当前位置:文档之家› 三种CRC计算

三种CRC计算

三种CRC计算
三种CRC计算

//CRC16校验在通讯中应用广泛,这里不对其理论进行讨论,只对常见的3种

//实现方法进行测试。方法1选用了一种常见的查表方法,类似的还有512字

//节、256字等查找表的,至于查找表的生成,这里也略过。

// ---------------- POPULAR POLYNOMIALS ----------------

// CCITT: x^16 + x^12 + x^5 + x^0 (0x1021)

// CRC-16: x^16 + x^15 + x^2 + x^0 (0x8005)

#define CRC_16_POLYNOMIALS 0x8005

// --------------------------------------------------------------

// CRC16计算方法1:使用2个256长度的校验表

// --------------------------------------------------------------

const BYTE chCRCHTalbe[] = // CRC 高位字节值表{

0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40

};

const BYTE chCRCLTalbe[] = // CRC 低位字节值表

{

0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32,

0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D,

0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38,

0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF,

0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97,

0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83,

0x41, 0x81, 0x80, 0x40

};

WORD CRC16_1(BYTE* pchMsg, WORD wDataLen)

{

BYTE chCRCHi = 0xFF; // 高CRC字节初始化

BYTE chCRCLo = 0xFF; // 低CRC字节初始化

WORD wIndex; // CRC循环中的索引

while (wDataLen--)

{

// 计算CRC

wIndex = chCRCLo ^ *pchMsg++ ;

chCRCLo = chCRCHi ^ chCRCHTalbe[wIndex];

chCRCHi = chCRCLTalbe[wIndex] ;

}

return ((chCRCHi << 8) | chCRCLo) ;

}

// --------------------------------------------------------------

// CRC16计算方法2:使用简单的校验表

// --------------------------------------------------------------

const WORD wCRCTalbeAbs[] =

{

0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400,

};

WORD CRC16_2(BYTE* pchMsg, WORD wDataLen)

{

WORD wCRC = 0xFFFF;

WORD i;

BYTE chChar;

for (i = 0; i < wDataLen; i++)

{

chChar = *pchMsg++;

wCRC = wCRCTalbeAbs[(chChar ^ wCRC) & 15] ^ (wCRC >> 4);

wCRC = wCRCTalbeAbs[((chChar >> 4) ^ wCRC) & 15] ^ (wCRC >> 4);

}

return wCRC;

}

// -----------------------------------------------------------------

// CRC16计算方法3:使用直接结算的方法

// -----------------------------------------------------------------

WORD CRC16_3(BYTE* pchMsg, WORD wDataLen)

{

BYTE i, chChar;

WORD wCRC = 0xFFFF;

while (wDataLen--)

{

chChar = *pchMsg++;

chChar = ByteInvert(chChar);

wCRC ^= (((WORD) chChar) << 8);

for (i = 0; i < 8; i++)

{

if (wCRC & 0x8000)

wCRC = (wCRC << 1) ^ CRC_16_POLYNOMIALS;

else

wCRC <<= 1;

}

}

wCRC = WordInvert(wCRC);

return wCRC;

}

//试验数据:

// 采用Metrowerks CodeWarrior在DSP56F80x平台上,对这3种方法

//进行了性能测试。

// ----------------------------------------------------------------

// 代码大小(字) 额外存储空间(字) 执行时间(周期数)

// ----------------------------------------------------------------

// 方法1 32 512 540

// 方法2 57 16 1120

// 方法3 142* 0 4598

//

//说明:方法3的代码大小还包括字反转、字节反转程序(这里没有给出源码)

//

//结论:通常在存储空间没有限制的情况下,采用方法1是最好的,毕竟在

//通讯中,保障通讯速度是至关重要的。而方法2也不失为一种很好的方法,

//占用空间很少。而与方法2相比,方法3似乎不占有什么优势。

CRC标准及计算过程

CRC标准及计算过程 根据应用环境与习惯的不同,CRC又可分为以下几种标准: ①CRC-8码; ②CRC-12码; ③CRC-16码; ④CRC-CCITT码; ⑤CRC-32码。 CRC-12码通常用来传送6-bit字符串。 CRC-16及CRC-CCITT码则是用来传送8-bit字符串,其中CRC-16为美国采用,而CRC-CCITT为欧洲国家所采用。 CRC-32码大都被采用在一种称为Point-to-Point的同步传输中。 生成过程 下面以最常用的CRC-16为例来说明其生成过程。 CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 计算过程 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC 寄存器。 3.CRC寄存器向右移一位,MSB补零,移出并检查LSB。 4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。 5.重复第3与第4步直到8次移位全部完成。此时一个8-bit数据处理完毕。 6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。

