当前位置:文档之家› 第三篇变压器和母线保护

第三篇变压器和母线保护

第三篇变压器和母线保护
第三篇变压器和母线保护

第三篇变压器保护和母线保护

第十一章变压器保护

第一节概述

变压器是电力系统重要的主设备之一。在发电厂通过升压变压器将发电机电压升高,而由输电线路将发电机发出的电能送至电力系统中;在变电站通过降压变压器再将电能送至配电网络,然后分配给各用户。在发电厂或变电站,通过变压器将两个不同电压等级的系统联起来,该变压器称作联络变压器。

一变压器的基本结构及接线组别

电力变压器主要由铁芯及绕在铁芯上的两个或三个绝缘绕组构成。为增强各绕组之间的绝缘及铁芯、绕组散热的需要,将铁芯及绕组置于装有变压器油的油箱中。然后,通过绝缘套管将变压器各绕组的两端引到变压器壳体之外。

另外,为提高变压器的传输容量,在变压器上加装有专用的散热装置,作为变压器的冷却器。

大型电力变压器均为三相变压器或由三个单相变压器组成的三相变压器。

将变压器同侧的三个绕组按一定的方式连接起来,组成某一接线组别的三相变压器。

双卷电力变压器的接线组别主要有:Y0/Y、Y N/△、△/△、及△/△-△。理论分析表明,接线组别为Y0/Y压器,运行时某侧电压波形要发生畸变,从而使变压器的损耗增加,进而使变压器过热。因此,为避免油箱壁局部过热,三相铁芯变压器按Y/Y联接的方式,只适用于容量为1800KVA以下的小容量变压器。而超高压大容量的变压器均采用Y0/△的接线组别。

在超高压电力系统中,Y0/△接线的变压器,呈Y形联接的绕组为高压侧绕组,而呈△形联接的绕组为低压侧绕组,前者接大电流系统(中性点接地系统),后者接小电流系统(中性点不接地系统)。

在实际运行的变压器中,在Y0/△接线的变压器的接线组别中,以Y0/△-11为最多,Y0/△-1及Y0/△-5的也有。

Y0/△-11接线组别的含意是:(a)变压器高压绕组接成Y型,且中性点接地,而低压侧绕组接成△;(b)低压侧的线电压(相间电压)或线电流分别滞后高压侧对应相线电压或线电流3300。3300相当于时钟的11点钟,故又称11点接线方式。

同理,Y/△-1及Y/△-5的接线组别,则表示△侧的线电流或线电压分别滞后Y侧对应相线电流或线电压300及1500。相当时钟的1点及5点,分别称之为1点接线有5点接线方式。

在电机学中,对变压器各绕组之间相对极性的表示法,通常用减极性表示法。

Y0/△-11、Y0/△-1及Y0/△-5接线组别变压器各绕组接线,相对极性及两侧电流的向量关系,分别如图11-1、图11-2及图11-3所示。

图11-1

*

a

b

c

A

I

a I'

I a

C

I

c I'

I c

-I'a

b

-I'

I B

I'b

c

-I'

°

30

°

30

°

30

b I

(a)接线方式(b)向量图图11-3 Y0/△-5变压器绕组接线方式及两侧电流向量图

在上述各图中:

A

I 、B I 、C I -变压器高压侧三相电流;

a

I 、b I 、c I -变压器低压侧三相电流;

*-各绕组之间的相对极性。

由图可以看出:Y0/△-11接线的变压器,低压侧三相电流

I 、b I 、c I 分别滞后高压侧

a

三相电流

I 、B I 、C I 3300; Y0/△-1接线的变压器低压侧三相电流a I 、b I 、c I 分别滞后高

A

压侧三相电流

I 、B I 、C I 300;Y0/△-5接线的变压器,低压侧三相电流分别滞后高压侧三

A

相电流

I 、B I 、C I 1500。

A

二变压器的故障及不正常运行方式

1 变压器的故障

若以故障点的位置对故障分类,变压器的故障,有油箱内的故障和油箱外的故障。(1)油箱内部的故障

变压器油箱内的故障,主要有各侧的相间短路,大电流系统侧的单相接地短路及同相部分绕组之间的匝间短路。

(2)油箱外的故障

变压器油箱外的故障,系指变压器绕组引出端绝缘套管及引出短线上的故障。主要有相间短路(两相短路及三相短路)故障,大电流侧的接地故障、低压侧的接地故障。

2 变压器的异常运行方式

大型超高压变压器的不正常运行方式主要有:由于系统故障或其他原因引起的过负荷,由于系统电压的升高或频率的降低引起的过激磁,不接地运行变压器中性点电位升高,变压器油箱油位异常,变压器温度过高及冷却器全停等。

三变压器保护的配置

变压器短路故障时,将产生很大的短路电流。很大的短路电流将使变压器严重过热,烧坏变压器绕组或铁芯。特别是变压器油箱内的短路故障,伴随电弧的短路电流可能引起变压器着火。另外短路电流产生电动力,可能造成变压器本体变形而损坏。

变压器的异常运行也会危及变压器的安全,如果不能及时发现及处理,会造成变压器故障及损坏变压器。

为确保变压器的安全经济运行,当变压器发生短路故障时,应尽快切除变压器;而当变压器出现不正常运行方式时,应尽快发出告警信号及进行相应的处理。为此,对变压器配置整套完善的保护装置是必要的。

1 短路故障的主保护

变压器短路故障的主保护,主要有纵差保护、重瓦斯保护、压力释放保护。另外,根据变压器的容量、电压等级及结构特点,可配置零差保护及分侧差动保护。

2 短路故障的后备保护

目前,电力变压器上采用较多的短路故障后备保护种类主要有:复合电压闭锁过流保护;零序过电流或零序方向过电流保护;负序过电流或负序方向过电流保护;复压闭锁功率方向保护;低阻抗保护等。

3 异常运行保护

变压器异常运行保护主要有:过负荷保护,过激保护,变压器中性点间隙保护,轻瓦斯保护,温度、油位保护及冷却器全停保护等。

第二节 故障量经变压器的传递

当变压器某侧系统中发生故障时,变压器非故障侧各相电流的大小、相位及其他特点,除与故障侧故障类型、严重程度有关之外,尚与变压器的接线方式有关。

在变压器保护配置设计及分析保护的动作行为时,必须知道变压器故障时其两侧故障电流的大小及相位关系。

以下介绍故障电流及故障电压经Y 0/△-11、Y 0/△-1及Y 0/△-5接线组别的变压器传递。 一 简化假设

为简化分析及突出故障分量经变压器的传递,作以下几点假设:

