皮带长s=h/sin30°=3m , (1) 工件速度达到v 0前做匀加速直线运动的位移:

s 1=

v t=2

v

t 1 (2) 达到v 0后做匀速直线运动的位移:s -s 1=v(t -t 1) (3)

解出:t 1=0.8s ,s 1=0.8m 所以:a=

1

0t v =2.5m/s 2

工件受的支持力F N =μmgcos θ,由牛顿第二定律,有:μF N -mgsin θ=ma (4) 解出:μ=

2

3 (2)在时间t 1内,皮带运动的位移s 皮=v 0t 1=1.6m ,工件相对皮带位移: s 相=s 皮-s 1=0.8m ,

在时间t 1内,摩擦产生的热量:Q=μF N s 相=60J 工件获得的动能:E K =

2

02

1mv =20J 工件加的重力势能E P =mgh=150J 故电动机多消耗的电能:W=Q+E K +E P =230J 也是滑块运动状态转折的临界点。

1、一质量为m 2,长为L 的长木板静止在光滑水平桌面上。一质量为m 1的小滑块以水平

速度v 从长木板的一端开始在木板上滑动,直到离开木板 , 滑块刚离开木板时的速度为v 0/3。已知小滑块与木板之间的动摩擦因数为μ,求: (1)小滑块刚离开木板时,木板在桌面上运动的位移? (2)小滑块刚离开木板时木板的速度为多少?

m 1 V 0

m 2 2、.如图所示,质量为M=1kg 的长木板,静止放置在光滑水平桌面上,有一个质量为m=0.2kg ,大小不计的物体以6m/s 的水平速度从木板左端冲上木板,在木板上滑行了2s

后与木板相对静止。试求:(g 取10m/s 2)

⑴ 木板获得的速度

⑵ 物体与木板间的动摩擦因数 v

m

A

B O

C

M

3、如图所示,长木板A 在光滑的水平面上向左运动,v A =1.2m /s .现有小物体B(可看

作质点)从长木板A 的左端向右水平地滑上小车,v B =1.2m /s ,A 、B 间的动摩擦因数是0.1,B 的质量是A 的3倍.最后B 恰好未滑下A ,且A ,B 以共同的速度运动,g=10m /s 2.求:

(1)A ,B 共同运动的速度的大小; (2)A 向左运动的最大位移;

(3)长木板的长度. 4、如图,一质量为M=3kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量m=1kg 的小木块A 。现以地面为参考系,给A 和B 以大小均为4.0m/s 方向相反的初速度,使A 开始向左运动,B 开始向右运动,,但最后A 并没有滑离B 板。站在地面的观察者看到在一段时间内小木板A 正在做加速运动,则在这段时间内的某时刻木板B 相对地面的速度大小可能是 ( )

A.2.4m/s

B.2.8m/s

C.3.0m/s

D.1.8m/s

5、如图所示,长木板B 静止在光滑水平面上,其右端静止放有物块C 。另一个物块A 以一

定水平初速度v 从左端冲上B 。已知A 、C 与B 上表面间的动摩擦因数均为μ(认为最大静摩擦力等于滑动摩擦力)。A 、B 、C 的质量比为4∶2∶1,则A 冲上B 后瞬间A 、B 、C 的加速度大小之比为

A .4∶2∶1

B .1∶2∶4

C .1∶1∶1

D .2∶3∶2

6、一块足够长的木板C 质量2m ,放在光滑的水平面上,如图所示。在木板上自左向右放

有A 、B 两个完全相同的物块,两物块质量均为m ,与木板间的动摩擦因数均为μ。开始时木板静止不动,A 、B 两物块的初速度分别为v 0、2v 0,方向如图所示。试求:⑴木板能获的最大速度。⑵A 物块在整个运动过程中最小速度。⑶全过程AC 间的摩擦生热跟BC 间的摩擦生热之比是多少? 7、如图所示,在光滑的水平面上停放着一辆平板车C ,在车上的左端放有一木块B 。车左边紧邻一个固定在竖直面内、半径为R 的1/4圆弧形光滑轨道,已知轨道底端的切线水平,

且高度与车表面相平。现有另一木块

A (木块A 、

B 均可视为质点)从圆弧轨道的顶端由静止释放,然后滑行到车上与B 发生碰撞。两木块碰撞后立即粘在一起在平板车上滑行,并与固定在平板车上的水平轻质弹簧作用后被弹回,最后两木块刚好回到车的最左端与车保持相对静止。已知木块A 的质量为m ,木块B 的质量为2m ,小车

C 的质量为3m ,重力加速度为g ,设木块A 、B 碰撞的时间极短可以忽略。求:⑴木块A 、B 碰撞后的瞬间两木块共同运动速度的大小。⑵木块A 、B 在车上滑行的整个过程中,木块和车组成的系统损失的机械能。⑶弹簧在压缩过程中所具有的最大弹性势能。 v 0 2v 0