crc校验码详细介绍看懂了就会了

循环冗余校验码( CRC)的基本原理是:在K 位信息码后再拼接R位的校验码,整个编码长度为N 位,因此,这种编码又叫( N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x) 。根据G(x) 可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x) 左移R位,则可表示成C(x)*2 的R次方,这样C(x) 的右边就会空出R位,这就是校验码的位置。通过C(x)*2 的R次方除以生成多项式G(x) 得到的余数就是校验码。编辑本段几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x 的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x 的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x) 。如生成多项式为 G(x)=x^4+x^3+x+1 ,可转换为二进制数码11011。而发送信息位1111 ,可转换为数据多项式为C(x)=x^3+x^2+x+1 。 2、生成多项式是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2 除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2 除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息( CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x 的最高次幂为R的生成多项式G(x) 转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2 的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R 位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 例】假设使用的生成多项式是G(x)=x^3+x+1 。4 位的原始报文为1010, 求编码后的报文。 解:

CRC16算法原理

CRC算法及C实现 学习体会2008-09-20 15:21:13 阅读161 评论0 字号:大中小订 阅 一、CRC算法原理 CRC校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。 16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以)后,再除以一个多项式,最后所得到的余数既是 CRC码。 假设数据传输过程中需要发送15位的二进制信息 g=101001110100001,这串二进制码可表示为代数多项式g(x) = x^14 + x^12 + x^9 + x^8 + x^7 + x^5 + 1,其中g中第k位的值,对应g(x)中x^k的系数。将g(x)乘以x^m,既将g后加m个0,然后除以m阶多项式h(x),得到的(m-1)阶余项 r(x)对应的二进制码r就是 CRC编码。 h(x)可以自由选择或者使用国际通行标准,一般按照h(x)的阶数m,将CRC算法称为CRC-m,比如CRC-32、CRC-64等。国际通行标准可

以参看 https://www.doczj.com/doc/c114955174.html,/wiki/Cyclic_redundancy_check g(x)和h(x)的除运算,可以通过g和h做xor(异或)运算。比如将 11001与10101做xor运算: 明白了xor运算法则后,举一个例子使用CRC-8算法求101001110100001的效验码。CRC-8标准的h(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1,既h是9位的二进制串111010101。

计算法简单实现crc校验

计算法简单实现crc校验 计算法简单实现crc校验 前一段时间做协议转换器的时间用到CRC-16校验,查了不少资料发现都不理想。查表法要建表太麻烦,而计算法觉得那些例子太罗嗦。最后只好自己写了,最后发现原来挺简单嘛:)两个子程序搞定。这里用的多项式为:CRC-16=X16+X12+X5+X0=2 +2 +2+2 =0x11021 因最高位一定为“1”,故略去计算只采用0x1021即可 CRC_Byte:计算单字节的CRC值 CRC_Data:计算一帧数据的CRC值 CRC_HighCRC_Low:存放单字节CRC值 CRC16_HighCRC16_Low:存放帧数据CRC值; ------------------------------------------------------------- ;Functi on:CRConebyte ;Input:CRCByte ;Output:CRC_HighCRC_Low ; ------------------------------------------------------------- CRC_Byte: clrfCRC_Low clrfCRC_High movlw09H movwfv_Loop1 movfCRCByte,w movwfCRC_High CRC: decfszv_Loop1;8次循环,每一位相应计算 gotoCRC10 gotoCRCend CRC10 bcfSTATUS,C rlfCRC_Low rlfCRC_High btfssSTATUS,C   ;gotoCRC;为0不需计算movlw10H;若多项式改变,这里作相应变化xorwfCRC_High,f movlw21H;若多项式改变,这里作相应变化 xorwfCRC_Low,f gotoCRC CRCend: nop nop return ; ------------------------------------------------------------- ;CRCone byteend ; ------------------------------------------------------------- ; ------------------------------------------------------------- ;Functi on:CRCdate ;Input:BufStart(A,B,C)(一帧数据的起始地址)v_Count(要做CRC的字节数);Output:CRC16_HighCRC16_Low(结果); ------------------------------------------------------------- CRC_Data: clrfCRC16_High clrfCRC16_Low CRC_Data10 movfINDF,w