1 不考虑变压器的变比,不考虑负荷电流及过渡电阻对短路电流及故障电压的影响。

2 当变压器高压侧故障时,认为故障电流全部由低压侧供给;而变压器低压侧故障时,认

为故障电流全部由变压器高压侧提供。

3 故障点在变压器输出端部;忽略有效分量的影响,阻抗角为900

。 二 Y/△-11变压器高压侧单相接地短路 1 边界条件及对称分量

设变压器高压侧A 相发生金属性接地短路,故障电流为I K 。则故障点的边界条件为

0==C B I I ;K A I I =;0=A

U 设A 相各序量电流及各序量电压分别为1A I 、2A I 、AO I 及1A U 、2A U 、AO

U ,则根据边界条件可求得各序量:

K C B A A I I a I a I I 3

1)(3

121=++= K C B A A I I a I a I I 3

1)(3

122=++= K C B A A I I I I I 3

1)(3

1

0=++=

00

21=++A A A U U U 在上述各式中:a ——旋转因子,0

120j e a = 可得:

1A I =2A I =AO

I =K I 3

1 ………………………………………(11-1) 1A U =-(2A U +AO

U ) ………………………………………(11-2) ?????

??????-=-=-=-=+=∑∑∑∑∑∑K A A K A A K A I X I X U I X I X U I X X U

01002122021313131)( ………………………………………(11-3)

在式(11-3)中:∑0X ——系统对故障点的等效零序电抗; ∑2X ——系统对故障点的等效负序电抗。 2 变压器高压侧电压及电流向量图和序量图

若以A 相的正序电压1

A U 为参考向量(置于纵坐标轴上),根据式(11-1)~(11-3),并考虑到零序电抗∑0X 通常大于负序电抗∑2X ,可绘制出变压器高压侧的电流、电压的序量

∑2∑0X 的相对大小有关。不计负荷电流影响时0==C

B I I 。 3 变压器低压侧电压、电流的序量图和向量图

由于变压器的接线组别为Y/△-11,根据序量经变压器传递原理知:变压器Y 侧的正序

电压和正序电流向△侧传递时,将逆时针移动300

;而负序电压和负序电流向△侧传递时,

将顺时针移动300

;Y 侧的零序电压和零序电流不会出现在变压器△侧的输出端(即△的线电压和线电流中不会出现零序电压及零序电流)。

根据图11-4及序量经变压器传递原理,并以高压侧的1

A U 为参考向量,绘制出的变压器△侧电压、电流的向量图及序量图如图11-5所示。

相反。

4 低压侧电压和电流大小的计算 (1) 低压侧电流

K K c a I I I I 3

3

30cos 320===; 0=b I 。 (2) 低压侧的电压 [])2(3

)(302202∑∑∑∑∑+=++=

X X I X X X I U K K

b ; 200222333

∑∑∑∑++=

=X X X X I U U K

c a 。

三 Y/△-11变压器高压侧B 、C 两相接地短路 1 边界条件及对称分量

当变压器高压侧B 、C 两相接地短路时(设短路电流为K I ),可得故障点的边界条件为;

A I =0;0==C

B U U 将该边界条件用对称分量表示,可得

3

21A

A A A U U U U === ....................................(11-4) )(021A A A I I I +-= ....................................(11-5) 2 高压侧电压、电流向量图和序量图

根据式(11-4)和式(11-5),并以1

A U 参考向量(置于纵坐标上),则可绘制出故障点电压、电流的向量图和序量图。如图11-6所示。

1

C U U

C I I I

(a )电压向量图及序量图 (b )电流向量图及序量图

图11-6 Y 0/△-11变压器高压侧B 、C 两相接地短路时高压侧电压、电流向量图和序量图

b2

U c1

b1

U U c2

a1

U U c U a2

a

U a1

I I a2

b2

I I c2I b1

c1

I I a

b

I I c

(a) 电压向量图衣序量图(b ) 电流向量图及序量图

图11-7 Y/△-11变压器高压侧B 、C 两相接地短路时低压侧电压、电流向量图和序量图

由图11-6(b )可以看出:Y/△-11变压器高压侧B 、C 两相发生接地短路时,B 、C 两相的电流大小相等,两者之间的相位发生变化,其变化的大小和方向决定于零序电流与负序电流之比。

3 变压器低压侧电压、电流的向量图和序量图

根据图11-6所示的向量图、序量图以及序量经Y/△-11变压器传递原理,并以正序电

压1

A U 为参考向量,可以画出变压器高压侧

B 、

C 两相接地短路时,低压侧的电压、电流的序量图和向量图。如图11-7所示。 4 低压电压和电流大小的计算

由图11-7(a )可以看出,当Y/△-11变压器高压侧B 、C 两相发生接地短路时,变压

器低压侧B 相电压等于零(即0=b

U ),而a 、c 两相电压大小相等,方向相反,其值为 A A c a U U U U

3

330cos 320==

= 由图11-7(b )可以看出,低压侧b 相电流最大,其值等于 )

1(020*******∑∑∑

∑∑∑∑++++

=

+=X X X X X X X X E I I I d b b b

∑∑

∑∑∑∑

∑∑

∑∑+-++++

=

=020*********)(

1X X X X X X X X X X X E I I d

c a

以上各式中:d E ——电源的等值电势;

∑1X 、∑2X 、∑0X ——分别为系统对故障点的等值正序电抗、负序电抗和

零序电抗。

四 Y/△-1变压器高压侧B 、C 两相短路 1 边界条件及对称分量

当变压器高压侧B 、C 两相短路时,设短路电流为L I 1,故障点的边界条件为

0=A I ;C B I I -=;C

B U U = 将该边界条件用对称分量表示,则得

????

?

??

?

???

=-==-=03333)(310221A K

A K

B A I I I I I a a I ……………………………………(11-6) ??

