当前位置:文档之家› 药物与血浆蛋白结合

药物与血浆蛋白结合

药物与血浆蛋白结合
药物与血浆蛋白结合

药物与血浆蛋白结合

血液经抗凝处理后的全部血液为全血;

血浆是血液(不包括细胞)的液体部分。在存在抗凝剂(如肝素)的条件下采集新鲜血液,然后离心去除血细胞而得到用于体外研究的血浆,血浆蛋白仍然保留于液体部分。

血清是去除了凝血因子(如纤维蛋内原)的血浆,它是在不含抗凝剂条件下采集的。

药动学研究通常采集血浆,从而保留了蛋白结合型及游离型药物,但除去了与细胞结合的药物。

许多药物与血浆蛋白、组织蛋白或体内的大分子物质如白蛋白、DNA 等反应,生成药物大分子复合物。药物与蛋白类高分子结合后,分子体积变大,不能透过血管壁向组织转运,不能由肾小球滤过,不能透过胎盘屏障,不能经肝代谢。

进人血液中的药物,一部分在血液中呈游离形式存在,一部分与血浆蛋白通过离子键、氢键、疏水键及范德华力可逆性结合,形成药物血

浆蛋白复合物,是药物在血浆中的一种贮存形式,能降低药物的分布与消除速度,维持药物疗效。药物的蛋白结合不仅影响药物的体内分布,而且还影响药物的代谢和排泄。药物在机体内最重要的结合就是蛋白结合,且主要是血浆蛋白结合。

药物的血浆蛋白结合率是影响药物分布的重要因素。血液中结合型的药物不易透过细胞膜,只有游离型的药物可向血管外扩散,转运到组织中。

如果药物的血浆蛋白结合率高,血浆中游离型药物浓度少,进入其他组织的浓度就低。

因此,药物分布主要取决于血液中的游离型药物的浓度,另外也与该药物和组织结合程度有很大关系。蛋白结合对药物分布的影响见表4-5,可见血浆中游离型药物浓度越高,越容易向其他组织转运,药物的表观分布容积越大。

2017年初级检验技师考试《临床化学》讲义 血浆蛋白质检查

血浆蛋白质检查 一、主要血浆蛋白质的理化性质、功能和临床意义 (一)血浆蛋白质的组成 包括前白蛋白、白蛋白、α1-抗胰蛋白酶、α1-酸性糖蛋白、结合珠蛋白、α2-巨球蛋白、铜蓝蛋白、转铁蛋白、β2-微球蛋白、C-反应蛋白。 (二)功能和临床意义 1.前清蛋白(PA):又称前白蛋白。由肝细胞合成,其半寿期很短,仅约12h。 (1)功能 1)参与组织修补。 2)运载蛋白:运输激素和维生素,如运输甲状腺激素和维生素A。 (2)临床意义 1)营养不良指标。 2)肝功不全指标:在肝炎发病早期血清前白蛋白浓度下降往往早于其他血清蛋白成分的改变。 3)急性炎症、恶性肿瘤、肾炎时其血清浓度降低。 2.清蛋白(Alb) 由肝实质细胞合成,是血浆中含量最多的蛋白质,占血浆总蛋白的57%~68%。 (1)功能 ①内源性氨基酸营养源;②维持血液正常pH; ③血浆中主要的非特异性载体,可运输许多水溶性差的物质如胆红素、胆汁酸盐、前列腺素、类固醇激素、金属离子、多种药物等;④维持血液胶体渗透压。 (2)临床意义 1)个体营养状态的评价指标: 医学认定水平:Alb>35g/L时正常;28~34g/L轻度缺乏;21~27g/L中度缺乏;<21g/L严重缺乏。当清蛋白浓度低于28g/L时,会出现水肿。 2)在血浆蛋白质浓度明显下降的情况下,可以影响许多配体在血循环中的存在形式,包括内源性的代谢物、激素和外源性的药物。 3)浓度升高:严重脱水、休克、饮水不足时。 4)浓度降低 摄入不足(营养不良) 合成障碍(慢性肝病) 消耗增大(恶性肿瘤、甲亢、重症结核等) 丢失增多(肾病综合征、严重烧伤、急性失血、组织炎症等) 白蛋白分布异常(门静脉高压腹水) 先天性白蛋白缺乏症(罕见) 3.α1-酸性糖蛋白(AAG):又称血清类黏蛋白,包括等分子的己糖、己糖胺和唾液酸。 临床意义:主要作为急性时相反应的指标。 增高:风湿病、恶性肿瘤及心肌梗死患者常增高。 降低:在营养不良、严重肝损害等情况下。 在急性时相反应或用类固醇皮质激素治疗时,由于α1-酸性糖蛋白含量升高,结合以上药物的能力增强而干扰药物的有效作用。 4.α1-抗胰蛋白酶(AAT):具有蛋白酶抑制作用的一种急性时相反应蛋白。 (1)功能:对抗由多形核白细胞吞噬作用时释放的溶酶体蛋白水解酶。 (2)临床意义:

蛋白结合率相关知识

蛋白结合率相关知识 血浆蛋白结合率:药物与血浆蛋白结合的程度,即血液中与蛋白结合的药物占总药量的百分数。 血浆蛋白结合率为可逆性疏松结合,结合型药物分子量增大,不能跨膜转运、代谢和排泄,并暂时失去药理活性,某些药物可在血浆蛋白结合部位上发生竞争排挤现象。药物分子与血浆蛋白结合的特点(和药物与受体蛋白结合情况相似):具有饱和性与可逆性、结合物无活性、有竞争置换现象。 药物进入循环后,有两种形式: 结合型药物:药物与血浆蛋白结合。 特点: (1)暂时失去药理活性。 (2)体积增大,不易通过血管壁,暂时“储存”于血液中。 意义:结合型药物起着类似药库的作用。药物进入相应组织后也与组织蛋白发生结合,也起到药库作用,影响药物作用和作用维持时间长短,一般蛋白结合率高的药物体内消除慢,作用维持时间长。 游离型药物:未被血浆蛋白结合的药物。 特点:能透过生物膜,进入到相应的组织或靶器官,产生效应或进行代谢与排泄。 药物与血浆蛋白结合方式:

酸性药物与白蛋白结合:华法林、非甾体抗炎药、磺胺类药物主要与血浆白蛋白结合,三环类抗抑郁药、氯丙嗪也与白蛋白结合。 碱性药物与α1-糖蛋白结合:β-糖蛋白和α-酸性糖蛋白虽然量比白蛋白少很多,但在癌症、关节炎、心肌梗死等疾病中可增高,能与奎宁结合。 特点: (1)可逆性 药物与血浆蛋白的结合是可逆的,极少数是共价结合(如烷化剂)。 药物在血液中转运时,结合型与游离型药物快速达到动态平衡。游离型药物→透过生物膜→血液中游离型药物浓度降低→结合型药物,释出游离型药物。 (2)饱和性 血浆中蛋白有一定的量,与药物的结合有限,因此,药物与血浆蛋白结合具有饱和性。 当药物浓度大于血浆蛋白结合能力时→饱和→游离型药物急剧增加→毒性反应。 某些病理情况下,血浆蛋白过少(如肝硬化、慢性肾炎)、变质(如尿毒症)→药物与血浆蛋白结合减少→毒性反应。有些药物在老年人中呈现较强的药理效应,与老年人的血浆蛋白减少有关。

药物与血浆蛋白结合

药物与血浆蛋白结合率的变化通过影响游离药物的浓度,从而改变药物的分布、代谢、排泄和作用靶点的结合,从而影响药物的药理作用和毒副作用。对1500种常用药物的研究表明,43%的化合物具有90%以上的血浆蛋白结合力。 中枢神经系统、炎症、肾-心血管等不同治疗领域的血浆蛋白结合率无显著性差异。唯一的例外可能是抗炎药,其中高蛋白结合量(>99%)占很高比例(26%),而且大部分是酸。 令人惊讶的是,许多中枢神经系统药物具有血浆蛋白结合率高的特点。这项研究最引人注目的发现是,化疗药物(包括抗生素、抗病毒药物、抗真菌药物和抗肿瘤药物)中低结合药物的比例很高(77%)。低血浆蛋白结合率似乎更有利于化疗药物的设计。血浆蛋白结合的基本原理。抗凝治疗后的全血为全血。血浆是血液的液体部分(不包括细胞)。 在抗凝剂(如肝素)存在的情况下,采集新鲜血液,离心除去血细胞,获得血浆进行体外研究,血浆蛋白留在液体部分。 血清是除去凝血因子(如纤维蛋白原)的血浆,在没有抗凝剂的情况下收集。在药代动力学研究中,通常收集血浆,以便保留蛋白结合药物和游离药物,但去除细胞结合药物。许多药物与血浆蛋白、组织蛋白或体内的白蛋白、DNA等大分子物质反应,形成药物大分子复合物。药物与蛋白质聚合物结合后,分子体积变大,不能通过血管壁转运到

组织,不能被肾小球过滤,不能通过胎盘屏障,不能被肝脏代谢。进入血液的药物有的在血液中以游离形式存在,有的通过离子键、氢键、疏水键和范德华力与血浆蛋白可逆结合,形成药物血浆蛋白复合物,是药物在血浆中的储存形式,可以降低药物的分布和消除速度,维持药物的疗效。 药物的蛋白质结合不仅影响药物在体内的分布,还影响药物的代谢和排泄。药物在体内最重要的结合是蛋白质结合,主要是血浆蛋白结合。

知识十六 主要蛋白质的理化性质、功能、临床意义.

知识十六主要蛋白质的理化性质、功能、临床意义 教学目的: 1、熟悉血浆蛋白质的理化性质、功能与临床意义; 2、掌握个别血浆蛋白质特别是血浆中的白蛋白、前白蛋白的临床意义; 3、了解疾病时血浆蛋白质的变化等。 重点:个别血浆蛋白质特别是血浆中的白蛋白、前白蛋白的临床意义。 难点:血浆蛋白质测定的临床意义;疾病时血浆蛋白质的变化。 教学方法和手段:课堂讲授为主,多媒体教学为辅,课堂提问突出重点。 授课时数:1学时 教学内容及组织: 一、血浆蛋白质的组成及功能 血浆蛋白质是血浆固体成份中含量最多、组成复杂、功能广泛的一类化合物。占血浆固体成份90%左右,目前已经研究的血浆蛋白质有300多种,分离出的纯品约100来种,除免疫球蛋白外,主要由肝细胞合成,主要功能。 1. 维持血浆胶体渗透压;清蛋白。 2. 作为某些物质的载体,起运输作用;如清蛋白能与多种物质结合(FA、胆红素),某些球蛋白具特异地运输某些物质的功能,运铁蛋白、运皮质醇蛋白。 3. 维持体液pH恒定;血浆蛋白pI一般都小于7.4是弱酸,一部分以弱酸盐形式存在,构成缓冲对。 4. 免疫功能;血浆中许多具有免疫功能的球蛋白,主要由浆细胞合成,电泳时位于γ区带,如IgG、IgA、IgM、IgD、IgE,此外,还有具有免疫作用的非特异球蛋白,如补体。 5. 凝血与纤溶作用;凝血与纤溶是一对矛盾的统一、凝血因子与纤溶因子绝大部分是血浆蛋白质,它们促进血液凝固,防止血液流失和溶解血栓,防止重要脏器的动脉栓塞。 6. 营养作用;血浆蛋白质可分解成AA,用于合成组织蛋白或氧化供能。 7. 催化作用;血浆中有许多酶类,其中部分在血浆中发挥作用,称血浆功能性酶,如凝血酶原、纤溶酶原、铜蓝蛋白、LPL、LCAT、肾素等。 二、个别血浆蛋白质 (一)前白蛋白(prealbumin,PA)分子量5.4万,由肝细胞合成,电泳时移动速度较白蛋白快,位于其前方面得名,半寿期短12h,PA是一类运载蛋白,一种能与甲状腺素结合,称为甲状腺结合蛋白,一种能与VitA结合,称为VitA 结合蛋白,常用测定方法是免疫学方法,正常参与范围0.2~0.4g /L,急性炎症,

实验三.血浆蛋白结合率的测定

院系:理学院专业:农药学学号:0931******* 姓名:王熠 实验三:血浆蛋白结合率的测定 1、实验目的 测定磺胺嘧啶钠在不同动物体内的血浆蛋白结合率。 2、实验原理 将蛋白置于一个隔室内,用半透膜将此隔室与另一隔室隔开。蛋白等大分子不能通过此半透膜,但系统中游离配基可自由通过。当达到平衡时半透膜两侧自由配基的浓度相等。若系统中自由配基的总量已知,测定不含蛋白隔室中自由配基的浓度,即可推算与蛋白结合的配基量。 具有游离氨基的磺胺药在酸性介质中与亚硝酸发生重氮化反应后,可与N-(1萘基)乙二胺产生偶合反应生成紫红色偶氮染料,与经过同样处理的磺胺药标准液比较,用721分光光度计比色法测出组织中和不同时间的血液中磺胺嘧啶浓度。 由于亚硝酸不稳定,在实验中,用三氯醋酸与亚硝酸钠反应制的得。 剩余的过量亚硝酸影响测定,用氨基磺酸胺分解除去。 3、实验材料 1、实验动物 兔子一只。 2、设备与器械 712分光光度计、管状半透膜(周长5cm,长约12cm)、丝线、广口瓶、移液器。 3、药物与试剂 10%磺胺嘧啶钠注射液 15%三氯醋酸溶液 0.1%亚硝酸钠溶液 0.5%氨基磺酸胺溶液 0.1%二盐酸N-(1萘基)-乙二胺溶液 磺胺嘧啶钠贮存标准液 磺胺嘧啶钠应用标准液 4、试验方法 1、试剂的制备 0.1%二盐酸N-(1萘基)-乙二胺溶液:0.5 g溶于95 %乙醇约400 mL中,再用乙醇稀释至500ml,棕色瓶于冰箱中保存 透析液(PBS):pH7.4的0.02M 磷酸盐缓冲液,内含0.15M NaCl 磺胺嘧啶钠应用标准液:10%磺胺嘧啶钠注射液3.75μl溶于约80ml3%三氯醋酸溶液再定容于100ml容量瓶中备用 2、血浆制备