标准CRC生成多项式如下表:

标准CRC生成多项式如下表: 名称生成多项式简记式* 标准引用 CRC-4 x4+x+1 3 ITU G.704 CRC-8 x8+x5+x4+1 0x31 CRC-8 x8+x2+x1+1 0x07 CRC-8 x8+x6+x4+x3+x2+x1 0x5E CRC-12 x12+x11+x3+x+1 80F CRC-16 x16+x15+x2+1 8005 IBM SDLC CRC16-CCITT x16+x12+x5+1 1021 ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS CRC-32 x32+x26+x23+...+x2+x+1 04C11DB7 ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS CRC-32c x32+x28+x27+...+x8+x6+1 1EDC6F41 SCTP 生成多项式的最高位固定的1,故在简记式中忽略最高位1了,如0x1021实际是0x11021。 I、基本算法(人工笔算): 以CRC16-CCITT为例进行说明,CRC校验码为16位,生成多项式17位。假如数据流为4字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]; 数据流左移16位,相当于扩大256×256倍,再除以生成多项式0x11021,做不借位的除法运算(相当于按位异或),所得的余数就是CRC校验码。 发送时的数据流为6字节:BYTE[3]、BYTE[2]、BYTE[1]、BYTE[0]、CRC[1]、CRC[0]; II、计算机算法1(比特型算法): 1)将扩大后的数据流(6字节)高16位(BYTE[3]、BYTE[2])放入一个长度为16的寄存器; 2)如果寄存器的首位为1,将寄存器左移1位(寄存器的最低位从下一个字节获得),再与生成多项式的简记式异或; 否则仅将寄存器左移1位(寄存器的最低位从下一个字节获得); 3)重复第2步,直到数据流(6字节)全部移入寄存器; 4)寄存器中的值则为CRC校验码CRC[1]、CRC[0]。

CRC32 冗余校验码的计算

题目: 校验码的计算 姓名: 周小多 学号:2013302513 班号:10011302 时间:2015.11.1

计算机学院 时间: 目录 摘要 1 目的 (1) 2 要求 (1) 3 相关知识 (1) 4 实现原理及流程图.......................... 错误!未定义书签。 5 程序代码 (7) 6 运行结果与分析 (7) 7 参考文献 (8)

题目:

的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设要发送的信息用多项式C(X)表示,将C(x)左移R位(可表示成C(x)*2R),这样C(x)的右边就会空出R位,这就是校验码的位置。用 C(x)*2R除以生成多项式G(x)得到的余数就是校验码。 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。 4、实现原理及流程图 CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成多项式g(x),将最后的余数作为CRC校验码。其实现步骤如下: (1)设待发送的数据块是m位的二进制多项式t(x),生成多项式为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增加到m+r位。 (2)用生成多项式g(x)去除,求得余数为阶数为r-1的二进制多项式y(x)。此二进制多项式y(x)就是t(x)经过生成多项式g(x)编码的CRC校验码。 (3)用以模2的方式减去y(x),得到二进制多项式。就是包含了CRC校验码的待发送字符串。