A

B C v v

B A

A B C

v

滑块—滑板模型

高三物理专题复习: 滑块—滑板模型 典型例题: 例1. 如图所示,在粗糙水平面上静止放一长L质量为1的木板B , 一质量为1的物块A以速度s m v /0.20=滑上长木板B 的左端,物 块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1, 已知重力加速度为10m 2,求:(假设板的 长度足够长) (1)物块A 、木板B 的加速度; (2)物块A 相对木板B 静止时A 运动的 位移; (3)物块A 不滑离木板B,木板B 至少多长? 考点: 本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速 度计算,相对位移计算。 解析:(1)物块A 的摩擦力:N mg f A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左 木板B 受到地面的摩擦力:A g m M f f N 2)(2>=+=μ地 故木板B 静止,它的加速度02=a (2)物块A 的位移:m a v S 222 0=-= (3)木板长度:m S L 2=≥ 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的 摩擦因素 μ3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A 与木块B 速度相同时,物块A 的速度多大? (2)通过计算,判断速度相同以后的

运动情况; (3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热 多大? 考点:牛顿第二定律、运动学、功能关系 考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对 位移和摩擦热的计算。 解析:对于物块A:N mg f A 44==μ 1分 加速度:,方向向左。24/0.4s m g m f a A A -=-=-=μ 1分 对 于木板:N g m f 2)M 2=+=(地μ 1分 加 速度:,方向向右。地2A /0.2s m M f f a C =-= 1分 物块A 相对木板B 静止时,有:121-t a v t a C B = 解得运动时间: ,s t .3/11= s m t a v v B B A /3/21=== 1分 (2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-= μ 物 块A的静摩擦力:A A f N ma f <==1' 1分 所以假设成立,共速后一起做匀减速直线运动。 1分 (3)共速前A的位移: m a v v S A A A 942202=-= 木板B的位 移:m a v S B B B 9 122==

传送带模型和板块模型

传送带模型 1.水平传送带模型 (1) (2) (1) (2) (1) (2) 返回时速度为2. (1) (2) (1) (2) (3) 解传送带问题的思维模板 1.无初速度的滑块在水平传送带上的运动情况分析

3.无初速度的滑块在倾斜传送带上的运动情况分析 4.有初速度的滑块在倾斜传送带上的运动情况分析

1.传送带模型 (1)模型分类:水平传送带问题和倾斜传送带问题。 (2)传送带的转动方向:可以与物体运动方向相同或与物体运动方向相反。 (3)物体相对于传送带可以是静止、匀速运动、加速运动或减速运动。 2.处理方法 求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用。如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况。当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变。 [多维展示] 多维角度1 水平同向加速 [例1] (2017·安徽师大附中模拟)(多选)如图所示,质量m =1 kg 的物体从高为h =0.2 m 的光滑轨道上P 点由静止开始下滑,滑到水平传送带上的A 点,物体和传送带之间的动摩擦因数为μ=0.2,传送带AB 之间的距离为L =5 m ,传送带一直以v =4 m/s 的速度匀速运动,则( ) A .物体从A 运动到 B 的时间是1.5 s B .物体从A 运动到B 的过程中,摩擦力对物体做功为2 J C .物体从A 运动到B 的过程中,产生的热量为2 J D .物体从A 运动到B 的过程中,带动传送带转动的电动机多做的功为10 J 解析 设物体下滑到A 点的速度为v 0,对PA 过程,由机械能守恒定律有:12mv 2 0=mgh ,代入数据得:v 0=2gh =2 m/s

滑块滑板模型专题

滑块与滑板相互作用模型 【模型分析】 1、相互作用:滑块之间的摩擦力分析 2、相对运动:具有相同的速度时相对静止。两相互作用的物体在速度相同,但加速度不相同时,两者之间同样有位置的变化,发生相对运动。 3、通常所说物体运动的位移、速度、加速度都是对地而言的。在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。它就是我们解决力和运动突破口。 4、求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。 5、求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。另外求相对位移时:通常会用到系统能量守恒定律。 6、求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。 1、如图所示,在光滑水平面上有一小车A,其质量为0.2 m,小 A

车上放一个物体B ,其质量为0.1=B m ,如图(1)所示。给B 一个水平推力F ,当F增大到稍大于3.0N 时,A、B开始相对滑动。如果撤去F ,对A 施加一水平推力F ′,如图(2)所示,要使A 、B不相对滑动,求F ′的最大值m F 2.如图所示,质量8 的小车放在水平光滑的平面上,在小车左端加一水平推力8 N ,当小车向右运动的速度达到1.5 时,在小车前端轻轻地放上一个大小不计,质量为2 的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长(取0 2)。求: (1)小物块放后,小物块及小车的加速度大小各为 多大? (2)经多长时间两者达到相同的速度? (3)从小物块放上小车开始,经过1.5 s 小物块通过的位移大小为多少? M m

传送带模型和板块模型

传送带模型和板块模型 传送带模型”问题的分析思路 V o(v o> 0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送6(a)、 (b)、(c)所示. 2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题. (1) 水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩 擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等?物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. (2) 倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否 受到滑动摩擦力作用?如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况?当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变. 【例1 如图7所示,倾角为37°长为I = 16 m的传送带,转动速度为v = 10 m/s,动摩擦因数尸0.5,在传送带顶端A处无初速度地释 放一个质量为m = 0.5 kg的物体.已知sin 37 = 0.6, cos 37 = 0.8, g= 10 m/s2.求: (1) 传送带顺时针转动时,物体从顶端A滑到底端B的时间; (2) 传送带逆时针转动时,物体从顶端A滑到底端B的时间. 突破训练1 如图8所示,水平传送带AB长L = 10 m,向右匀速运动的速度V0= 4 m/s,一质量为1 kg的小物块(可视为质点)以V1= 6 m/s的初速度从传送带右端B点冲上传送带,物块与传送; 带间的动摩擦因数尸0.4, g取10 m/s2.求: (1) 物块相对地面向左运动的最大距离; (2) 物块从B点冲上传送带到再次回到B点所用的时间. 1模型特征 一个物体以速度 带”模型,如图 图6