???====∑∑221210330X I j

X jI U U U K A A A A ………………………………(11-7) 在式(11-7)中:∑2X ——对故障点的等值负序电抗。 2 变压器高压侧电压、电流的序量图和向量图

图11-8 Y 0/△-1变压器高压侧B 、C 两相短 图11-9 Y 0/△-1变压器高压侧B 、C 两相短

路时故障电压、电流向量图及序量图 路时低压侧电压、电流向量图及序量图 根据图11-8及序量经Y/△-1变压器的传递原理,绘制出的变压器低压侧电压、电流序量图及向量图。如图11-9所示。

由图11-9可以看出:Y/△-1变压器高压侧发生B 、C 两相短路时,低压侧的C 相电压等于零,而a 相电压和b 相电压大小相等,方向相反,其值也有降低。低压侧c 相电流最大,

而a 相电流与b 相电流大小相等、方向相同,且与C 相电流相电流相位差为1800

。 4 低压侧电压和电流值的计算 (1)各相电压

由11-9(a )可以得出:

0=c

U ; A A a a U U U U

2

3232212321=?== A b

U U 2

3

= (2)各相电流

由图11-9(b )可以得出:

K a I I 33=

;K b I I 33=;K c I I 3

32=。 五 Y/△-5变压器低压侧两相短路

1 边界条件及对称分量

变压器低压侧无电源。在变压器低压侧发生b 、c 两相短路,设短路电流为K I ,则故障点的边界条件为

a I =0;c

b I I -=;c

b U U = 将边界条件用对称分量表示,则得

????

?

??

?

???

=====-=∑

∑0333302212121a K a a a K

a a U X I j X jI U U I I I ………………………………………(11-8) 2 低电压侧电压、电流的序量图和向量图

如图

(a )电压序量图和向量图 (b )电流序量图和向量图

图11-10 Y 0/△-5变压器低压侧B 、C 两相短路时其电压、电流序量图及向量图

3 器高压侧电压、电流的序量图和向量图。如图11-11所示。

由图11-11可以看出:变压器高压侧的C 相电压0=c

U ,而A 相电压与B 相电压大小相等,方向相反;C 相电流最大,A 相电流与B 相电流大小相等、相位相同,而与C 相电流相

位相反。

4 高压侧电压和电流的计算 (1)各相电压 0=C U a a B A U U U U 2

3

30cos 220=??=

= (2)各相电流

C 相电流:K C I I =

A 相电流等于

B 相电流:K B A I I I 2

1==

第三节 变压器纵差保护

一 变压器纵差保护的构成原理及接线

与发电机、电动机及母线差动保护(纵差保护)相同,变压器纵差保护的构成原理也是基于克希荷夫第一定律,即

0=∑I ……………………………………………………(11-9) 式中:

∑I -变压器各侧电流的向量和。

式(11-9)代表的物理意义是:变压器正常运行或外部故障时,流入变压器的电流等于流出变压器的电流。此时,纵差保护不应动作。

母线的继电保护

母线的继电保护 一.装设母线保护的基本原则 和发电机、变压器一样,发电厂和变电所的母线也是电力系统中的一个重要组成元件,当母线上发生故障时,将使连接在故障母线上的所有元件在修复故障母线期间,或转换到另一组无故障的母线上运行以前被迫停电。此外,在电力系统中枢纽变电所的母线上故障时,还可能引起系统稳定的破坏,造成严重的后果。母线保护有两种情况,一般说来,不采用专门的母线保护,而利用供电元件的保护装置就可以把母线故障切除。例如: 1. 发电厂的出线端采用单母线接线,此时母线上的故障就可以利用发电机的过电流保护使发电机的断路器跳闸予以切除; 2. 对于降压变电所,其低压侧的母线正常时分开运行,则低压母线上的故障就可以由相应变压器的过电流保护使变压器的断路器跳闸予以切除; 3. 如果是双侧电源网络(或环形网络),如图8—1所示,当变电所B 母线上d 点短路时,则可以由保护1和保护4的第II 段动作予以切除,等等。 图 8-1 在双侧电源网络上,利用电源侧的保护切除母线故障 当利用供电元件的保护装置切除母线故障时,切除故障的时间一般较长。此外,当双母线同时运行或母线为分段单母线时,上述保护不能保证有选择性地切除故障母线。因此,在下列情况下应装设专门的母线保护: (1) 在110KV 及以上的双母线和分段单母线上,为保证有选择性地切除任一组(或段)母线上所发生的故障,而另一组(或段)无故障的母线仍能继续运行,应装设专用的母线保护。 (2) 110KV 及以上的单母线,重要的发电厂的35KV 母线或高压侧为110KV 及以上的重要降压变电所的35KV 母线,按照装设全线速动保护的要求必须快速切除母线上的故障时,应装设专用的母线保护。 为满足速动性和选择性的要求,母线保护都是按差动原理构成的。 二.母线差动保护的特点 母线差动保护的特点是在母线上一般连接着较多的电气元件(如线路、变压器、发电机、电抗器等)。例如许继公司的WMH —800系列微机母线保护最多可以连接24个电气元件。由于连接元件多,因此,就不能像发电机的差动保护那样,只用简单的接线加以实现。但不管母线上元件有多少,实现差动保护的基本原则仍是适用的。即: 1. 在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等,或表示为0=∑I ; 2. 当母线上发生故障时, 所有与电源连接的元件都向故障点供给短路电流,A

变压器的保护配置

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变压器处于不正常运行状态时,继电保护应根据其严重程度,发出告警信号,使运行人员及时发现并采取相应的措施,以确保变压器

10kV配电变压器保护配置方式的合理选择.doc

10 kV配电变压器保护配置方式的合理选择 - 摘要:10 kV配电变压器的保护配置主要有断路器、负荷开关或负荷开关加熔断器等。负荷开关投资省,但不能开断短路电流,很少采用;断路器技术性能好,但设备投资较高,使用复杂,广泛应用不现实;负荷开关加熔断器组合的保护配置方式,既可避免采用操作复杂、价格昂贵的断路器,弥补负荷开关不能开断短路电流的缺点,又可满足实际运行的需要,该配置可作为配电变压器的保护方式,值得大力推广,为此,对10 kV环网供电单元和终端用户10 kV配电变压器采用断路器、负荷开关加熔断器组合的保护配置方式进行技术-经济比较,供配电网的设计和运行管理部门参考。 关键词:10 kV配电变压器;断路器;负荷开关;熔断器;保护配置 无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中, 如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10 kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比

较分析。 1环网供电单元接线形式 1.1环网供电单元的组成 环缆馈线与变压器馈线间隔均采用负荷开关, 通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 1.3环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流, 具有结构简单、价格便宜等特点, 但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件, 可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵

主变压器保护配置

主变压器保护配置 1、主变差动保护 (1) 采用了二次谐波制动的比率差动保护,变压器正常运行时励磁电流不超过额定电流的2—10%,外部短路时更小。但变压器空载合闸或断开外部故障后,系统电压恢复时出现的励磁电流,大小可达额定电流的6—8倍,称励磁涌流。励磁涌流只流经变压器的电源侧,因而流入差动回路成为不平衡电流,励磁涌流高次谐波分量中以二次谐波分量最显著,根据这一特点采用励磁涌流中二次谐波分量进行制动,以防止保护误动作。(2)作为主变绕组内部、出线套管及引出线短路故障的主保护,其保护范围为发电机出口至主变高压侧及高厂变高压侧各CT 安装处范围内。(3)主变差动出口逻辑: (4)差动保护瞬时动作全停,启动快切、启动失灵。 (5)TA 断线闭锁功能,当差电流大于一定值时(一倍额定电流)TA 断线闭锁功能自动退出,开放保护动作出口。TA 断线0.5S 发信号。 2、发变组差动保护 与主变差动保护构成原理相同,但其保护范围是发变组及其引出线范围内的短路故障,即发电机中性点及主变高压侧,高厂变高压侧各CT 安装处范围以内的短路故障。发变组差动保护瞬时动作于发-变组全停,启动快切、启动失灵。 3、阻抗保护 (1)作为发变组相间短路的后备保护,同时作为220KV 系统发变组相邻元件如线路故障后备保护。 (2)作为近后备保护,按与相邻线路距离相配合的条件进行整定,正向阻抗Z dz 1:按与之配合的高压侧引出线路距离保护Ⅰ段配合,反向阻抗Z dz 2:按正向阻抗 的10%整定。 (3)时限t 1与线路距离Ⅲ段相配合,时限45.05.31′′=′′+′′=t 发信号,该时限较 长,能可靠躲过振荡。时限t 2与t 1配合5.45.042′′=′′+′′=t 解列灭磁、启动快切、 启动失灵。 (4)该保护测量元件是主变220KV 侧CT 及220KV 母线PT 。即阻抗保护装于

110kV母线保护通用技术规范

110kV母线保护通用技术规范

110kV备用电源自动投入装置专用技术规范本规范对应的专用技术规范目录

110kV母线保护采购标准技术规范使用说明 1. 本物资采购标准技术规范分为标准技术规范通用部分和标准技术规范专用部分。 2. 项目单位根据需求选择所需设备的技术规范。技术规范通用部分条款、专用部分标准技术参数表和使用条件表固化的参数原则上不能更改。 3. 项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“项目单位技术差异表”,并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: 1)改动通用部分条款及专用部分固化的参数; 2)项目单位要求值超出标准技术参数值范围; 3)根据实际使用条件,需要变更环境温度、湿度、海拔高度和耐受地震能力等要求。 经招标文件审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分表格中,随招标文件同时发出并视为有效,否则将视为无差异。 4. 投标人逐项响应技术规范专用部分中“1标准技术参数表”、“2项目需求部分”和“3投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件技术规范专用部分的“招标人要求值”一栏填写相应的投标人响应部分的表格。投标人还应对项目需求部分的“项目单位技术差异表”中给出的参数进行响应。“项目单位技术差异表”与“标准技术参数表”和“使用条件表”中参数不同时,以差异表给出的参数为准。投标人填写技术参数和性能要求响应表时,如有偏差除填写“投标人技术偏差表”外,必要时应提供证明参数优于招标人要求的相关试验报告。 5. 对扩建工程,如有需要,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 6. 技术规范范本的页面、标题等均为统一格式,不得随意更改。 7. 一次设备的型式、电气主接线和一次系统情况对二次设备的配置和功能要求影响较大,应在专用部分中详细说明。

变压器和母线保护配置重点讲义资料

1.1.10.4MVA及以上车间内油浸式变压器和0.8MVA及以上油浸式变压器,均应装设瓦斯保护。当壳内故障产生轻微瓦斯或油面下降时,应瞬时动作于信号;当壳内故障产生大量瓦斯时,应瞬时动作于断开变压器各侧断路器。 瓦斯保护应采取措施,防止因瓦斯继电器的引线故障、震动等引起瓦斯保护误动作。 1.1.2对变压器的内部、套管及引出线的短路故障,按其容量及重要性的不同,应装设下列保护作为主保护,并瞬时动作于断开变压器的各侧断路器: 1.1. 2.1电压在10kV及以下、容量在10MVA及以下的变压器,采用电流速断保护。 1.1. 2.2电压在10kV以上、容量在10MVA及以上的变压器,采用纵差保护。对于电压为10kV的重要变压器,当电流速断保护灵敏度不符合要求时也可采用纵差保护。 1.1. 2.3电压为220kV及以上的变压器装设数字式保护时,除非电量保护外,应采用双重化保护配置。当断路器具有两组跳闸线圈时,两套保护宜分别动作于断路器的一组跳闸线圈。 1.1.3纵联差动保护应满足下列要求: a.应能躲过励磁涌流和外部短路产生的不平衡电流;

b.在变压器过励磁时不应误动作; c.在电流回路断线时应发出断线信号,电流回路断线允许差动保护动作跳闸; d.在正常情况下,纵联差动保护的保护范围应包括变压器套管和引出线,如不能包括引出线时,应采取快速切除故障的辅助措施。在设备检修等特殊情况下,允许差动保护短时利用变压器套管电流互感器,此时套管和引线故障由后备保护动作切除;如电网安全稳定运行有要求时,应将纵联差动保护切至旁路断路器的电流互感器。 1.1.4对外部相间短路引起的变压器过电流,变压器应装设相间短路后备保护。保护带延时跳开相应的断路器。相间短路后备保护宜选用过电流保护、复合电压(负序电压和线间电压)启动的过电流保护或复合电流保护(负序电流和单相式电压启动的过电流保护)。 1.1.4.135kV~66kV及以下中小容量的降压变压器,宜采用过电流保护。保护的整定值要考虑变压器可能出现的过负荷。 1.1.4.2110kV~500kV降压变压器、升压变压器和系统联络变压器,相间短路后备保护用过电流保护不能满足灵敏性要求时,宜采用复合电压起动的过电流保护或复合电流保护。 1.1.5对降压变压器,升压变压器和系统联络变压器,根据各侧接线、连接的系统和电源情况的不同,应配置不同的相间