CRC校验解读

三种常用的CRC16校验算法的C51程序的优化2009-10-10 09:34:17| 分类:技术知识| 标签:|字号大 CRC校验又称为循环冗余校验,是数据通讯中常用的一种校验算法。它可以有效的判别出数据在传输过程中是否发生了错误,从而保障了传输的数据可靠性。 CRC校验有多种方式,如:CRC8、CRC16、CRC32等等。在实际使用中,我们经常使用CRC16校验。CRC16校验也有多种,如:1005多项式、1021多项式(CRC-ITU)等。在这里我们不讨论CRC算法是怎样产生的,而是重点落在几种算法的C51程序的优化上。 计算CRC校验时,最常用的计算方式有三种:查表、计算、查表+计算。一般来说,查表法最快,但是需要较大的空间存放表格;计算法最慢,但是代码最简洁、占用空间最小;而在既要求速度,空间又比较紧张时常用查表+计算法。 下面我们分别就这三种方法进行讨论和比较。这里以使用广泛的51单片机为例,分别用查表、计算、查表+计算三种方法计算1021多项式(CRC-ITU)校验。原始程序都是在网上或杂志上经常能见到的,相信大家也比较熟悉了,甚至就是正在使用或已经使用过的程序。 编译平台采用Keil C51 7.0,使用小内存模式,编译器默认的优化方式。 常用的查表法程序如下,这是网上经常能够看到的程序范例。因为篇幅关系,省略了大部分表格的内容。 code unsigned int Crc1021Table[256] = { 0x0000, 0x1021, 0x2042, 0x3063,... 0x1ef0 }; unsigned int crc0(unsigned char *pData, unsigned char nLength) { unsigned int CRC16 = 0;

crc校验码计算例题

crc校验码计算例题 1、若信息码字为11100011,生成多项式G(X)=X5+X4+X+1,则计算出的CRC 校验码为?x的最高次幂5则信息码(被除数)补五个0为:1110001100000 除数为110011 ------------10110110 --------------------- 110011/1110001100000 -------110011 ------------------ ---------101111 ---------110011 ------------------ ----------111000 ----------110011 ------------------ ------------101100 ------------110011 ------------------------ -------------111110 -------------110011 ------------------------- ---------------11010 2、信息码为101110101,生成多项式X4+X2+1,求冗余位??? 算法同上被除数补四个0 为:1011101010000 除数为:10101 答案:1100 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从

CRC校验原理及步骤

C R C校验原理及步骤 This model paper was revised by the Standardization Office on December 10, 2020

CRC校验原理及步骤 什么是CRC校验 CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。 CRC校验原理: 其根本思想就是先在要发送的帧后面附加一个数(这个就是用来校验的校验码,但要注意,这里的数也是二进制序列的,下同),生成一个新帧发送给接收端。当然,这个附加的数不是随意的,它要使所生成的新帧能与发送端和接收端共同选定的某个特定数整除(注意,这里不是直接采用二进制除法,而是采用一种称之为“模2除法”)。到达接收端后,再把接收到的新帧除以(同样采用“模2除法”)这个选定的除数。因为在发送端发送数据帧之前就已通过附加一个数,做了“去余”处理(也就已经能整除了),所以结果应该是没有余数。如果有余数,则表明该帧在传输过程中出现了差错。 模2除法: 模2除法与算术除法类似,但每一位除的结果不影响其它位,即不向上一位借位,所以实际上就是异或。在循环冗余校验码(CRC)的计算中有应用到模2除法。 例: CRC校验步骤:

CRC校验中有两个关键点,一是预先确定一个发送送端和接收端都用来作为除数的二进制比特串(或多项式),可以随机选择,也可以使用国际标准,但是最高位和最低位必须为1;二是把原始帧与上面计算出的除数进行模2除法运算,计算出CRC码。 具体步骤: 1. 选择合适的除数 2. 看选定除数的二进制位数,然后再要发送的数据帧上面加上这个位数-1位的0,然后用新生成的帧以模2除法的方式除上面的除数,得到的余数就是该帧的CRC校验码。注意,余数的位数一定只比除数位数少一位,也就是CRC校验码位数比除数位数少一位,如果前面位是0也不能省略。 3. 将计算出来的CRC校验码附加在原数据帧后面,构建成一个新的数据帧进行发送;最后接收端在以模2除法方式除以前面选择的除数,如果没有余数,则说明数据帧在传输的过程中没有出错。 CRC校验码计算示例: 现假设选择的CRC生成多项式为G(X)= X4+ X3+ 1,要求出二进制序列的CRC校验码。下面是具体的计算过程: ①将多项式转化为二进制序列,由G(X)= X4+ X3+ 1可知二进制一种有五位,第4位、第三位和第零位分别为1,则序列为11001 ②多项式的位数位5,则在数据帧的后面加上5-1位0,数据帧变为,然后使用模2除法除以除数11001,得到余数。【补几位0与x的最高次幂相同,模除就是进行异或】