滑块传送带模型分析带答案

1.如图3-3-13所示,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之 间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=k t(k是常数),木板和木块加速度 的大小分别为a1和a2.下列反映a1和a2变化的图线中正 确的是( ). 2.如图3-3-7所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是 ( ). 3.如图3-3-8甲所示,绷紧的水平传送带始终以恒定速率v1运行.初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送带.若从小物块滑 上传送带开始计时,小物块在传送带上运动的v-t图像(以地面为参考系)如图3 -3-21乙所示.已知v2>v1,则( ). 图3-3-8 A.t2时刻,小物块离A处的距离达到最大 B.t2时刻,小物块相对传送带滑动的距离达到最大 C.0~t2时间内,小物块受到的摩擦力方向先向右后向左 D.0~t3时间内,小物块始终受到大小不变的摩擦力作用 4.表面粗糙的传送带静止时,物块由顶端A从静止开始滑到皮带底端B用的时间是t,则 ( ) A.当皮带向上运动时,物块由A滑到B的时间一定大于t B.当皮带向上运动时,物块由A滑到B的时间一定等于t C.当皮带向下运动时,物块由A滑到B的时间一定等于t D.当皮带向下运动时,物块由A滑到B的时间一定小于t 5. 如图是一条足够长的浅色水平传送带在自左向右匀速运行。现将一个木炭包无初速地放在传送带的最左端,木炭包在传送带上将会留下一段黑色的径迹。下列说法中正确的是() A.黑色的径迹将出现在木炭包的左侧 B.木炭包的质量越大,径迹的长度越短 C. 传送带运动的速度越大,径迹的长度越短 D.木炭包与传送带间动摩擦因数越大,径迹的长度越短 6.、如图所示,水平传送带上A、B两端点相距x=4 m,传送带以v0=2 m/s 的速度(始终保持不变)顺时针运转.今将一小煤块(可视为质点)无初速度地

滑块—滑板模型

高三物理专题复习:滑块一滑板模型 典型例题 例1. 如图所示,在粗糙水平面上静止放一长L质量为M=1kg的木板B, —质量为 m=1Kg的物块A以速度v0=2.0m/s滑上长木板B的左端,物块与木板的摩擦因素卩 1=0.1、木板与地面的摩擦因素为卩2=0.1,已知重力加速度为g=10m/s , 求:(假设板的长度足够长) (1)物块A、木板B的加速度; (2)物块A相对木板B静止时A运动的位移;人 ---------- _B (3)物块A不滑离木板B,木板B至少多长? "TT/TTTTTTTTT/TTTTTTTT1 考点:本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。 解析:(1)物块A的摩擦力:f A二fmg =1N A的加速度:aj - - -1m/ s 方向向左 m 木板B受到地面的摩擦力:f地二」2(M - m)g =2N - f A 故木板B静止,它的加速度a2=0 2 (2)物块A的位移:s二二^=2m 2a (3)木板长度:L亠S = 2m 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素卩 3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A与木块B速度相同时,物块A的速度多大? (2)通过计算,判断AB速度相同以后的运动 情况; A _____________________ B (3)整个运动过程,物块A与木板B相互摩

高三物理专题复习:滑块一滑板模型 擦产生的摩擦热多大? 考点:牛顿第二定律、运动学、功能关系

解析:对于物块 A : f A = %mg =4N 1分 -0 解析:(1)A 、B 动量守恒,有: mv 0 = (M - m )v mv 0 解得:"Lf" (2)由动能定理得: 1 2 1 2 对 A: -叫 mgS A mv mv 0 加速度: aA - - - J 4g -4.0m/ s ,方向向左。 1 分 m 对于木板:1 『地二 ”2( m M )^ = 2N 1 分 加速度:a C =2.0m / si 方向向右。 物块A 相对木板B 静止时,有:a B h = v 2 - a C l 解得运动时间:鮎=1/3.s , V A = VB = aBb = 2 / 3m / s (2)假设AB 共速后一起做运动, a 二」2 (M ― - -1m/s 2 (M m) 物块A 的静摩擦力: 二 ma = 1N :: f A 所以假设成立,AB 共速后一起做匀减速直线运动。 2 2 (3)共速前A 的位移:S A =V A V ° 木板B 的位移:S B V B 1 m 2a B 9 4 所以: J 3 mg(S A - S B ) J 3 拓展2: 在例题1中,若地面光滑,其他条件保持不变,求: (1) 物块A 与木板B 相对静止时,A 的速度和位移多大? (2) 若物块A 不能滑离木板 B,木板的长度至少多大? 物块A 与木板B 摩擦产生的热量多大? 动量守恒定律、动能定理、能量守恒定律 相对位移与物块、木板位移的关系,优 (3) 考点: 考查: 物块、木板的位移计算,木板长度的计算, 选公式列式计算。 对B: 1 2 -叫mgS B Mv A …f 地 M