第八章血浆蛋白质的测定(精)

第八章血浆蛋白质的测定 教学目的: 掌握:急性时相反应蛋白的概念;个别血浆蛋白质特别是血浆中的白蛋白、前白蛋白的临床意义。 熟悉:血浆蛋白质的理化性质、功能与临床意义。 了解:血浆蛋白质测定的临床意义:疾病时血浆蛋白质的变化(肝疾病)等 重点:急性时相反应蛋白的概念;个别血浆蛋白质特别是血浆中的白蛋白、前白蛋白的临床意义。 难点:急性时相反应蛋白的概念和种类 教学方法和手段:课堂讲授为主,多媒体教学为辅,课堂提问突出重点。 授课时数:6学时 教学内容及组织: 第一节概述 一、血浆蛋白质的组成及功能 血浆蛋白质是血浆固体成份中含量最多、组成复杂、功能广泛的一类化合物。占血浆固体成份90%左右,目前已经研究的血浆蛋白质有300多种,分离出的纯品约100来种,除免疫球蛋白外,主要由肝细胞合成,主要功能。 1. 维持血浆胶体渗透压;清蛋白。 2. 作为某些物质的载体,起运输作用;如清蛋白能与多种物质结合(FA、胆红素),某些球蛋白具特异地运输某些物质的功能,运铁蛋白、运皮质醇蛋白。 3. 维持体液pH恒定;血浆蛋白pI一般都小于7.4是弱酸,一部分以弱酸盐形式存在,构成缓冲对。 4. 免疫功能;血浆中许多具有免疫功能的球蛋白,主要由浆细胞合成,电泳时位于γ区带,如IgG、IgA、IgM、IgD、IgE,此外,还有具有免疫作用的非特异球蛋白,如补体。 5. 凝血与纤溶作用;凝血与纤溶是一对矛盾的统一、凝血因子与纤溶因子绝大部分是血浆蛋白质,它们促进血液凝固,防止血液流失和溶解血栓,防止重要脏器的动脉栓塞。 6. 营养作用;血浆蛋白质可分解成AA,用于合成组织蛋白或氧化供能。 7. 催化作用;血浆中有许多酶类,其中部分在血浆中发挥作用,称血浆功能性酶,如凝血酶原、纤溶酶原、铜蓝蛋白、LPL、LCAT、肾素等。 二、个别血浆蛋白质

血浆蛋白的测定及临床意义

血浆蛋白的测定及临床意义 一、血浆蛋白质测定方法的进展: (一)、比色法:例如总蛋白的测定方法:双缩脲反应法;白蛋白的测定方法:溴甲酚绿法。 (二)、电泳法:是进一步分离蛋白质的方法。 (三)、免疫测定法:是利用抗原抗体反应检测标本中微量物质的分析方法。 特点:(1)特异性好:即某一抗原只与其相应的抗体起反应。 (2)敏感性高,可检测出纳克(ng)水平的的量。 免疫测定法包括: 1、免疫扩散法:敏感度在ug/ml,因此只能用于检测含量较高的蛋白质。且操作 繁琐、时间长,需18-48小时。 2、免疫电泳法:是区带电泳与免疫扩散相结合的方法。一般不能定量,仅用于检 测异常蛋白成分。 3、免疫浊度法:基本原理是:当可溶性抗原与相应抗体特异结合,在二者比例合 适,并有一定浓度的电解质存在时,可以形成不溶性的免疫复合物,即沉淀反 应。 二、免疫浊度法的原理: 免疫浊度法可分为透射免疫比浊法和散射免疫比浊法。 1、透射免疫比浊法:当一定波长的光线通过抗原抗体反应混合液时,被形成的免 疫复合物反射、遮挡或吸收而减弱。在一定范围内,吸光度(A)与IC量呈正 相关。因此当抗体量固定时,根据吸光度可计算出抗原量。要求形成的IC达到 一定的数量,而且分子颗粒较大,否则难以精确测定,因此检测灵敏度相对较 低。 2、散射免疫比浊法:光线通过检测溶液时,被反应形成的抗原抗体复合物折射而 部分偏转,产生散射光,散射光强度(I)与样本的IC量、散射夹角(θ)成 正比,而与入射光波长成反比。 散射免疫比浊法又可分为终点散射比浊法和速率散射免疫比浊法 (1)终点散射免疫比浊法:当反应达到平衡时进行检测,通常需10-30min,且灵敏度较低。 (2)速率散射免疫比浊法:由于抗原与抗体结合形成免疫复合物的速度在单

药物与血浆蛋白结合

药物与血浆蛋白结合 药物的血浆蛋白结合: 药物进入循环后首先与血浆蛋白成为结合型药物,未被结合的药物称为游离型药物。药物与血浆蛋白的结合是可逆的,结合型药物的药理活性暂时消失,结合物因分子变大不能通过毛细血管壁而暂时“储存”于血液中。药物与血浆蛋白结合特异性低,而血浆蛋白结合位点有限,两个药物可能竞争与同一蛋白结合而发生置换现象,例如保泰松与双香豆素竞争血浆蛋白,使后者游离型浓度增高,可导致出血。 结合的特点: 可逆性结合后药理活性暂时消失:结合物分子变大不能通过毛细管壁暂时“储存”于血液中,不进行分布和消除。可发生竞争置换:药物与血浆蛋白结合特异性低,而血浆蛋白结合点有限,两个药物可能竞争与同一蛋白结合而发生置换现象。 结合率: 药物的血浆蛋白结合量受药物浓度,血浆蛋白的质和量及解离常数的影响,各药不同而且结合率随剂量增大而减少。药理学书籍收载的药物血浆蛋白结合率是在常用剂量范围内对正常人测定的数值。 影响药物血浆蛋白结合率的因素及后果: 两药合用时发生竞争置换,如某药结合率达99%,当被另药置换而下降1%时,则游离型(具有药理活性)药物浓度在理论上将增加100%,可能导致中毒。但一般药物在被置换过程中,游离型药物会加速被消除,血浆中游离型药物浓度难以持续增高。药物也可能与内源性代谢物竞争与血浆蛋白结合,如磺胺药置换胆红素与血浆蛋白