关于母线保护和变压器保护的一些问题

2009-5-18国调中心调考培训班 母线保护部分: 1、 整体构成 母线差动保护一般由启动元件、差动元件、抗饱和元件等构成。启动元件一般有和电流突变量启动元件、差电流启动、工频变化量突变量启动等。 2、 母线差动保护差动元件 母线差动保护的主要元件是差动继电器,其基本原理是利用差动原理。 母线正常运行时:01=∑ =m j j I 母线发生故障时:I I OP m j j ≥ ∑ =1 对采用完全电流母线差动保护来讲,将连接到母线上的所有支路的电流相量和的绝对值Icd 作为动作判据。理论上正常运行及区外故障时Icd 等于0,内部故障时Icd 增大差动继电器动作,实际构成时为防止区外故障时由于TA 的各种误差及饱和等原因造成的不平衡电流增大使差动继电器误动采用各种带制动特性的差动继电器。常见的母线差动元件有常规比率母差元件、工频变化量比率差动、复式比率差动等。这些差动元件的差动电流均相同,制动电流选取有差异,因而在区外故障及区内故障时制动能力和动作灵敏度均有差异,但作用都是在区外故障时让动作电流随制动电流增大而增大使之能躲过区外短路产生的不平衡电流,而在区内故障时则希望差动继电器有足够的灵敏度。 对于母线分段等形式的母线保护,为了能有选择性的仅切除故障母线采用多个差动元件来满足要求,即设置一个大差动元件和每段母线的小差动元件。大差动元件将所有母线的支路的电流(不包括分段或母联)加入差动继电器,即将所有母线作为一个整体来保护,其作用是区分是否在母线上发生故障,各段母线的小差动元件则仅将该段所有支路电流(包括与该段相联的分段及母联)接入,即仅将该段作为保护对象,用于区分是否在该段母线上发生故障,当在该段母线发生故障时,大差动和该段差动同时动作时仅将该段母线切除。简而概之,“大差判故障,小差选母线“。 3、常规比率差动元件 常规比率差动元件的制动电流选为所有支路电流的绝对值相加,其动作判据如下: cdzd m j j I I >∑=1 (1) ∑∑==>m j j m j j I K I 1 1 (2) 其中:K 为比率制动系数;I j 为第j 个连接元件的电流;cdzd I 为差动电流起动定值。

35kV母线保护通用技术规范

35kV母线保护通用技术规范 1

本规范对应的专用技术规范目录 2

35kV母线保护采购标准技术规范使用说明 1. 本物资采购标准技术规范分为通用部分、专用部分。 2. 项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3. 项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“项目单位技术差异表”并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: 1)改动通用部分条款及专用部分固化的参数; 2)项目单位要求值超出标准技术参数值; 3)需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分中,随招标文件同时发出并视为有效,否则将视为无差异。 4. 对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 5. 技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6. 投标人逐项响应技术规范专用部分中“1 标准技术参数”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按本技术规范专用部分的“招标人要求值”一栏填写相应的招标文件投标人响应部分的表格。投标人填写技术参数和性能要求响应表时,如有偏差除填写“技术偏差表”外,必要时应提供相应试验报告。 7. 一次设备的型式、电气主接线和一次系统情况对二次设备的配置和功能要求影响较大,应在专用部分中详细说明。 3

目次 35kV母线保护采购标准技术规范使用说明 (5) 1总则 (5) 1.1引言 (5) 1.2供方职责 (5) 2技术规范要求 (6) 2.1使用环境条件 (6) 2.2保护装置额定参数 (6) 2.3装置功率消耗 (6) 2.4母线保护总的技术要求 (6) 2.5母线保护具体的技术要求 (6) 2.6柜结构的技术要求 (8) 3试验 (8) 3.1试验要求 (8) 3.2性能试验 (8) 3.3现场试验 (8) 4技术服务、设计联络、工厂检验和监造 (10) 4.1卖方提供的样本和资料 (10) 4.2技术资料,图纸和说明书格式 (10) 4.3供确认的图纸 (10) 4.4买卖双方设计的图纸 (10) 4.5其他资料和说明书 (10) 4.6卖方提供的数据 (10) 4.7图纸和资料分送单位、套数和地址 (11) 4.8设计联络会议 (11) 4.9工厂验收和现场验收 (11) 4.10质量保证 (11) 4.11项目管理 (11) 4.12现场服务 (12) 4.13售后服务 (12) 4.14备品备件,专用工具,试验仪器 (12) 4

第九章母线保护

第九章母线保护 《继电保护和安全自动装置技术规程》规定 一、非专门母线保护 对于发电厂和主要变电所的3~10kV分段母线及并列运行的双母线,一般可由发电机和变压器的后备保护实现对母线的保护。 二、在下列情况下,应装设专用母线保护 1.35~66kV电力网中,主要变电所的35~66kV双母线或分段单母线需快速而有选择地切除一段或一组母线上故障,以保证系统安全稳定运行和可靠供电时。 2.110kV单母线,重要发电厂或110kV以上重要变电所的35~66kV母线,按ll0kV线路和220kV 线路要求:ll0kV线路采用远后备方式、220kV线路采用近后备方式,需要快速切除母线上的故障时。 3.对220~500kV母线,应装设能快速有选择地切除故障的母线保护。对1个半断路器接线,每组母线宜装设两套母线保护。 4.须快速而有选择地切除一段或一组母线上的故障,以保证发电厂及电力网安全运行和重要负荷的可靠供电时。 5.当线路断路器不允许切除线路电抗器前的短路时。 三、专用母线保护应考虑以下问题 1.对于双母线并联运行的发电厂或变电所,当线路保护在某些情况下可能失去选择性时,母线保护应保证先跳开母联断路器,但不能影响系统稳定运行。 2.为防止误动作,应增设简单可靠的闭锁装置(1个半断路器接线的母线保护除外)。 3.母线保护动作后,(1个半断路器接线除外)对不带分支的线路,应采取措施,促使对侧全线速动保护跳闸。 4.应采取措施,减少外部短路产生的不平衡电流的影响,并装设电流回路的断线闭锁装置。 5.在一组母线或某一段母线充电合闸时,应能快速而有选择地断开有故障的母线。在母线倒闸操作时,必须快速切除母线上的故障;同时又能保证外部故障时不误动作。 6.双母线情况下,母线保护动作时,应闭锁可能误动的横联保护。 7.当实现母线自动重合闸时,必要时应装设灵敏元件。 8.对构成环路的各类母线方式(如1个半断路器方式和双母线双分段方式等),当母线短路,该母线上所接元件的电流可能自母线流出时,母线保护不应因此而拒动。 9.在各种类型区外短路时,母线保护不应由于电流互感器饱和以及短路电流中的暂态分量而引起误动作。