高考板块模型及传送带问题 压轴题【含详解】

如图所示,长L=1.5 m,高h=0.45 m,质量M=10 kg的长方体木箱,在水平面上向右做直线 运动.当木箱的速度v0=3.6 m/s时,对木箱施加一个方向水平向左的恒力F=50 N,并同时将一个质量m=l kg的小球轻放在距木箱右端的P点(小球可视为质点,放在P点时相对于地 面的速度为零),经过一段时间,小球脱离木箱落到地面.木箱与地面的动摩擦因数为0.2,其他摩擦均不计.取g=10 m/s2.求: ⑴小球从离开木箱开始至落到地面所用的时间; ⑵小球放到P点后,木箱向右运动的最大位移; ⑶小球离开木箱时木箱的速度. 【解答】:⑴设小球从离开木箱开始至落到地面所用的时间为t,由于 ,① 则s.② ⑵小球放到木箱后相对地面静止,木箱的加速度为m/s2.③) 木箱向右运动的最大位移为m ④ ⑶x1<1 m,故小球不会从木箱的左端掉下. 木箱向左运动的加速度为m/s2⑤ 设木箱向左运动的距离为x2时,小球脱离木箱m ⑥ 设木箱向左运动的时间为t2,由,得 s ⑦ 小球刚离开木箱瞬间,木箱的速度方向向 左, 大小为m/s ⑧ 如图所示,一质量为m B = 2 kg的木板B静止在光滑的水平面上,其右端上表面紧靠一固定斜面轨道的底端(斜面底端与木板B右端的上表面之间有一段小圆弧平滑连接),轨道与水平面的夹角θ= 37°.一质量也为m A = 2 kg的物块A由斜面轨道上距轨道底端x0 = 8 m处静止释放,物块A刚好没有从木板B的左端滑出.已知物块A与斜面轨道间的动摩擦因数为μ1 = 0.25,与木板B上表面间的动摩擦因数为μ2 = 0.2,sinθ = 0.6,cosθ = 0.8,g 取10 m/s2,物块A可看做质点.求: ⑴ 物块A刚滑上木板B时的速度为多大? ⑵ 物块A从刚滑上木板B到相对木板B静止共经历了多长时 间? (3)木板B有多长?

高中物理必修一传送带和滑块模型

1.静止在光滑水平面上的物体在水平拉力F作用下开始运动,拉力随时间变化的规律如图所示,关于物体在0~t1时间内的运动情况下列描述正确的是( ) A.物体先做匀加速运动,后做匀减速运动 B.物体的速度一直增大 C.物体的速度先增大后减小 D.物体的加速度一直增大 2.将木块A、B叠放在一起后放在倾角为α的光滑斜面上,A和B一起沿斜面自由滑下。下滑过程中,A和B无相对运动,如图所示。已知A的质量为m,求下滑过程中A受到的支持力及摩擦力各多大? 3.如图所示的装置中,重4N的物块被平行于斜面的细线拴在斜面上端的小柱上,整个装置被固定在测力计上并保持静止,斜面的倾角为30°。如果物块与斜面间无摩擦,装置稳定以后,当细线被烧断物块正下滑时,与稳定时比较,测力计的读数为( ) A.增大4N B.增大3N C.减小1N D.不变

4.如图所示为车站使用的水平传送带的模型,传送带长l=8m,现有一个质量为m=10kg的旅行包以v0=10m/s的初速度水平地滑上水平传送带,已知旅行包与皮带间的动摩擦因数为μ=0.6。g取10m/s2,且可将旅行包视为质点。试讨论下列问题: (1)若传送带静止,则旅行包从传送带的A端滑到另一端B所需要的时间是多少? (2)若传送带一速度v=4m/s沿顺时针方向匀速转动,则旅行包从传动带的A端滑到B端历时多少? (3)若传送带以速度v=4m/s沿逆时针向匀速转动,则旅行包是否能够从传动带的A端滑到B端?如不能,试说明理由;如能,试计算历时多少? 5.水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查.如图3-7-6所示为一水平传送带装置示意图,绷紧的传送带AB始终保持v=1m/s的恒定速率运行,一质量为m=4kg的行李无初速地放在A处,设行李与传送带间的动摩擦因数μ=0.1,AB间的距离l=2m,g取10m/s2. (1)从A运动到B的时间以及物体在皮带上留下的滑痕长度; (2)如果提高传送带的运行速率,行李就能被较快地传送到B处,求行李从A处传送到B处的最短时间和传送带对应的最小运行速率. A B v 图3-7-6

传送带和滑块模型

传送带模型专题 传送带模型是一个经典的力学模型,也是实际生活中广泛应用的一种机械装置,以其为背景的问题都具有过程复杂、条件隐蔽性强的特点,传送带问题也是高考中的常青树,从动力学角度、功能角度进行过多次考查,它自然成为师生关注的热点。 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: 在以上三个难点中,第1个难点应属于易错点,突破方法是先正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,做到准确灵活地分析摩擦力的有无、大小和方向。 第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。 如图甲所示,A 、B 分别是传送带上和物体上的一点,刚放上物体时,两点重合。设皮带的速度为V0,物体做初速为零的匀加速直线运动,末速为V0,其平均速度为V0/2,所以 物体的对地位移x 物=20t V ,传送带对地位移x 传送带=V0t ,所以A 、B 两点分别运动到如图 乙所示的A '、B '位置,物体相对传送带的位移也就显而易见了,x 物=2传送带 x ,就是图乙中的A '、B '间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。 第3个难点也应属于思维上有难度的知识点。对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在头脑中形成深刻印象。 三.传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个: (1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系.