结合,在新生儿可能导致核黄疸症。血浆蛋白过少(如肝硬化)或变质(如尿毒症)时药物血浆蛋白结合率下降,容易发生毒性反应。由于血浆蛋白有限,当结合率高的药物在结合部位达到饱和后,如继续增加药量,将导致血浆中游离型药物浓度大增,引起毒性反应。

血浆蛋白结合率是否适合作为首要优化参数

前言 依据游离药物假说的基本内容,只有游离态的药物才能发挥药物浓度基本已经形成共识,在药物发现阶段我们是否可以通过结构修饰增加药物的游离比例(fraction of unbound, fu)来达到增加游离药物浓度的目标?理解该问题有利于早期化合物的高效筛选,避免陷入迷宫。常规情况下,从DMPK的角度来看,血浆蛋白结合率(plasma protein binding, PPB)不适合作为主要的筛选指标,因为同时有理论认为只有游离态药物才能被清除。下文将就这一问题从理论分析和实验数据两个角度进行阐述,以期助于大家理解PPB的合理运用。 1 理论分析 基于游离药物才能发挥药效的理论,我们可以已基本确定我们药物发现阶段的最终目标是拿到有合适的Cu或AUCu的化合物。一般Cu和AUCu 用下式表示: Cu=fu*C AUCu=AUC*fu, 大多药物的PK/PD关系为AUCu驱动,后文我们将以口服药物的AUCu的计算为例进行解读。下式为AUC和AUCu计算方法,。 AUC=Dose*F/CL AUCu= fu*Dose*F/CL 同时基于只有游离药物浓度才能被清除的理论,假设药物的清除主要依赖肝脏代谢,依据well-stirred模型,假设药物吸收良好,吸收比例分数Fa=1,无肠道代谢,则CL和F则可换算为下式,。

CL=Q*fu*Clint/(Q+fu*Clint), F=1-ER=1-CL/Q= Q /(Q+fu*Clint) 此处Q为肝血流速率,Clint为固有清除率;将CL和F的换算值带入方程AUC=Dose*F/CL和AUCu= fu*Dose*F/CL中,即可得: AUC=Dose/fu/Clint AUCu= Dose/Clint 到这里就可以发现虽然AUC与fu有着相反的关系,但是AUCu与fu 半毛钱关系没有,仅与Clint有关,Clint反映的正是化合物的代谢稳定性,这也就是代谢稳定性能够经常作为T1级别的筛选指标的原因。如果把fu 作为主要的筛选指标,你会发现fu高了,Clint不变基础上,AUC确实会高了,但是在代谢稳定性和吸收没改善的同时,AUCu可能一直没怎么变化,就会陷入魔力的转圈当中。 2 实验数据 最直观的数据就是统计上市药物的PPB情况,尝试找找PPB与各个PK参数的关联性,以理解PPB的作用。下图为Goodman & Gilman’s 统计的上市260个药物的fu值分布情况,可以发现fu的值与其是否能成功开发没有必然的联系,各类结合性质的药物均有成功案例。

药物与血浆蛋白结合

药物与血浆蛋白结合具有( )。 A.可逆性 B.不可逆性 C.竞争性抑制现象 D.竞争置换现象 E.饱和性 解析:药物的血浆蛋白结合指的是药物进入循环后首先与血浆蛋白成为结合型药物,未被结合的药物称为游离型药物。药物与血浆蛋白的结合是可逆的,结合型药物的药理活性暂时消失,结合物因分子变大不能通过毛细血管壁而暂时“储存”于血液中。药物与血浆蛋白结合特异性低,而血浆蛋白结合位点有限,两个药物可能竞争与同一蛋白结合而发生置换现象,例如保泰松与双香豆素竞争血浆蛋白,使后者游离型浓度增高,可导致出血。 结合的特点: 可逆性 结合后药理活性暂时消失:结合物分子变大不能通过毛细管壁暂时“储存”于血液中,不进行分布和消除。 可发生竞争置换:药物与血浆蛋白结合特异性低,而血浆蛋白结合点有限,两个药物可能竞争与同一蛋白结合而发生置换现象。 结合率:

药物的血浆蛋白结合量受药物浓度,血浆蛋白的质和量及解离常数的影响,各药不同而且结合率随剂量增大而减少。药理学书籍收载的药物血浆蛋白结合率是在常用剂量范围内对正常人测定的数值。 影响药物血浆蛋白结合率的因素及后果: 两药合用时发生竞争置换,如某药结合率达99%,当被另药置换而下降1%时,则游离型(具有药理活性)药物浓度在理论上将增加100%,可能导致中毒。但一般药物在被置换过程中,游离型药物会加速被消除,血浆中游离型药物浓度难以持续增高。药物也可能与内源性代谢物竞争与血浆蛋白结合,如磺胺药置换胆红素与血浆蛋白结合,在新生儿可能导致核黄疸症。血浆蛋白过少(如肝硬化)或变质(如尿毒症)时药物血浆蛋白结合率下降,容易发生毒性反应。由于血浆蛋白有限,当结合率高的药物在结合部位达到饱和后,如继续增加药量,将导致血浆中游离型药物浓度大增,引起毒性反应。

血浆蛋白质

第十三章血液的生物化学 概述 1.血液的组成 ⑴血浆(plasma) :离体血液加入抗凝剂,离心沉降血细胞等有形 成分后的上清液。 ⑵血细胞:红细胞,白细胞,血小板 2.血清(serum) ――血液凝固后析出的淡黄色透明液体 述:正常人的血液含水约81%-86%,其余为可溶性固体和少量的氧、二氧化碳等气体。可溶性固体成分非常复杂,主要包括蛋白质、非蛋白含氮物质、不含氮的有机化合物及无机盐等。 3.血液的固体成分 ⑴无机物:以电解质为主 述:血液中含有多种无机盐,它们主要以离子状态存在。重要的阳离子有Na+、K+、Ca2+、Mg2+等,重要的阴离子有Cl-、HCO3-、HPO42-等。这些离子在维持血浆晶体渗透压、酸碱平衡以及神经肌肉的正常兴奋性等方面起重要作用。 ⑵有机物:蛋白质、非蛋白质类含氮化合物、糖类和脂类等 ①非蛋白氮(NPN)――血液中非蛋白含氮物质中所含氮的总称述:NPN主要包括尿素、尿酸、氨基酸、氨、多肽和胆红素等,其中尿素含量最多。约占NPN总量的一半。在临床上血液尿素氮(BUN)常作为判断肾脏排泄功能的指标。 ②不含氮的有机化合物 述:血液中不含氮的有机化合物主要有葡萄糖、乳酸、酮体、脂类等。它们的含量与糖代谢和脂类代谢密切相关。 血浆固体成分中,所占比例最大的物质是血浆蛋白质。