CRC算法

CRC算法与实现bhw98 摘要: 本文首先讨论了CRC的代数学算法,然后以常见的CRC-ITU为例,通过硬件电路的实现,引出了比特型算法,最后重点介绍了字节型快速查表算法,给出了相应的C 语言实现。 关键词: CRC, FCS, 生成多项式, 检错重传 引言 CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。 差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。 利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。 1 代数学的一般性算法 在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如1100101 表示为 1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即x6+x5+x2+1。 设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。 发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为 T(x)=x r P(x)+R(x) 接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说

查表法计算CRC

在硬件实现中,CRC 通常采用线性反馈移位寄存器实现。其中一个单元对应CRC 的每一比特,图3-2给出了8比特寄存器。对于移位寄存器中的每一单元,如果在发生器多项式中D 的某次幂为1,那么到下一个单元的连接要经过一个异或门(XOR)。对于每一传输块,首先将移位寄存器置零;接传输块数据输入移位寄存器,当传输块的所有比特全部输入移位寄存器后,移位寄存器的存储内容就是所要求的CRC 比特。这些比特以倒序传输,如图3-2,首先传输在最左寄存器中的CRC 比特。 图3-2 8比特CRC 生成移位寄存器 对于上述算法,当输入1个比特时,要经过一系列的异或和移位,才能完成。上图只是8比特CRC 的实现图,考虑到g CRC24A (D)的多项式,实现更为复杂。而下行峰值速率又相对很高,采用这种方法显然是达不到需求的速率的。下面介绍一种更为高效的查表法[17],多核DSP 计算CRC 也使用了查表法。 设传输块有k 比特,CRC 比特数为k n -;下面是按4比特查表计算24比特CRC 的过程。对于传输块中的二进制序列,可以用下面的多项式表示: ()1011222k k k k m x m m m m --=++++ 式(3-1) 将上式每4个比特组合在一起,如下所示: ()44(1)4011222n n n n m x m m m m --=++ ++ 式(3-2) 求此序列的24比特CRC 时,先乘以242(左移24位)后,再除以CRC 的生成多项式()x g ,所得到的余数即为所求的CRC 码。如下式所示: ()()()() () 242424 2444(1) 01222222n n n m x m m m g x g x g x g x -=+++ 式(3-3) 设:()()()()24 0002r x m Q x g x g x =+ ,其中()0r x 为24位二进制余数;将它代入式(3-3)可得: ()()()()()()()()()()()()2424 24044(1)1042424 044(1)102222222222 n n n n n n m x r x m m Q x g x g x g x g x r x m m Q x g x g x g x --??=++++??? ?????=++++?????? 式(3-4) 因为,()()()()()4204244000002[2]222h l h l r x r x r x r x r x =+=+ 式(3-5)

modbus_rtu_crc计算方法

MODBUS RTU模式下的CRC方法 使用RTU模式,消息包括了一基于CRC方法的错误检测域。CRC域检测了整个消息的内容。 CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。 CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。 CRC产生过程中,每个8位字符都单独和寄存器内容相或(O R),结果向最低有效位方向移动,最高有效位以0填充。L SB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的C RC值。 CRC添加到消息中时,低字节先加入,然后高字节。CRC简单函数如下: unsigned short CRC16(puchMsg, usDataLen) unsigned char *puchMsg ; /* 要进行CRC校验的消息 */ unsigned short usDataLen ; /* 消息中字节数 */ { unsigned char uchCRCHi = 0xFF ; /* 高CRC字节初始化 */ unsigned char uchCRCLo = 0xFF ; /* 低CRC 字节初始化 */ unsigned uIndex ; /* CRC循环中的索引 */ while (usDataLen--) /* 传输消息缓冲区 */