变压器的保护配置

变压器的保护配置 Revised by Jack on December 14,2020

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变

变压器的保护配置

变压器的保护配置 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变

电力变压器的保护配置

技师专业论文 工种:配电工 题目:电力变压器的保护配置 作者:程红梅 身份证号:5 申报等级:配电工技师 单位:陕西龙门钢铁有限责任公司能源管控中心 日期:2013年9月1日 目录 第一章电力变压器的故障及不正常工作状态1 (一)变压器的故障1 (二)变压器的不正常运行状态2 第二章变压器的保护配置2

(一)瓦斯保护2 (二)纵差动保护和电流速断保护3 1纵差动保护4 (1)纵差动保护基本原理4 (2)变压器的纵差动保护5 2电流速断保护6 (三)外部相间短路和接地短路时的后备保护7 1变压器相间短路的后备保护7 (1)过电流保护7 (2)低电压启动的过电流保护8 2中性点接地变压器的接地保护9 (1)只有一台变压器的变电所9 (2)两台变压器并列运行的变电所10(四)过负荷保护10 (五)过励磁保护11 (六)其他非电量保护11 结论11 参考文献12

电力变压器的保护配置 作者:程红梅 论文摘要: 电力变压器是变电所中最关键的一次设备,其主要功能是将电力系统的电压升高或降低,以利于电能的合理输送、分配和使用。电力变压器是电力系统中的重要电器设备,而且其数量很多。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。再加上变压器的价格十分昂贵,所以,必须根据变压器的容量和重要程度装设性能良好、工作可靠且具有较好的经济性的保护装置。本文主要介绍了电力变压器的几种继电保护。 主题词:变压器,瓦斯保护,纵差动保护,过负荷保护 前言: 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态(一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、

变压器的保护配置

变压器的保护配置 电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状 态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压

器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变压器处于不正常运行状态时,继电保护应根

母线保护保护配置及测试交流

母线保护保护配置及测试方法 一、母线保护的几个术语和概念 ●主接线形式 常见的主接线形式:单母线接线形式、单母分段接线形式、单母三分段接线形式、双母线接线形式、双母单分段接线形式、双母双分段接线形式;3/2接线形式。 其他主接线形式:单母分段分段兼旁路接线形式、双母线母联兼旁路接线形式、双母线旁路兼母联接线形式、双母线母线兼旁母接线形式。 ◆单母线接线形式 特点:单母线运行方式固定,接线简单清晰,设备少、投资小运行操作方便,利于扩建。但可靠性和灵活性较差,母线发生故障时跳开母线上所有连接元件,检修时也需全站停电。 ◆单母分段接线形式 II I 需根据分段刀闸位置、分段断路器位置识别分段运行状态;分段TA极性端默认在I母侧。 特点:单母线分段接线可以减少母线故障的影响范围,提高供电的可靠性。当一段母线有故障时,分段断路器在继电保护的配合下自动跳闸,切除故障段,使非故障母线保持正常供电,母线或母线隔离开关检修或故障时的停电范围缩小了一半。对于重要用户,可以采用双回路供电,将双回路分别接引在不同分段母线上,保证不中断供电。

◆双母线专设母联接线形式 I I I 需根据各元件刀闸位置确定该元件所运行母线,根据母联刀闸位置、母联断路器位置识别母联运行状态,母联TA 极性端默认在I 母侧。 特点:具有两组结构相同的母线,每一回路都经一台断路器、两组隔离开关分别连接到两组母线上,两组母线之间通过母联断路器来实现联络。双母线接线比单母线分段接线的供电可靠性高、运行灵活,但投资也明显增大,因此,只有当进出线回路数较多、母线上电源较多、输送和穿越功率较大、母线故障后要求尽快恢复送电、母线和母线隔离开关检修时不允许影响对用户的供电、系统运行调度对接线的灵活性有一定要求等情况下,才采用双母线接线方式。 ◆单母双分段接线形式 II I III 根据分段刀闸位置、分段断路器位置识别分段运行状态;分段1的TA 极性端默认I 母侧,分段2的TA 极性端默认II 母侧。 ◆双母单分段接线形式

母线、变压器保护讲解

ISA-387G微机变压器差动保护装置 ISA-387G装置适用于多种接线方式的三卷和两卷变压器,可接入3组或4组CT电流,界面提供了变压器接线方式配置功能,软件根据变压器接线方式进行保护逻辑的自适应处理。 目前,装置已成功应用于110kV以下变电站近三千余套。 ISA-387G变压器差动保护装置适用于110kV及以下电压等级变压器独立差动保护要求。 功能: 保护功能:·独立的差流启动元件 ·差动速断保护 ·复式比率差动保护 · CT断线告警和闭锁差动 ·差动电流越限记录元件 ·差动电流长时间越限告警 ·第二侧/第三侧/第四侧各两段过流保护(选配) 特点: 装置标准配置为独立的差流启动元件、差动速断保护、复式比率差动保护、CT断线告警和闭锁差动元件、差动电流越限记录元件、差动电流长时间越限告警。 ·装置CT断线逻辑充分考虑了各种因素,动作十分可靠,能检查出CT二次侧全部故障,包括CT 回路单纯断线、端子排接触不良、端子排相对地或相间击穿、短路或爬电等。 ·装置复式比率差动保护经涌流判别制动,涌流制动采用独创的二次谐波复合逻辑制动原理,该原理已为大量的运行经验所证实。 ·硬件平台采用32位浮点DSP和16位高精度AD采样,运算与逻辑功能强大。 ·分层分布式结构,多CPU的并行处理方式提高可靠性;单元化设计、模块化结构,可扩充性强。