第一节血浆蛋白质 一、血浆蛋白的分类 1.概念:指血浆含有的蛋白质,是血浆中的主要的固体成分。2.总浓度:70~75g/L 3.分类 述:血浆中共有200多种蛋白质。按不同的分类方法可将血浆蛋白质分成不同的组分,常用的方法有盐析法、电泳法及按生理功能分类法。 (一)盐析法 1.概念:根据血浆蛋白质在不同浓度的盐溶液中溶解度的差异而加以分离的方法。 2.分类:此法可分为清蛋白、球蛋白、纤维蛋白原等几部分,其中清蛋白/球蛋白(A/G)为1.5-2.5:1。 (二)电泳法 1.概念:利用各类血浆蛋白质分子大小不同,表面电荷不同,在电场中泳动速度不同而加以分离的方法。 2.分类:以醋酸纤维素薄膜为支持物,可将血浆蛋白质分为清 蛋白、α 1球蛋白、α 2 球蛋白、β球蛋白、γ球蛋白等 五个组分。(幻灯6)如用分辨率更高的电泳方法, 可将血浆蛋白质分成数十种组分。 (三)按生理功能不同,可将血浆蛋白分为清蛋白、免疫球蛋白与补体、糖蛋白、金属结合蛋白类、脂蛋白类、血浆 酶类等六类。

药物与血浆蛋白结合

药物的血浆蛋白结合: 药物的血浆蛋白结合指的是药物进入循环后首先与血浆蛋白成为结合型药物,未被结合的药物称为游离型药物。药物与血浆蛋白的结合是可逆的,结合型药物的药理活性暂时消失,结合物因分子变大不能通过毛细血管壁而暂时“储存”于血液中。药物与血浆蛋白结合特异性低,而血浆蛋白结合位点有限,两个药物可能竞争与同一蛋白结合而发生置换现象,例如保泰松与双香豆素竞争血浆蛋白,使后者游离型浓度增高,可导致出血。 结合的特点: 可逆性 结合后药理活性暂时消失:结合物分子变大不能通过毛细管壁暂时“储存”于血液中,不进行分布和消除。 可发生竞争置换:药物与血浆蛋白结合特异性低,而血浆蛋白结合点有限,两个药物可能竞争与同一蛋白结合而发生置换现象。 结合率: 药物的血浆蛋白结合量受药物浓度,血浆蛋白的质和量及解离常数的影响,各药不同而且结合率随剂量增大而减少。药理学书籍收载的药物血浆蛋白结合率是在常用剂量范围内对正常人测定的数值。 影响药物血浆蛋白结合率的因素及后果: 两药合用时发生竞争置换,如某药结合率达99%,当被另药置换而下降1%时,则游离型(具有药理活性)药物浓度在理论上将增加100%,可能导致中毒。但一般药物在被置换过程中,游离型药物

会加速被消除,血浆中游离型药物浓度难以持续增高。药物也可能与内源性代谢物竞争与血浆蛋白结合,如磺胺药置换胆红素与血浆蛋白结合,在新生儿可能导致核黄疸症。血浆蛋白过少(如肝硬化)或变质(如尿毒症)时药物血浆蛋白结合率下降,容易发生毒性反应。由于血浆蛋白有限,当结合率高的药物在结合部位达到饱和后,如继续增加药量,将导致血浆中游离型药物浓度大增,引起毒性反应。

人血浆清蛋白的生理功能分析

人血浆清蛋白的生理功能分析 【摘要】人体血浆中蛋白质含量最为丰富的就是清蛋白(albumin),它的蛋白质含量占据血清总蛋白量的50%以上,分子量大概为69万道尔顿。临床医学上,人血清蛋白的制剂具备非常重要的生理功能,因此其临床应用比较广泛,例如发生大面积烧伤的24 小时后、肾透析治疗、脑水肿、急性创伤性休克、伴随肝昏迷的急性肝功能衰竭和血液置换治疗等临床实践中,人血清蛋白起到良好的疗效。但是由于对人血清蛋白的相关生理功能尚未确切了解,因此导致临床应用上经常出现不合理利用问题出现,本文通过仔细分析人血浆清蛋白的生理功能,进而具体分析临床上应用人血浆清蛋白情况。 【关键词】人血清蛋白;生理功能;临床应用 1前言 人血浆清蛋白(albumin)是人血浆含量最多的蛋白质,约45g/L,占血浆总蛋白的60%。人血浆清蛋白基因位于第4号染色体上,其初级翻译产物为前清蛋白原(preproalbumin)。[1]医学上,1940年人血清蛋白的生物制剂开始应用于临床救治。其具备明显的生理功能,主要表现在属于载体,能够输送各种分子、维持血浆胶体渗透压、代谢产物解毒以及再加工,临床上重点应用于治疗低蛋白血症。最近10年来,人血浆清蛋白的应用范围逐渐增广,用药剂量也相应增多,但是由于对人血清蛋白的相关生理功能尚未确切了解,因而不可避免出现许多不合理用药现象。这不但不能改善病人病况,还由于该药物价格昂贵而导致患者负担过重,因为有必要详细了解人血浆清蛋白的生理功能,并且按照功能的应用要求进行应用,为临床合理用药提供参考。 2人血清蛋白的合成与分解 清蛋白由585个氨基酸组成的一条多肽链,含17个二硫键,分子量约为概为69万道尔顿。[2]人体中,只有肝脏可以合成清蛋白,大约每天合成12~14g,约占肝脏分泌蛋白的50%。清蛋白的分子呈椭园形,每个分子的长短轴分别为150和38,较球蛋白和纤维蛋白原分子对称,故清蛋白粘性较低。在人体自然合成清蛋白的过程中,存在的影响因素有:甲状腺激素与可的松的水平;内环境的胶体渗透压。人体内的清蛋白合成量无固定数量,但其在体内也不能储存。每一个成年人体内的清蛋白总含量约为300克,而大概40%会存在于血浆交换池里,剩余60%会处于血管外组织。[3]人体每天大概有4%清蛋白自动分解,半衰期为20~22天。目前对于确切影响清蛋白分解的因素还未完全有定论,具体的分解位置也尚未确定。 3人血清蛋白的生理功能 人血清蛋白存在多种重要的生理功能,包括输送各种分子、维持血浆胶体渗透压、代谢产物解毒以及再加工等。