滑块滑板模型教案

第4讲专题:牛顿运动定律在综合应用中的常见模型(1)教案 ——滑板—滑块模型 甘肃省张掖中学周正伟 一教学目标: 1、知识与技能: (1)能正确的隔离法、整体法受力分析; (2)能正确运用牛顿运动学知识求解共速问题; (3)能根据运动学知识解决滑块在滑板上的相对位移问题。 2、过程与方法: 能够建立由系统牛顿运动定律的概念,并且能够熟练应用整体法和隔离法研究。 3、情感态度与价值观: 通过本节课的学习,让学生树立学习信心,其实高考的难点是由一个个小知识点组合而成的,只要各个击破,高考并不难。树立学生水滴石穿的学习精神。 二教学过程 (一)自主复习 例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。 (1)滑块滑上滑板时,滑块和滑板分别如何运动? 加速度大小分别是________、__________; (2)1秒后滑块和滑板的速度分别是________、__________; (3)1秒后滑块和滑板的位移分别是________、__________; (4)3秒后滑块和滑板的速度分别是________、__________。 (5)3秒后滑块和滑板的位移分别是________、__________。 (二)疑难问题大家谈 接例题1,讨论下列问题: (6)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止? (7)滑块和滑板相对静止时,各自的位移是多少? (8)滑块和滑板相对静止时,滑块距离滑板的左端有多远? (9)4秒钟后,滑块和滑板的位移各是多少? (三)反思提高 1.例题2:如图所示,一质量为M=4kg的滑板以12m/s的速度在光滑水平面上向右做匀速直线运动(滑板足够长),某一时刻,将质量为m=2kg可视为质点的滑块轻轻放在滑板的最右端,已知滑块和滑板之间的动摩擦因数为μ=0.2。 (a)滑块放到滑板上时,滑块和滑板分别怎么运动? 加速度大小分别是________、__________; (b)1秒后滑块和滑板的速度分别是________、__________; (c)1秒后滑块和滑板的位移分别是________、__________; (d)5秒后滑块和滑板的速度分别是________、__________。

传送带模型及板块模型

传送带模型 一、模型认识 二、模型处理 1.受力分析:重力、弹力、摩擦力、电场力、磁场力(其中摩擦力可能有也可能没有,可能是静摩擦力也可能是动摩擦力,还可能会发生突变。) 2.运动分析:合力为0,表明是静止或匀速;合力不为0,说明是变速,若a恒定则为匀变速。(物块的运动类型可能是静止、匀速、匀变速,以匀变速为重点。) 三、物理规律 观点一:动力学观点:牛顿第二定律与运动学公式 观点二:能量观点:动能定理、机械能守恒、能量守恒、功能关系(7种功能关系) 四、例题 例1:如图所示,长为L=10m的传送带以V=4m/s的速度顺时针匀速转动,物块的质量为1kg,物块与传 μ=。 送带之间的动摩擦因数为0.2 ①从左端静止释放,求物块在传送带上运动的时间,并求红色痕迹的长度。 v=8m/s的初速度释放,求物块在传送带上运动的时间。 ②从左端以 v=6m/s的初速度释放,求物块在传送带上运动的时间。 ③从右端以 ④若物块从左端静止释放,要使物块运动的时间最短,传送带的速度至少为多大? (1)3.5s 4m (3)6.25s 25m (4)10 μ= 例2:已知传送带的长度为L=12m,物块的质量为m=1kg,物块与传送带之间的动摩擦因数为0.5 ①当传送带静止时,求时间。 ②当传送带向上以V=4m/s运动时,求时间。 ③当传送带向下以V=4m/s运动时,求时间。 ④当传送带向下以V=4m/s运动,物块从下端以V0=8m/s冲上传送带时,求时间。

例3:一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为,初始时,传送带与煤块都是静止的,现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度做匀速运动,经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动,求此黑色痕迹的长度。 2000()2v a g l a g μμ-= 例4:一足够长传送带以8m/s,以22/m s 的加速度做匀减速运动至停止。在其上面静放一支红粉笔,动摩擦因数为0.1。求粉笔相对传送带滑动的时间及粉笔在传送带上留下红色痕迹的长度。 例5:10只相同的轮子并排水平排列,圆心分别为O 1、O 2、O 3…、O 10,已知O 1O 10=3.6 m ,水平转轴通过 圆心,轮子均绕轴以4π r/s 的转速顺时针匀速转动.现将一根长0.8 m 、质量为2.0 kg 的匀质木板平放在这些轮子的左端,木板左端恰好与O 1竖直对齐(如图所示),木板与轮缘间的动摩擦因数为0.16,不计轴与轮间的摩擦,g 取10 m/s 2 ,试求: (1)木板在轮子上水平移动的总时间; (2)轮子因传送木板所消耗的机械能. (1)2.5 s (2)5.12 J 板块模型 一、模型认识 二、模型处理 1.受力分析:重力、弹力、摩擦力、电场力、磁场力(其中摩擦力可能有也可能没有,可能是静摩擦力也可能是动摩擦力,还可能会发生突变。) 2.运动分析:合力为0,表明是静止或匀速;合力不为0,说明是变速,若a 恒定则为匀变速。(物块的运动类型可能是静止、匀速、匀变速,以匀变速为重点。) 三、物理规律 观点一:动力学观点:牛顿第二定律与运动学公式 观点二:能量观点:动能定理、机械能守恒、能量守恒、功能关系(7种功能关系)