16位CRC算法原理及C语言实现

按字节计算CRC unsigned int cal_crc(unsigned char *ptr,unsigned char len) { unsigned int crc; unsigned char da; unsigned int crc_ta[256]={/*CRC余式表*/ 0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7, 0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef, 0x1231,0x0210,0x3273,0x2252,0x52b5,0x4294,0x72f7,0x62d6, 0x9339,0x8318,0xb37b,0xa35a,0xd3bd,0xc39c,0xf3ff,0xe3de, 0x2462,0x3443,0x0420,0x1401,0x64e6,0x74c7,0x44a4,0x5485, 0xa56a,0xb54b,0x8528,0x9509,0xe5ee,0xf5cf,0xc5ac,0xd58d, 0x3653,0x2672,0x1611,0x0630,0x76d7,0x66f6,0x5695,0x46b4, 0xb75b,0xa77a,0x9719,0x8738,0xf7df,0xe7fe,0xd79d,0xc7bc, 0x48c4,0x58e5,0x6886,0x78a7,0x0840,0x1861,0x2802,0x3823, 0xc9cc,0xd9ed,0xe98e,0xf9af,0x8948,0x9969,0xa90a,0xb92b, 0x5af5,0x4ad4,0x7ab7,0x6a96,0x1a71,0x0a50,0x3a33,0x2a12, 0xdbfd,0xcbdc,0xfbbf,0xeb9e,0x9b79,0x8b58,0xbb3b,0xab1a, 0x6ca6,0x7c87,0x4ce4,0x5cc5,0x2c22,0x3c03,0x0c60,0x1c41, 0xedae,0xfd8f,0xcdec,0xddcd,0xad2a,0xbd0b,0x8d68,0x9d49, 0x7e97,0x6eb6,0x5ed5,0x4ef4,0x3e13,0x2e32,0x1e51,0x0e70, 0xff9f,0xefbe,0xdfdd,0xcffc,0xbf1b,0xaf3a,0x9f59,0x8f78, 0x9188,0x81a9,0xb1ca,0xa1eb,0xd10c,0xc12d,0xf14e,0xe16f, 0x1080,0x00a1,0x30c2,0x20e3,0x5004,0x4025,0x7046,0x6067, 0x83b9,0x9398,0xa3fb,0xb3da,0xc33d,0xd31c,0xe37f,0xf35e, 0x02b1,0x1290,0x22f3,0x32d2,0x4235,0x5214,0x6277,0x7256, 0xb5ea,0xa5cb,0x95a8,0x8589,0xf56e,0xe54f,0xd52c,0xc50d, 0x34e2,0x24c3,0x14a0,0x0481,0x7466,0x6447,0x5424,0x4405, 0xa7db,0xb7fa,0x8799,0x97b8,0xe75f,0xf77e,0xc71d,0xd73c, 0x26d3,0x36f2,0x0691,0x16b0,0x6657,0x7676,0x4615,0x5634,

crc计算 delphi

function TForm1.CalCRC16(AData: array of Byte; AStart, AEnd: Integer): string; var i:Integer; s:string ; begin for i:=AStart to AEnd do //对每一个字节进行校验 crcs:=CalOneByte(AData[i]); s:=inttohex(crcs,4); edit3.Text :=s; Result:= rightstr(s,2)+leftstr(s,2); end; function TForm1.CalOneByte(AByte: Byte):word; const GENP=$A001; //多项式公式X16+X15+X2+1(1100 0000 0000 0101)//$A001 var j:Integer; tmp:byte; crc:Word; begin crc:=crcs xor AByte; //将数据与CRC寄存器的低8位进行异或 for j:=0 to 7 do //对每一位进行校验 begin tmp:=crc and $0001; //取出最低位 crc:=crc shr 1; //寄存器向右移一位 crc:=crc and $7FFF; //将最高位置0 if tmp=1 then //检测移出的位,如果为1,那么与多项式异或 crc:=crc xor GENP; crc:=crc and $FFFF; end; result:=crc; end; function TForm1.strtocrc(s: string): string; var buf1:array[0..256] of byte; i:integer; strOrder:string; Res: string;

CRC16校验码如何计算

CRC16校验码如何计算 比如我有一个16进制只字符串 7E 00 05 60 31 32 33 要在末尾添加两个CRC16校验码校验这7个16进制字符请写出算法和答案 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1; 0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从高到低进行移位,在最高位(MSB)的位置补零,而最低位(LSB,移位后已经被移出CRC寄存器)如果为1,则把寄存器与预定义的多项式码进行异或,否则如果LSB为零,则无需进行异或。重复上述的由高至低的移位8次,第一个8-bit数据处理完毕,用此时CRC寄存器的值与下一个8-bit数据异或并进行如前一个数据似的8次移位。所有的字符处理完成后CRC寄存器内的值即为最终的CRC值。 1.设置CRC寄存器,并给其赋值FFFF(hex)。 2.将数据的第一个8-bit字符与16位CRC寄存器的低8位进行异或,并把结果存入CRC寄存器。 3.CRC寄存器向右