血浆的生理功能

血浆含有大量水分和一定量溶质,这些成分乃是血浆理化特性和生理功能的物质基础。测定血浆的化学成分,可反映体内物质代谢状况。 血浆蛋白 血浆蛋白可分为白蛋白(3.8g%~4.8g%)、球蛋白(2.0g%~3.5g%)、和纤维蛋白原(0.2g%~0.4g%)等几种成分。现将其主要功能介绍如下: 1.形成血浆胶体渗透压在这几种蛋白质中,白蛋白分子量最小,含量最多,对于维持正常血浆胶体渗透压起主要作用。当肝脏合成白蛋白减少或它经由尿中大量排出体外,使血浆白蛋白含量下降,胶体渗透压也下降,导致全身水肿。 2.免疫作用球蛋白包括a1、a2、β和γ等几种成分,其中γ(丙种)球蛋白含有多种抗体,能与抗原(如细菌、病毒或异种蛋白)相结合,从而杀灭致病因素。如果这种免疫球蛋白含量不足时,机体抵抗疾病的能力下降。 补体也是一种血浆中的蛋白质,它可与免疫球蛋白结合,共同作用于病原体或异物,破坏其细胞膜的结构,从而具有溶菌或溶细胞的作用。 3.运输作用血浆蛋白可与多种物质结合形成复合物,如一些激素,维生素、Ca2+和Fe2+可与球蛋白结合,许多药物和脂肪酸则和白蛋白结合而在血液中运输。 此外,血液中还有许多酶类,如蛋白酶、脂肪酶和转氨酶等,都可通过血浆运输而送到各种组织细胞。 4.凝血作用血浆中纤维蛋白原和凝血酶等因子是引起血液凝固的成分。 非蛋白氮 血中蛋白质以外的含氮物质,总称非蛋白氮。主要是尿素,此外还有尿酸、肌酐、氨基酸、多肽、氨和胆红素等。其中氨基酸和多肽是营养物质,可参加各种组织蛋白质的合成。其余的物质多为机体代谢的产物(废物),大部分经血液带到肾脏排出体外。 不含氮有机物 血浆中所含的糖类主要是葡萄糖,简称血糖。其含量与糖代谢密切有关。正常人血糖含量比较稳定,约在80mg%~120mg%。血糖过高称高血糖,或过低称低血糖,都导致机体功能障碍。 血浆中所含脂肪类物质,统称血脂。包括磷脂、三酸甘油酯和胆固醇等。这些物质是构成细胞成分和合成激素等物质的原料。血脂含量与脂肪代谢有关,也受食物中脂肪含量的影响,血脂过高对机体有害。 无机盐

药物与血浆蛋白结合的药理学研究

药物与血浆蛋白结合的药理学研究对于药物和血浆蛋白的结合,通常的认知是二者形成的复合体是不能够实现跨膜运转的,进而使机体摄入的药物在分布、代谢、排泄及与相应的受体在结合后产生的药理效果,会以一种游离的形式进行,而游离药物在血液中发生的浓度变化是对机体内药物处置、药效起到决定性影响的因素中的重要一种。本文对药物与血浆蛋白结合的药理学基础和研究进展进行阐述,对临床的常规用药需要考虑的因素进行总结,从而能够明确药物在何种情况下需要监测游离的浓度。 1药物与血浆蛋白的结合机体 在使用药物后,药物进入机体内循环,由于结构上的差异性,就会与血细胞、血浆蛋白互相结合,形成结合型药物,而没有发生结合的药物,被称为游离药物。药物在不同的作用下进行结合,这些作用分别是共价键结合、离子键吸引、氢键结合、电荷转移、疏水性结合及范德华引力,而上述的药物结合方式是可逆的,如果结合后,药物分子发生变大的情况,就不易透膜,能够在血液中储存,然后经过血液运输,通过游离药物分布到机体的各个组织部位,进而起到治疗的作用。在血液中,多数药物能够与血浆蛋白结合,能够与血细胞结合,或者进入血细胞,当进入血细胞后,分布在血液中,继而形成了一种动态的平衡。但在上述的各种结合方式中,药物与血浆蛋白的结合会对药物的分布造成重要的影响,特别是药物结合成的蛋白组分中,白蛋白(HSA)和α1酸性糖蛋白(AGP)是2种最为重要的。 1.1结合方式

为保证药物的安全性和临床用药的有效性,人们在研究中,将药物与血浆蛋白的结合规律进行了重点研究,研究发现,药物与血浆蛋白的结合方式,对患者体内的药物浓度起到预测的作用,根据质量守恒的作用原理,药物和血浆蛋白的可逆结合要保证以下的平衡:ka=k1/k-1=1/kd(1)式(1)中,k1是结合速率常数,解离速率常数是k-1,药物-蛋白复合物结合常数是ka,解离常数是kd。该公式反应的是药物与蛋白在结合产生的亲和力的大小。高蛋白与药物结合的ka值范围在105~107mmol/L,而低蛋白结合的ka值和中等结合强度ka的值范围均在102~104mmol/L。Cu是体系中没有结合的药物浓度,Cb是体系中结合的药物浓度,P是原始蛋白浓度,也就是游离结合部位的浓度。因此,若体系中的蛋白没有与药物分子发生结合,那么P 可以认为是体系中发生结合的蛋白总浓度。若每个蛋白分子都含有n 个独立、亲和力相当的(ka)结合位点,在配体与大分子表面之间Langmuir吸附等温式如下:k1×Cu[1-Cb/(n×P)]=K-1×Cb/(n×P)(2)式(2)中,n×P得出的值大小是药物与蛋白发生结合后的容量指标,Cb/P表示的是1mol含有的与蛋白发生结合的药物分子数。式(2)在重新排列后,结合率(fb)与游离药物浓度的表达如下:fb=n×P×Ka/(1+n×Ka+Ka×Cu)(3)因此,虽然药物与蛋白的结合率随着药物浓度的变化而发生改变,呈现出浓度依赖性和饱和结合的特点,但通常情况下能够满足Ka×Cu<1,这说明当药物浓度达到一定范围,结合率是作为常数,不因药物浓度变化受到影响,药物和血浆蛋白的结合方式是线性。根据式(3)得出的结果是在一定的条件下,药物和血浆