2010年经典物理模型--滑块与传送带相互作用模型研究

滑块与传送带相互作用模型研究 滑块与传送带相互作用的滑动摩擦力,是参与改变滑块运动状态的重要原因之一。其大小遵从滑动摩擦力的计算公式,与滑块相对传送带的速度无关,其方向取决于与传送带的相对运动方向,滑动摩擦力的方向改变,将引起滑块运动状态的转折,这样同一物理环境可能同时出现多个物理过程。因此这类命题,往往具有相当难度。滑块与传送带等速的时刻,是相对运动方向及滑动摩擦力方向改变的时刻,也是滑块运动状态转折的临界点。按滑块与传送带的初始状态,分以下几种情况讨论。 一、滑块初速为0,传送带匀速运动 [例1]如图所示,长为L 的传送带AB 始终保持速度为v 0 的水平向右的速度运动。今将一与皮带间动摩擦因数为μ的滑块C ,轻放到A 端,求C 由A 运动到B 的时间t AB 解析:“轻放”的含意指初速为零,滑块C 所受滑动摩擦力方向向右,在此力作用下C 向右做匀加速运动,如果传送带够长,当C 与传送带速度相等时,它们之间的滑动摩擦力消失,之后一起匀速运动,如果传送带较短,C 可能由A 一直加速到B 。 滑 块C 的加速度为 ,设 它能加速到为 时向前运动的距离为 。 若 ,C 由A 一直加速到B ,由 。 若 ,C 由A 加 速到 用时 ,前进 的距离 距离内以 速度匀速运动 C 由A 运动到B 的时间 。 [例2]如图所示,倾角为θ的传送带,以 的恒定速度按图示 方向匀速运动。已知传送带上下两端相距L 今将一与传送带间动摩擦因数为μ的滑块A 轻放于传送带上端,求A 从上端运动到下 端的时间t 。 解析:当A 的速度达到 时是运动过程的转折点。 A 初始下 滑的加速度 若能加速到 ,下滑位移(对地)为 。

滑块-滑板模型

滑块、滑板模型专题 【学习目标】 1能正确的隔离法、整体法受力分析 2、能正确运用牛顿运动学知识求解此类问题 3、能正确运用动能定理和功能关系求解此类问题。 【自主学习】 1处理滑块与滑板类问题的基本思路与方法是什么 2、滑块与滑板存在相对滑动的临界条件是什么 3、滑块滑离滑板的临界条件是什么 问题(4): B 运动的位移S B 及B 向右运动的时间t B2 问题(5): A 对B 的位移大小△ S 、A 在B 上的划痕厶L 、A 在B 上相对B 运动的路程 X A 问题(6): B 在地面的划痕L B 、B 在地面上的路程 X B 问题(7):摩擦力对A 做的功W fA 、摩擦力对A 做的功W fB 、系统所有摩擦力对 A 和B 的总功W f 问题(8): A 、B 间产生热量Q AB 、B 与地面产生热量 Q B 、系统因摩擦产生的热量 Q 【合作探究精讲点拨】 例题:如图所示,滑块 A 的质量m = 1kg ,初始速度向右V i = 8.5m/s ;滑板B 足够长,其 质量M = 2kg ,初始速度向左V 2= 3.5m/s 。已知滑块A 与滑板B 之间动摩擦因数 口= 0.4, 滑板B 与地面之间动摩擦因数 曲=0.1。取重力加速度 g = 10m/s 2。且两者相对静止时, A] ? v i = 8.5m/s 速度大小:,V=5m/s ,在两者相对运动 的过程中: 问题(1): 刚 开始玄人、a BI V 2= 3.5m/s ^777777^7777^77777777777777777777777^ 问题(2): B 向左运动的时间t Bi 及 B 向左运动的最大位移 S B 2 问题(3): A 向右运动的时间 t 及A 运动的位移S A