移一位,MSB补零,移出并检查LSB。 4.如果LSB为0,重复第三步;若LSB为1,CRC寄存器与多项式码相异或。 5.重复第3与第4步直到8次移位全部完成。此时一个8-bit 数据处理完毕。 6.重复第2至第5步直到所有数据全部处理完成。 7.最终CRC寄存器的内容即为CRC值。 CRC(16位)多项式为 X16+X15+X2+1,其对应校验二进制位列为1 1000 0000 0000 0101。

CRC_校验码的计算方法

CRC 校验码的计算方法 CRC从原理到实现=============== 作者:Spark Huang(hcpp@https://www.doczj.com/doc/c114955174.html,) 日期:2004/12/8 摘要:CRC(Cyclic Redundancy Check)被广泛用于数据通信过程中的差错检测,具有很强的检错能力。本文详细介绍了CRC的基本原理,并且按照解释通行的查表算法的由来的思路介绍了各种具体的实现方法。 1.差错检测 数据通信中,接收端需要检测在传输过程中是否发生差错,常用的技术有奇偶校验(Parity Check),校验和(Checksum)和CRC(Cyclic Redundancy Check)。它们都是发送端对消息按照某种算法计算出校验码,然后将校验码和消息一起发送到接收端。接收端对接收到的消息按照相同算法得出校验码,再与接收到的校验码比较,以判断接收到消息是否正确。 奇偶校验只需要1位校验码,其计算方法也很简单。以奇检验为例,发送端只需要对所有消息位进行异或运算,得出的值如果是0,则校验码为1,否则为0。接收端可以对消息进行相同计算,然后比较校验码。也可以对消息连同校验码一起计算,若值是0则有差错,否则校验通过。 通常说奇偶校验可以检测出1位差错,实际上它可以检测出任何奇数位差错。 校验和的思想也很简单,将传输的消息当成8位(或16/32位)整数的序列,将这些整数加起来而得出校验码,该校验码也叫校验和。校验和被用在IP协议中,按照16位整数运算,而且其MSB(Most Significant Bit)的进位被加到结果中。 显然,奇偶校验和校验和都有明显的不足。奇偶校验不能检测出偶数位差错。对于校验和,如果整数序列中有两个整数出错,一个增加了一定的值,另一个减小了相同的值,这种差错就检测不出来。 2.CRC算法的基本原理------------------- CRC算法的是以GF(2)(2元素伽罗瓦域)多项式算术为数学基础的,听起来很恐怖,但实际上它 的主要特点和运算规则是很好理解的。 GF(2)多项式中只有一个变量x,其系数也只有0和1,如: 1*x^7 + 0*x^6 + 1*x^5 + 0*x^4 + 0*x^3 + 1*x^2 +1*x^1 + 1*x^0

CRC校验实用程序库(一)

CRC校验实用程序库(一) 在数据存储和数据通讯领域,为了保证数据的正确,就不得不采用检错的手段。在诸多检错手段中,CRC是最著名的一种。CRC的全称是循环冗余校验,其特点是:检错能力极强,开销小,易于用编码器及检测电路实现。从其检错能力来看,它所不能发现的错误的几率仅为0.0047%以下。从性能上和开销上考虑,均远远优于奇偶校验及算术和校验等方式。因而,在数据存储和数据通讯领域,CRC无处不在:著名的通讯协议X.25的FCS(帧检错序列)采用的是CRC-CCITT,ARJ、LHA等压缩工具软件采用的是CRC32,磁盘驱动器的读写采用了CRC16,通用的图像存储格式GIF、TIFF等也都用CRC作为检错手段。 CRC的本质是模-2除法的余数,采用的除数不同,CRC的类型也就不一样。通常,CRC的除数用生成多项式来表示。最常用的CRC码的生成多项式如表1所示。 @@10A08800.GIF;表1.最常用的CRC码及生成多项式@@ 由于CRC在通讯和数据处理软件中经常采用,笔者在实际工作中对其算法进行了研究和比较,总结并编写了一个具有最高效率的CRC通用程序库。该程序采用查表法计算CRC,在速度上优于一般的直接模仿硬件的算法,可以应用于通讯和数据压缩程序。 通常的CRC算法在计算一个数据段的CRC值时,其CRC值是由求解每个数值的CRC值的和对CRC寄存器的值反复更新而得到的。这样,求解CRC的速度较慢。通过对CRC算法的研究,我们发现:一个8位数据