实验二 药物血浆蛋白结合率测定

实验二药物血浆蛋白结合率测定 前言:药物血浆蛋白结合率是药物与血浆蛋白结合的量占药物总浓度的百分率,是药物代谢动力学的重要参数之一。它影响药物在体内的分布、代谢与排泄,从而影响其作用强度和时间,并往往与药物的相互作用及作用机制等密切相关。研究药物血浆蛋白结合率的方法包括常规的平衡透析法、超滤法、超速离心法、凝胶过滤法、分配平衡法、稳定同位素-GC-MS法、光谱技术等。本实验主要通过采用平衡透析法对药物血浆蛋白结合率进行测定,对于新药研究开发和指导临床合理用药都具有重要意义。 关键词:血浆蛋白结合率平衡透析法磺胺嘧啶 【实验原理】平衡透析法的基本原理是将蛋白置于一个隔室内,用半透膜将此隔室与另一隔室隔开。蛋白等大分子不能通过此半透膜,但系统中游离配基可自由通过。当达到平衡时半透膜两侧自由配基的浓度相等。若系统中自由配基的总量已知,测定不含蛋白隔室中自由配基的浓度,即可推算与蛋白结合的配基量。再用重氮化偶合比色测定法对磺胺药的含量进行测定。其测定原理是具有游离氨基的磺胺药在酸性介质中重氮化后,可与N-(1萘基)乙二胺产生偶合反应生成紫红色偶氮染料,再与同样处理的磺胺药标准液比较,即可求得剩余的亚硝酸影响测定,用氨基磺酸胺分解除去。 【材料与试剂】 1. 药物10%磺胺嘧啶钠注射液 2. 试剂 15%三氯醋酸溶液0.1%亚硝酸钠溶液0.5%氨基磺酸胺溶液0.1%二盐酸N-(1萘基)-乙二胺溶液磺胺嘧啶钠贮存标准液磺胺嘧啶钠应用标准液(3.75ug/ml) 3.透析液 pH7.4的0.02M 磷酸盐缓冲液,内含0.15M NaCl 4. 鸡、兔各3只 5. 管状半透膜周长5cm,长约12cm 【试剂的配制】 1. 0.1%二盐酸N-(1萘基)-乙二胺溶液 0.5 g溶于95 %乙醇约400 mL中,再用乙醇稀释至500ml,棕色瓶于冰箱中保存 2.贮存标准液 取标准品0.125g溶于蒸馏水中,并稀释至1000mL。如不溶于水,可先溶于0.1 mol/L氢氧化钠25mL中,再加4mol/L硫酸175 mL,用蒸馏水稀释至1000mL。 3.应用标准液 精确吸取贮存标准液3mL,置100 mL容量瓶中,用3%三氯醋酸稀释至刻度。(本实验是用10%磺胺嘧啶钠注射液进行标准液的配制:即吸取3.75ul的10%磺胺嘧啶钠注射液置于100 mL容量瓶中,用3%三氯醋酸稀释至刻度。) 【操作步骤】 1. 血浆的制备:兔心脏采血,鸡翼静脉采血,肝素抗凝,以3000rpm离心10min,

药物与血浆蛋白结合

血浆是一种水溶液,包含92%的水,7%的蛋白质以及1%的其它物质(比如无机盐),总共占到人体血液的55%的组分。药物与血浆蛋白的结合(Plasma Protein Binding, PPB)会降低血液循环系统中自由药物浓度,从而影响渗透到组织细胞到达药物靶点的治疗能力,或者影响肾脏的消毒能力。 因此,PPB的结合事件会影响药物在体内的活性代谢时间和毒副作用,患者的其他药物,食物和病理状况的共同给药可以显着改变药物的结合百分比,并可能导致严重后果。 药物分子可以通过多种方式与血浆蛋白结合,而且血浆蛋白结合作用是可逆的,主要取决于疏水作用和静电作用,比如vdW作用和氢键。血浆蛋白结合药物与游离态药物的浓度达成动态平衡,这个可逆平衡过程会强烈影响各种药理学性质,比如分布体积,药物清除率,和消除,以及药理效应。因为只有一部分游离药物可以跨过细胞膜,高蛋白结合能力的药物比低蛋白结合能力的药物有更长的半衰期。结合到血浆蛋白上的药物越多,发挥治疗作用的游离药物的比例越小。血浆蛋白对药物的结合能力是评估药动力学特点的一个非常重要的性质,评估游离药物在组织器官和血液中的比例是药物设计中的一个有价值的科学问题。 血浆蛋白主要包括白蛋白、球蛋白、凝血因子和调节蛋白,最重要的药物结合蛋白是白蛋白和α1-酸性糖蛋白,其次是脂蛋白。其中,白蛋白的浓度最高(600μM),是血浆中的主要药物结合组

分(人类血清白蛋白,HSA,human serum albumin);其次是α-酸性糖蛋白(AAG,α-acid glycoprotein,α-也叫做乳清类粘蛋白),12-30μM,和脂蛋白(lipoproteins,也叫做γ-球蛋白)。关于药物结合HSA和AAG的研究工作是最多的。 白蛋白是人类血浆蛋白中的主体组分(600 μM),含量占到总血浆蛋白的60%。白蛋白(HSA),是人血浆中含量最丰富的一种蛋白质,能与许多内源性和外源性化合物结合,是一种重要的存储和转运蛋白。白蛋白有多个疏水性的结合位点(对脂肪酸来说总共有8个),585个残基组成,含有35个半胱氨酸,17对二硫键。HSA可以分为3个结构域,每个结构域有2个亚结构域。分别为IA,IB,IIA,IIB,IIIA,IIIB。尽管HSA有8个结合位点,能够以不同的结合强度,来结合内源性和外源性化合物;通常只有两个主要的HSA结合位点,用来结合配体,并且倾向于结合酸性药物。 Sudlow等人指出HSA主要有两个输水腔组成的药物结合位点,分别称为位点I和位点II,其中位点I位于IIA区域,称为法华令位点;位点II位于IIIA区域,称为吲哚结合位点。位点I倾向于结合体积较大的杂环阴离子(比如法华林,warfarin),位点II倾向于结合体积小的芳环羧酸分子(比如,布洛芬,ibuprofen)。位点II 由6个alpha螺旋组成,与位点I有拓扑结构相似性,除了主腔室外还有一个亚腔室,入口处有一个极性区域,是脂肪酸的强结合位点。与位点I相比,位点II的空腔溶剂较小,空间较狭窄,但由于IIIA区

血浆蛋白质的测定(精)