人教版高中物理-滑块--滑板模型专题

《滑块—滑板模型专题练习》 1.如图所示,一质量M =50kg、长L=3m的平板车静止在光滑水平地面上,平板车上表面距地面的高度h=1.8m。一质量m=10kg可视为质点的滑块,以v0=7.5m/s的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.5,取g =10m/s2。 (1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小; (2)计算说明滑块能否从平板车的右端滑出。 2.如图,A为一石墨块,B为静止于水平面的足够长的木板,已知A的质量m A和B的质量m B均为2kg,A、B之间的动摩擦因数μ1 = 0.05,B与水平面之间的动摩擦因数μ2=0.1 。t=0时,电动机通过水平细绳拉木板B,使B做初速度为零,加速度a B=1m/s2的匀加速直线运动。最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g=10m/s2。求: (1)当t1=1.0s时,将石墨块A轻放在木板B上,此时A的加速度a A大小; (2)当A放到木板上后,保持B的加速度仍为a B=1m/s2,此时木板B所受拉力F的大小;(3)当B做初速度为零,加速度a B=1m/s2的匀加速直线运动,t1=1.0s时,将石墨块A轻放在木板B上,则t2=2.0s时,石墨块A在木板B上留下了多长的划痕? 3.如图,一块质量为M = 2kg、长L = 1m的匀质木板放在足够长的光滑水平桌面上,初始时速度为零.板的最左端放置一个质量m = 1kg的小物块,小物块与木板间的动摩擦因数为μ = 0.2,小物块上连接一根足够长的水平轻质细绳,细绳跨过位于桌面边缘的定滑轮(细绳与滑轮间的摩擦不计,木板与滑轮之间距离足够长,g = 10m/s2)。 ⑴若木板被固定,某人以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少? ⑵若木板不固定,某人仍以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少? 4、一个小圆盘静止在桌布上,桌布位于一方桌的水平桌面的中央。桌布的一边与桌的AB 边重合,如图所示。已知盘与桌布间的动摩擦因数为μ 1 ,盘与桌面间的动摩擦因数为μ 2 。现突然以恒定加速度a将桌布沿桌面抽离 桌面,加速度方向水平且与AB边垂直。若圆盘 恰好未从桌面掉下,求加速度a的大小 (重力加速度为g)。 F M m A B a

传送带模型和板块模型

传送带模型和板块模型 Prepared on 24 November 2020

传送带模型和板块模型 一.“传送带模型”问题的分析思路 1.模型特征 一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图6(a)、(b)、(c)所示. 图6 2.建模指导 传送带模型问题包括水平传送带问题和倾斜传送带问题. (1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断 摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. (2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确 定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变. 例1如图7所示,倾角为37°,长为l=16 m的传送带,转动速度为 v=10 m/s,动摩擦因数μ=,在传送带顶端A处无初速度地释放 一个质量为m=0.5 kg的物体.已知sin 37°=,cos 37°=, g=10 m/s2.求: (1)传送带顺时针转动时,物体从顶端A滑到底端B的时间; (2)传送带逆时针转动时,物体从顶端A滑到底端B的时间. 突破训练1如图8所示,水平传送带AB长L=10 m,向右匀速 运动的速度v0=4 m/s,一质量为1 kg的小物块(可视为质点)以 v1=6 m/s的初速度从传送带右端B点冲上传送带,物块与传 送; 带间的动摩擦因数μ=,g取10 m/s2.求: (1)物块相对地面向左运动的最大距离; (2)物块从B点冲上传送带到再次回到B点所用的时间. 二.“滑块—木板模型”问题的分析思路 1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导 解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移 关系 或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移. 例2如图所示,质量为M,长度为L的长木板放在水平桌面上,木板右端放有一质量为m长度可忽略的小木块,木块与木板之间、木板与桌面之间的动摩擦因数均为 。开始时木块、木板均静止,某时刻起给木板施加一大小恒为F方向水平向右的拉力。若最大静摩擦力等于滑动摩擦力。

第10讲:传送带、板块模型中的功能关系

2018届高考物理一轮复习第六章机械能第10讲:传送带、板块模型中的功能关系 班级__________ 座号_____ 姓名__________ 分数__________ 一、知识清单 1. 传送带问题的分析流程 2. 传送带中的功能关系 力做的功 含义 功的计算式 引起的能量变化 ①传送带对物体做的功 即传送带对物体的摩擦力做的功,等于 力乘物体的位移 W f =fx 物 等于物体机械能的变化量W f =ΔE k +ΔE p ②物体对传送带做的功 即传送带克服摩擦力做的功,等于力乘传送带的位移 W f =-fx 传 等于外力做的功(匀速传送带),即消耗的电能W f =E 电 ③系统内一对滑动摩擦力做的功 即一对作用的滑动摩擦力和反作用力做的功,等于力乘相对位移 W 一对f =-f 滑·x 相 对 等于产生的内能 Q =f 滑·x 相对 ④电动机做的功 即牵引力对传送带做的功,等于牵引力乘传送带的位移 W F =Fx 传 将电能转化为机械能和内能W F =ΔE k +ΔE p +Q 3. 摩擦力做功的分析方法 (1)无论是滑动摩擦力,还是静摩擦力,计算做功时都是用力与对地位移的乘积. (2)摩擦生热的计算:公式Q =F f ·x 相对中x 相对为两接触物体间的相对位移,若物体在传送带上做往复运动时,则x 相对为总的相对路程.F f 为滑动摩擦力,静摩擦力作用时,因为一对静摩擦力做的总功为零,所以不会生 热。 4. 倾斜传送带上的功能关系