·大屏幕汉字液晶显示、直观友好的界面菜单、完备的过程记录、信息详细直观,操作、调试方便。 并可经订货注明选择超大屏幕的彩色液晶,支持黄、绿、红显示矢量图,更加直观全面。 ·装置具有保护段配置和出口配置功能,充分利用微机保护的优点,极大地方便用户的使用。 ·模拟回路采用高精度、宽范围器件,无幅值、相位调整电路。由软件功能调幅、调相,回路简单可靠、无零漂,调试维护工作量低。 ·以高可靠性工业级器件为主体,采用自动监测、补偿技术提高硬件电路稳定性、可靠性。 ·封闭、加强型单元机箱,多层屏蔽等抗振动、强干扰设计,特别适应于恶劣环境。4U半层机箱可分散安装于开关柜上运行。 ·大容量的故障录波记录:装置可记录最近16次故障录波数据,根据不同的保护启动、出口、返回情况,分别采用一段、两段或三段记录格式。该格式可保证记录保护启动前后各两周波、出 口前两周波、出口后一周波、返回前两周波和返回后一周波的数据。这三种格式至多记录10个 周波数据。 ·完善的事件记录:保护动作、电流越限、遥信变位、开关遥控、保护启动、装置运行、自检及闭锁保护等都有记录,每种记录分类存储,各存储最近99次记录。 标准和规范 ISA-300G系列变压器保护装置遵循以下标准,所有标准均采用最新版本。 标准号标准名称 GB 191《包装储运图示标志》 GB 2423《电工电子产品环境试验规程》 GB2423《电工电子产品环境试验规程》 GB4858《电气继电器的绝缘试验》 GB6126《静态继电器及保护装置的电气干扰试验》 GB7261《继电器和继电保护装置基本试验方法》 GB 11287《继电器,继电保护装置振荡(正弦)试验》 GB 14285《继电保护和安全自动装置技术规程》 GB/T14537《量度继电器和保护装置的冲击和碰撞试验》 GB/T15145《微机线路保护装置通用技术条件》 GB/T 14598.9-2002《量度继电器和保护装置的电气骚扰试验—辐射电磁场骚扰试验》 GB/T 14598.10-2007《量度继电器和保护装置的电气骚扰试验—电快速瞬变/脉冲群抗扰度试验》 GB/T 14598.13-1998《量度继电器和保护装置的电气干扰试验—1MHz脉冲群干扰试验》GB/T 14598.14-1998《量度继电器和保护装置的电气干扰试验—静电放电试验》 GB/T 14598.17-2005《量度继电器和保护装置的电气骚扰试验—射频场感应的传导骚扰的抗扰度》 GB/T 14598.18-2007《量度继电器和保护装置的电气骚扰试验—浪涌抗扰度试验》 GB/T 11287-2000《量度继电器和保护装置的振动、冲击、碰撞和地震试验—振动试验(正弦)》GB/T 14537-93《量度继电器和保护装置的冲击与碰撞试验》 GB/T 2423.1-2001《电工电子产品环境试验第2部分:试验方法试验A:低温》

变压器的保护配置

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更就是必不可少的条件。而合理可靠的保护配置就是变压器安全运行的必备条件。现代生产的变压器,虽然在设计与材料方面有所改进,结构上比较可靠,相对于输电线路与发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障与异常运行情况,这会对供电可靠性与系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外与油箱内两种故障。油箱外的故障,主要就是套管与引出线上发生的相间短路与接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料与变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管与引出线上的相间短路、接地短路、绕组的匝间短路就是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路与过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组与铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯与其她金属构件过热。变压器处于不正常运行状态时,继电保护应根据其严重程度,发出告警信号,使运行人员及时发现并采取相应的措施,以确保变压器的

变压器保护的配置原则

关于变压器保护的重要原则,必看! 变压器是电力系统普遍使用的重要电气设备。它的安全运行直接关系到电力系统供电和稳定运行,特别是大容量变压器,一旦因故障而损坏造成的损失就更大。因此必须针对变压器的故障和异常工作情况,根据其容量和重要程度,装设动作可靠,性能良好的继电保护装置,一般包括: (1)反映内部短路和油面降低的非电量(气体)保护,又称瓦斯保护; (2)反映变压器绕组和引出线的多相短路及绕组匝间短路的纵联差动保护,或电流速断保护; (3)作为变压器外部相间短路和内部短路的后备保护的过电流保护(或带有复合电压起动的过电流保护或负序电流保护或阻抗保护) ; (4)反映中性点直接接地系统中外部接地短路的变压器零序电流保护; (5)反映大型变压器过励磁的变压器过励磁保护及电压保护; (6)反映变压器过负荷的变压器过负荷保护;

(7)反应变压器非全相运行的非全相保护等。 变压器保护配置原则 电力变压器运行的可靠性很高。由于变压器发生故障时造成的影响很大,因此应加强其继电保护装置的功能,以提高电力系统安全运行,按技术规程的规定电力变压器继电保护装置的配置原则一般为: (1)针对变压器内部的各种短路及油面下降应装设瓦斯保护,其中轻瓦斯瞬时动作于信号,重瓦斯瞬时动作于断开各侧断路器; (2)应装设反应变压器绕组和引出线的多相短路及绕组匝间短路的纵联差动保护或电流速断保护作为主保护,瞬时动作于断开各侧断路器; (3)对由外部相间短路引起的变压器过电流,根据变压器容量和运行情况的不同以及对变压器灵敏度的要求不同,可采用过电流保护、复合电压起动的过电流保护、负序电流和单相式低电压起动的过电流保护或阻抗保护作为后备保护,带时限动作于跳闸; (4)对 110kV 及以上中性点直接接地的电力网,应根据变压器中性点接地运行的具体情况和变压器的绝缘情况装设零序电流保护和零序电压保护,带时限动作于跳闸;

变压器的保护配置

变压器的保护配置

电力变压器的保护配置 随着企业的快速发展,供电可靠性的要求不断提高,变压器的安全运行更是必不可少的条件。而合理可靠的保护配置是变压器安全运行的必备条件。现代生产的变压器,虽然在设计和材料方面有所改进,结构上比较可靠,相对于输电线路和发电机来说,变压器故障机会也比较少,但在实际运行中,仍有可能发生备种类型的故障和异常运行情况,这会对供电可靠性和系统的正常运行带来严重影响。为了满足电力系统稳定方面的要求,当变压器发生故障时,要求保护装置快速切除故障。 第一章电力变压器的故障及不正常工作状态 (一)变压器的故障 变压器的故障可以分为油箱外和油箱内两种故障。油箱外的故障,主要是套管和引出线上发生的相间短路和接地短路。油箱内的故障包括绕组的相间短路、接地短路、匝间短路以及铁芯的烧损等。油箱内故障时产生的电弧,不仅会损坏绕组的绝缘、烧毁铁芯,而且由于绝缘材料和变压器油因受热分解而产生大量气体,有可能引起变压器油箱的爆炸。因此,当变压器发生各种故障时,保护装置应能尽快的将变压器切除。实践表明,变压器套管和引出线上的相间短路、接地短路、绕组的匝间短路是比较常见的故障形式,而变压器油箱内发生相间短路的情况比较少。 (二)变压器的不正常运行状态 变压器的不正常运行状态主要有变压器外部短路和过负荷引起的过电流;中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压;风扇故障或漏油等原因引起冷却能力的下降等。这些不正常运行状态会使绕组和铁芯过热。大容量变压器在过电压或低频率等异常运行工况下会使变压器过励磁,引起铁芯和其他金属构件过热。变压器处于不正常运行状态时,继电保护应根