加到16位累加器中去,只有累加器的高8位或低8位与数据相作用,其结果仅有256种可能的组合值。因而,我们可以用查表法来代替反复的运算,这也同样适用于CRC32的计算。本文所提供的程序库中,函数crchware是一般的16位CRC的算法;mk-crctbl用以在内存中建立一个CRC数值表;crcupdate用以查表并更新CRC累加器的值;crcrevhware和crcrevupdate是反序算法的两个函数;BuildCRCTable、CalculateBlockCRC32和UpdateCharac terCRC32用于CRC32的计算。 /*CRC.C——CRC程序库*/ #defineCRCCCITT0x1021 #defineCCITT-REV0x8408 #defineCRC160x8005 #defineCRC16-REV0xA001 #defineCRC32-POLYNOMIAL0xEDB88320L /*以上为CRC除数的定义*/ #defineNIL0 #definecrcupdate(d,a,t)*(a)=(*(a)>8)^(d)]; #definecrcupdate16(d,a,t)*(a)=(*(a)>>8^(t)(*(a)^(d))&0x00ff]) /*以上两个宏可以代替函数crcupdate和crcrevupdate*/ #include #include

CRC校验原理分析

CRC校验 校验原理: 1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。 3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R 位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得 V(x)=A(x)g(x)=x R m(x)+r(x); 其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式, g(x)称为生成多项式: g(x)=g 0+g 1 x+g 2 x2+...+g (R-1) x(R-1)+g R x R 发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC 码字。 4、CRC校验码软件生成方法: 借助于多项式除法,其余数为校验字段。 例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1 假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001 x4m(x)=x10+x8+x7+x4对应的代码记为:10110010000; 采用多项式除法: 得余数为: 1010 (即校验字段为:1010)

发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10 信息字段校验字段 接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)如果能够除尽,则正确,

CCITT CRC-16计算原理与实现

CCITT CRC-16计算原理与实现 CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。 差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。 利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。 1 代数学的一般性算法 在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为 1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。 设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。 发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以 G(x),所得余式即为R(x)。用公式表示为 T(x)=xrP(x)+R(x) 接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。 举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为 xrP(x) x3(x3+x2) x6+x5 x -------

16位CRC校验码计算程序

/*************************************************************** 16位CRC计算方法 1.预置1个16位的寄存器为十六进制FFFF(即全为1);称此寄存器为CRC寄存器;2.把第一个8位二进制数据(既通讯信息帧的第一个字节)与16位的CRC寄存器的低8位相异或,把结果放于CRC寄存器; 3.把CRC寄存器的内容右移一位(朝低位)用0填补最高位,并检查右移后的移出位;4.如果移出位为0:重复第3步(再次右移一位); 如果移出位为1:CRC寄存器与多项式A001(1010 0000 0000 0001)进行异或;5.重复步骤3和4,直到右移8次,这样整个8位数据全部进行了处理; 6.重复步骤2到步骤5,进行通讯信息帧下一个字节的处理; 7.将该通讯信息帧所有字节按上述步骤计算完成后,得到的16位CRC; *****************************************************************/ /**************************************************************************** 名称: UART_CRC16_Work() 说明: CRC16校验程序 参数: *CRC_Buf:数据地址 CRC_Leni:数据长度 返回: CRC_Sumx:校验值 *****************************************************************************/ unsigned int UART_CRC16_Work(unsigned char *CRC_Buf,unsigned char CRC_Leni) { unsigned char i,j; unsigned int CRC_Sumx; CRC_Sumx=0xFFFF; for(i=0;i>=1; CRC_Sumx^=0xA001; } else

相关主题
文本预览
相关文档 最新文档