5. 板块模型中的功能关系 以块带板模型为例 (1)区分三种位移:板的位移为x ,物块的位移为(L+x ),相对位移为L ; 6. ( 多选)如图所示,水平传送带由电动机带动, 并始终保持以速度v 匀速运动.现将质量为m 的某物块无初速地放在传送带的左端,经过时间t 物块保持与传送带相对静止.设物块与传送带间的动摩擦因数为μ,对于这一过程,下列说法正确的是( ) A .摩擦力对物块做的功为12mv 2 B .传送带克服摩擦力做的功为1 2 mv 2 C .系统摩擦生热为1 2 mv 2 D .电动机多做的功为mv 2 7. (多选)如图7所示,与水平面夹角θ=30°的倾斜传送带始终绷紧 , 传送带下端 A 点与上端 B 点间的距离L =4 m ,传送带以恒定的速率v =2 m/s 向上运动.现将一质量为1 kg 的物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=3 2 ,取g =10 m/s 2,则物体从A 运动到B 的过程中,下列说法正确的是( ) A.物体从A 运动到B 共需2.4 s B.摩擦力对物体做的功为6 J C .因摩擦而产生的内能6 J D.电动机因传送该物体多消耗的电能28 J . 8. (2015·衡水中学高三调研)如图所示,一传送带与水平方向的夹角为θ,以速度v 逆时针运转,将一物块轻轻放在传送带的上端,则物块在从A 到B 运动的过程中,机械能E 随位移变化的关系图象不可能是( ) 9. (2014?吉安二模)如图所示,足够长传送带与水平方向的倾角为θ,物块a 通过平行于传送带的轻绳跨过光滑轻滑轮与物块b 相连,b 的质量为m ,开始时,a 、b 及传送带均静止且a 不受传送带摩擦力作用,现让传送带逆时针匀速转动,则在b 上升h 高度(未与滑轮相碰)过程中,下列说法错误的是( ) A .物块a 重力势能减少mgh B .摩擦力对a 做的功大于a 机械能的增加 C .摩擦力对a 做的功小于物块a 、b 动能增加之和 D .任意时刻,重力对a 、b 做功的瞬时功率大小相等 f f

传送带和滑块模型(完整资料).doc

【最新整理,下载后即可编辑】 传送带模型专题 传送带模型是一个经典的力学模型,也是实际生活中广泛应用的一种机械装置,以其为背景的问题都具有过程复杂、条件隐蔽性强的特点,传送带问题也是高考中的常青树,从动力学角度、功能角度进行过多次考查,它自然成为师生关注的热点。 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: 在以上三个难点中,第1个难点应属于易错点,突破方法是先正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,做到准确灵活地分析摩擦力的有无、大小和方向。 第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。该难点应属于思维上有难度的知识点,突破方法是灵活运用“力是改变物体运动状态的原因”这个理论依据,对物体的运动性质做出正确分析,判断好物体和传送带的加速度、速度关系,画好草图分析,找准物体和传送带的位移及两者之间的关系。

如图甲所示,A、B分别是传送带上和物体上的一点,刚放上物体时,两点重合。设皮带的速度为V0,物体做初速为零的 匀加速直线运动,末速为V0,其平均速度为V0/2,所以物体的对地位移x物=20 t V ,传送带对地位移x传送带=V0t,所以A、B 两点分别运动到如图乙所示的A'、B'位置,物体相对传送带的位移也就显而易见了,x物=2传送带 x ,就是图乙中的A'、B'间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。 第3个难点也应属于思维上有难度的知识点。对于匀速运动的传送带传送初速为零的物体,传送带应提供两方面的能量,一是物体动能的增加,二是物体与传送带间的摩擦所生成的热(即内能),有不少同学容易漏掉内能的转化,因为该知识点具有隐蔽性,往往是漏掉了,也不能在计算过程中很容易地显示出来,尤其是在综合性题目中更容易疏忽。突破方法是分析有滑动摩擦力做功转化为内能的物理过程,使“只要有滑动摩擦力做功的过程,必有内能转化”的知识点在头脑中形成深刻印象。 三.传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个: (1)动力学角度:首先要正确分析物体的运动过程,做好受力情况分析,然后利用运动学公式结合牛顿第二定律,求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系. (2)能量角度:求传送带对物体所做的功、物体和传送带由于

高考物理中的传送带模型和滑块木板模型完整版

高考物理中的传送带模 型和滑块木板模型 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

传送带模型1.模型特征 (1)水平传送带模型 (2)倾斜传送带模型

项目图示滑块可能的运动情况情景1 (1)可能一直加速 (2)可能先加速后匀速 情景2(1)可能一直加速 (2)可能先加速后匀速 (3)可能先以a1加速后以a2加速 2.思维模板 分析传送带问题的关键 是判断摩擦力的方向。要注意抓住两个关键时刻:一是初始时刻,根据物体速度v物和传送带速度v传的关系确定摩擦力的方向,二是当v物=v传时,判断物体能否与传送带保持相对静止。 1.(多选)如图,一质量为m的小物体以一定的速率v0滑到水平传送带上左端的A点,当传送带始终静止时,已知物体能滑过右端的B点,经过的时间为t0,则下列判断正确的是( ). A.若传送带逆时针方向运行且保持速率不变,则物体也能

滑过B点,且用时为t0 B.若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点 C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0 D.若传送带顺时针方向运行,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t0 2.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行。初速度大小为v2的小物块从与传送带等高的光滑水平地面上的A处滑上传送 带。若从小物块滑上传送带开始计时,小物块在 传送带上运动的v-t图象(以地面为参考系)如图 乙所示。已知v2>v1,则( ) A.t2时刻,小物块离A处的距离达到最大 B.t2时刻,小物块相对传送带滑动的距离达到最大 C.0~t2时间内,小物块受到的摩擦力方向先向右后向左 D.0~t3时间内,小物块始终受到大小不变的摩擦力作用 3.如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P与定滑轮间的绳水平,t=t0时刻P离

相关主题
文本预览
相关文档 最新文档