第八章血浆蛋白质的测定 第一节概述 一、血浆蛋白质的组成及功能 血浆蛋白质是血浆固体成份中含量最多、组成复杂、功能广泛的一类化合物。占血浆固体成份90%左右,目前已经研究的血浆蛋白质有300多种,分离出的纯品约100来种,除免疫球蛋白外,主要由肝细胞合成,主要功能。 1. 维持血浆胶体渗透压;清蛋白。 2. 作为某些物质的载体,起运输作用;如清蛋白能与多种物质结合(FA、胆红素),某些球蛋白具特异地运输某些物质的功能,运铁蛋白、运皮质醇蛋白。 3. 维持体液pH恒定;血浆蛋白pI一般都小于7.4是弱酸,一部分以弱酸盐形式存在,构成缓冲对。 4. 免疫功能;血浆中许多具有免疫功能的球蛋白,主要由浆细胞合成,电泳时位于γ区带,如IgG、IgA、IgM、IgD、IgE,此外,还有具有免疫作用的非特异球蛋白,如补体。 5. 凝血与纤溶作用;凝血与纤溶是一对矛盾的统一、凝血因子与纤溶因子绝大部分是血浆蛋白质,它们促进血液凝固,防止血液流失和溶解血栓,防止重要脏器的动脉栓塞。 6. 营养作用;血浆蛋白质可分解成AA,用于合成组织蛋白或氧化供能。 7. 催化作用;血浆中有许多酶类,其中部分在血浆中发挥作用,称血浆功能性酶,如凝血酶原、纤溶酶原、铜蓝蛋白、LPL、LCAT、肾素等。 二、个别血浆蛋白质 (一)前白蛋白(prealbumin,PA)分子量5.4万,由肝细胞合成,电泳时移动速度较白蛋白快,位于其前方面得名,半寿期短12h,PA是一类运载蛋白,一种能与甲状腺素结合,称为甲状腺结合蛋白,一种能与VitA结合,称为VitA 结合蛋白,常用测定方法是免疫学方法,正常参与范围0.2~0.4g /L,急性炎症,恶性肿瘤,肝硬化或肾炎时下降。 (二)白蛋白(albumin,Alb)分子量66458,由肝实质细胞合成,半寿期15~19天,是血浆中含量最多的蛋白质,占40%~60%,主要功能,维持血浆胶体渗透性,缓冲作用,运输作用,营养作用,调节某些激素或药物活性。 白蛋白可微量地通过肾小球,约0.04%,但大部分被血小管重吸收。 白蛋白的测定方法目前主要是溴甲酚绿(BCG)法,正常参考范围35~55g/L,血浆白蛋白增高临床少见,主要见于严重失水引起血液浓缩,血浆白蛋白降低临

第三章血浆蛋白质与含氮化合物的生物化学检验.

第三章血浆蛋白质与含氮化合物的生物化学检验 一、判断题 1. 急性肝损伤时ALB降低明显,A/G比值增高。 2. 与ALB比较,PA半衰期短,可更灵敏的反映肝损伤。 3. 乙酸纤维膜电泳分离血清蛋白质实验中,最临近正极的是清蛋白。 4. Plasma[Cp] reduce in wilson's disease 5. 转铁蛋白是一种急性时相反应蛋白,炎症时其血浆中含量升高。 6. CRP是一种急性时相反应蛋白,在炎症时血浆中CRP含量升高。 7. 具有活性的激素或药物当与清蛋白结合时,可以不表现其活性,而视为共储现象。 8. 血清比血浆多一种蛋白质---纤维蛋白质。 9. 人体体液中多数蛋白质的等电点在pH为5.0左右,因而在体液中主要以负离子形式存在。 10. 在急性炎症及恶性肿瘤,肝硬化或肾炎时,前清蛋白升高。 11. 双缩脲比色法是目前蛋白质定量的参考方法。 12. 铜蓝蛋白属于一种急性时相反应蛋白,在感染,创伤和肿瘤时增加。 13. 血清中蛋白质在pH8.6的缓冲液中带负电荷,向正极移动。 14. 血浆中的清蛋白具有免疫和凝血功能。 15. 80%的高尿酸血症会发生痛风。 16. 高尿酸血症是嘧啶代谢紊乱引起的。 17. 低清蛋白血症时,α2-巨球蛋白可显著增高。 18. 白化病是由于酪氨酸酶缺乏,酪氨酸不能转变为黑色素所致。 19. 用醋酸纤维素薄膜进行血清蛋白电泳,移动最快的蛋白是α-球蛋白。 20. α2-巨球蛋白是一种急性时相反应蛋白,在炎症时升高。 二、单选题 21. 溴甲酚绿法测定血清清蛋白时,为减少非特异性反应一般要在样本与BCG试剂混合后 多久时间内比色 A. 30秒 B. 1分钟 C. 5分钟 D. 10分钟 E. 多久都可以 22. 血浆清蛋白所具有的功能一般不包括 A. 营养修补作用 B. 维持胶体渗透压 C. 运输载体作用 D. 作为血液酸碱缓冲成分 E. 免疫和防御功能 23. 急性时相反应时降低的蛋白质是

最新1药物与血浆蛋白结合汇总

1药物与血浆蛋白结 合

1药物与血浆蛋白结合(c)。A是不可逆的B.加速药物在体内的分布C.是疏松和可逆的D.促进药物排泄E.无饱和性和置换现象2某弱酸性药在pH为5时约90%解离,其pKa值为(c)。A.6 B.5 C.4 D.3 E.2 3吸收最慢的是(d)。 A.口服给药 B.静脉注射 C.舌下含服 D.经皮给药 E.吸入给药 4主动转运的特点是(a)。 A.需要载体,消耗能量 B.需要载体,不消耗能量 C.消耗能量,无饱和性 D.无饱和性,有竞争性抑制 E.不消耗能量,无竞争性抑制 5对消除半衰期的认识不正确的是(b)。 A.药物的血浆浓度下降一半所需的时间 B.药物的组织浓度下降一半所需的时间 C.临床上常用消除半衰期来反映药物消除的快慢 D.符合零级动力学消除的药物,其半衰期与体内药量有关 E.一次给药后,经过5个半衰期体内药物已基本消除 使激动剂的量效曲线平行右移,最大效应不变的是(e)。 A.拮抗剂 B.激动剂 C.部分激动剂 D.非竞争性拮抗剂 E.竞争性拮抗剂 某药的半衰期为10小时,一次给药后从体内基本消除的时间是(a)。 A.约50小时 B.约30小时 C.约80小时 D.约20小时 E.约70小时 血药浓度已降到有效浓度以下时为(d)。 仅供学习与交流,如有侵权请联系网站删除谢谢2

A.潜伏期 B.持续期 C.失效期 D.残留期 E.消除半衰期 与受体有亲和力但无内在活性的是(a)。 A.拮抗剂 B.激动剂 C.部分激动剂 D.非竞争性拮抗剂 E.竞争性拮抗剂 血药浓度维持在最低有效浓度之上的时间是(b)。 A.潜伏期 B.持续期 C.失效期 D.残留期 E.消除半衰期 副作用是在哪种剂量下产生的不良反应(b)。 A.最小有效量 B.治疗剂量 C.大剂量 D.阈剂量 E.与剂量无关 消除半衰期的长短取决于(b)。 A.药物的吸收速率 B.药物的消除速率 C.药物的转化速率 D.药物的转运速度 E.药物的分布速率 长期使用肾上腺皮质激素停药后,表现为肾上腺皮质功能低下属于(d)。 A.变态反应 B.特异质反应 C.停药反应 D.后遗效应 E.快速耐受性 可能有首关消除的是(a)。 A.口服给药 仅供学习与交流,如有侵权请联系网站删除谢谢3

相关主题
文本预览
相关文档 最新文档