10kV配电变压器保护配置合理选择

无论是在环网供电单元、箱式变电站或是终端用户的高压室结线方式中, 如配电变压器发生短路故障时,保护配置能快速可靠地切除故障,对保护10 kV高压开关设备和变压器都非常重要。保护方式的配置一般有两种:一种利用断路器;另一种则利用负荷开关加高遮断容量的后备式限流熔断器组合。这两种配置方式在技术和经济上各有优缺点,以下对这两种方式进行综合比较分析。 1环网供电单元接线形式 1.1环网供电单元的组成 环网供电单元(RMU)由间隔组成, 一般至少有3个间隔,包括2个环缆进出间隔和1个变压器回路间隔。 1.2环网供电单元保护方式的配置 环缆馈线与变压器馈线间隔均采用负荷开关, 通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。实际运行证明,这是一种简单、可靠而又经济的配电方式。 1.3环网供电单元保护配置的特点 负荷开关用于分合额定负荷电流, 具有结构简单、价格便宜等特点, 但不能开断短路电流,高遮断容量后备式限流熔断器为保护元件, 可开断短路电流,如将两者有机地结合起来,可满足配电系统各种正常和故障运行方式下操作保护的要求。断路器参数的确定和结构的设计制造均严格按标准要求进行,兼具操作和保护两种功能,所以其结构复杂,造价昂贵,大量使用不现实。环网柜中大量使用负荷开关加高遮断容量后备式熔断器组合装置,把对电器不尽相同的操作与保护功能分别由两种简单、便宜的元件来实现,即用负荷开关来完成大量发生的负荷合分操作,而采用高遮断容量后备式限流熔断器对极少发生短路的设备起保护作用,很好地解决问题,既可避免使用操作复杂、价格昂贵的断路器,又可满足实际运行的需要。表1列出3种保护配置方式的技术-经济比较。 10 kV配电变压器保护配置方式的合理选择从此可以看出: a) 断路器具备所有保护功能与操作功能,但价格昂贵; b) 负荷开关与断路器性能基本相同,但它不能开断短路电流; c) 负荷开关加高遮断容量后备式限流熔断器组合,可断开短路电流,部分熔断器的分断容量比断路器还高,因此,使用负荷开关加高遮断容量后备式限流熔断器组合不比断路器效果差,可费用却可以大大降低。 1.4负荷开关加高遮断容量后备式熔断器组合的优点

变压器保护配置

变压器保护配置及相关问题 1.概述 1.1.变压器的故障和不正常状态 (1)绕组及其引出线的相间短路和在中性点直接接地处的单相接地短路; (2)绕组的匝间短路; (3)外部相间短路引起的过电流: (4)中性点直接接地电力网中,外部接地短路引起的过电流及中性点过电压; (5)过负荷; (6)过励磁; (2) (1) (2)励磁涌流中含有大量的非周期分量和高次谐波,在最初瞬间可能完全偏向时间轴一 侧,其中二次谐波分量所占比例最大,四次以上谐波分量很小。 (3)最初的几个周期内,励磁涌流的波形是间断的。 (4)励磁涌流的大小和衰减速度,与合闸时电压相位、铁芯中剩磁的大小和方向、电源容 量、变压器容量及铁芯材料有关。 由于涌流只存在于变压器的电源侧,如不采取措施必将导致保护的误动作,根据涌流的性质, 可采取以下措施: (1)利用励磁涌流中的非周期分量使继电器铁芯保护,自动提高保护的动作电流。如使用速 饱和铁芯的的差动继电器。 (2)利用延时动作或提高动作值躲过涌流。 (3)用短路电流和励磁涌流波形的差别来躲涌流。如目前成熟使用的利用二次谐波制动和间 断角闭锁的微机型差动保护。

鉴于涌流受多种因素影响,二次谐波制动系数的定值整定只能是一个经验数值,一般取15—20%,定值过大可能导致在空投变压器或区外故障切除时差动保护动作,过小则有可能使得变 压器内部故障时差动保护动作时间延长。 差动保护中二次谐波的闭锁方式有两种,按相闭锁和三相“或”门闭锁。这两种方式也是各有利弊。按相闭锁是指三相涌流中某相二次谐波满足制动条件,则只闭锁该相的差动保护,由于变压器空载合闸时三相涌流中某相波形的二次谐波成分有可能小于15%,将导致空投时差动保护的误动;三相“或”门闭锁是指三相涌流中任一相二次谐波满足制动条件,三相差动保护均被闭锁,这种闭锁方式可以提高差动保护的可靠性,但是在带有闸间短路的变压器空载合闸时,差动保护将因非故障相的励磁涌流而闭锁,造成变压器闸间短路的延缓切除,使损坏更加严重,变压器容量越大延缓时间就越长。投那种方式,应视具体情况而定,当选择按相闭锁方式时,可采取两相差动动作 才出口的方式。 故其 °,因 靠定 内发生严重故障时能快速动作出口。 2.4比率制动差动保护 比率制动是目前差动保护的主流动作原理,各厂家各型号的差动保护都采用原理,所不同之处 只是涌流判据和采取什么样的比率制动特性。 比率制动差动保护除了引入差动电流作为动作电流外,还引入外部短路电流作为制动电流,当外部短路电流增大时,制动电流随之增大,是差动继电器的动作电流相应增大。这样就可以在不提高动作整定值的情况下,有效避免由于外部短路时不平衡电流引起的误动,并保证差动保护范围内 短路时的动作灵敏度。 比率制动差动保护的通用特性如式1,特性曲线如图1: Id≥Idmin(I

相关主题
文本预览
相关文档 最新文档