当前位置:文档之家› ANSYSY课程设计_温度应力计算的有限元分析

ANSYSY课程设计_温度应力计算的有限元分析

ANSYSY课程设计_温度应力计算的有限元分析
ANSYSY课程设计_温度应力计算的有限元分析

《有限元法》课程实训原创性声明本人郑重声明:本课程设计的所有工作,是在老师的指导下,由作者本人独立完成的。有关观点、方法、数据和文献的引用已在文中指出,并与参考文献相对应。除文中已注明引用的内容外,本报告不包含任何其他个人或集体已经公开发表的作品成果。对本文的研究做出重要贡献的个人和集体,均己在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。

作者(签字):

日期:2013年 12月5日

目录

一、前言 (4)

二、研究的问题 (5)

三、力学模型 (6)

四、有限元模型 (7)

五、结果分析及结论 (11)

六、心得体会 (12)

七、参考文献 (12)

前言

在科学研究和工程设计中,基于建模与仿真的数字化已经成为当今科技发展的必然趋势,有限元分析已经成为该领域的最重要方法之一。随着有限元理论和计算机硬件的发现,有限元软件越来越成熟,已经成为工程师实现工程创新和产品创新的得力助手和有效工具。ANSYS软件是融结构,流体,电磁场,声场和热场分析与一体的大型通用有限元分析软件。可广泛应用与土木,地质,矿业,材料,机械,仪器仪表,热工电子,水利,生物医学和原子能等工程的分析和科学研究。经过近四十年的发展及完善,ANSYS软件已经成为国际上最知名,应用领域最广泛,使用人员最多的软件之一,是实施有限元分析的最重要平台之一。

有限元方法是力学,计算数学和现代计算技术相结合的产物,是一种求解微分方程边界值问题和初值问题的强有力的数值方法,是求解各种复杂物理问题的重要方法,同时也是处理各种复杂工程问题的重要手段,也是进行科学研究的重要工具。

用有限个单元将连续体离散化,通过对有限个单元作分片差值求解各种力学,物理问题的一种数值方法。有限元法把连续体离散化成有限个单元:杆系结构的单元式每一种杆件:连续体的单元式各种形状(如三角形,四边形,六面体等)的单元体。每个单元的场函数式只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权参量方程可建立有限个待定参量的代数方程,求解此离散方程就得到有限元法的数值解。有限元已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调,不协调,混合,杂交,拟协调元等。有限元法十分有效,通用性强,应用广汉已有许多大型或专用程序系统共工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。

研究的问题

温度变化将会引起膨胀或收缩静定结构的构件当温度均匀变化时可以自由变形,并不会引起构件的应力。但对于超静定结构的构件变形将受到部分或者全部约束,温度变化往往就要引起内应力。温度变化引起的应力是导致工程机构发生变形的一大原因。选择《材料力学Ⅰ》第五版(刘鸿文 主编)里的力学模型(P64,题2.48)作为研究对象,如下图:

对该题进行参数化,图中结构均采用碳钢,所以,其弹性模量

E=200GPa ,线膨胀系数,规定AB=AD=2,AC=

,

所以杆件

=2m ,=

,若

m ,则由公式

推出

力学模型

对其建立力学模型如下,列出平衡方程得:

由分析得变性协调方程为

利用轴向拉压杆件变形公式将上式变为:

联立以上各式,解方程得:

4641.0N

8038.5N

两个力均为正,说明实际力的方向与假设相同。

有限元模型

一、对上述问题建立有限元模型,创建节点大致过程如下:

ANSYS Main Menu: Preprocessor →Modeling →Create →Nodes →In Active CS →输入:1(-1,0,0)→Apply→输入:6(0,-1.732,0)→Apply→输入:11(1,0,0)→OK,Preprocessor →Modeling →Create →Nodes→Fill between nds→选择1,6点→OK→OK,同理分别输入剩余点。

其坐标值清单如下:

显示效果图:

一、选择杆件类型,创建材质类型并输入其相关参数:

1、参考温度为:

ANSYS Main Menu: Preprocessor→Loads→Define Loads→Settings→Reference Temp (i)

入Reference Temperature:20→OK

2、选择单元类型

ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →选择Link 2D spar 1 →OK (back to Element Types window) →Close (the Element Type window)

3、定义实常数

ANSYS Main Menu: Preprocessor→Real Constants→Add/Edit/Delete…→Add…→选择Type 1COK→input AREA:0.01→OK→Add/Edit/Delete…→选择Type 1→OK→输入NO.:2→input AREA:0.015→OK

4、定义材料参数

ANSYS Main Menu: Preprocessor →Material Props →Material Models…→

Structural →Linear→Elastic→Isotropic→输入EX:200e9 →OK→选择Thermal Expansion→Coefficient→Isotropic→输入ALPX:12.5e-6 →OK→Close (the Material Props window)

5、创建单元

ANSYS Main Menu: Preprocessor→Modeling→Create→Elements→Elem Attributes…→MAT select 1,REAL select 1

ANSYS Main Menu: Preprocessor→Modeling→Create→Elements→Auto Numbered→Thru Nodes→select 1,2节点→Apply→…

ANSYS Main Menu: Preprocessor→Modeling→Create→Elements→Elem Attributes…→MAT select 1,REAL select 2

6、分别给1,0,11三个节点施加约束

ANSYS Main Menu: Preprocessor→Loads→Define Loads→Apply →Structural →Displacement →On Notes →select 1,0,11三节点→OK →选择Lab2:All DOF →OK

7、输入温度变化条件:

ANSYS Main Menu:Preprocessor→Loads→Define Loads→Apply→Structral→Temperature→on elements,选择单元→OK→input 66.18802→OK

三、进行计算分析:

1、分析计算

ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load Step window) →Close

2、结果显示

2.1 ANSYS Main Menu: General Postproc →Element Table →Define Table… →Add… →输入Nu:0,Lab:Force,在左侧表中select By sequence num,在右侧表中选择SMICS,在右侧表下的文本框输入 1 →Apply(back to Element Table Data window) →Add… →input Nu:0,Lab:Stress,在左侧表中select By sequence num,在右侧表中选择LS,在右侧表下的文本框输入1→OK(back to Element Table Data window) →Close

2.2 ANSYS Main Menu: General Postproc→Plot Results→Contour Plot→Line Elem Res…→选择LabI: force, LabJ: force→OK

ANSYS Main Menu: General Postproc→Plot Results→Contour Plot→Line Elem Res…→选择LabI: stress, LabJ: stress→OK

1、轴向力:

2、应力:

结果分析及结论

对于同一结构,分别运用力学模型、有限元模型进行求解,其结果基本相同,运用有限元分析方法能够有效地求解出力学问题,两种方法的求解过程也不完全相同,力学模型的求解过程大致为,对一次不静定问题,一般是联立平衡方程,变形协调方程,胡克定律进行求解。本题求解关键是变形协调方程。对于有限元求解方法,则是把结构离散化单元,运用计算机计算模拟出较为真实的结果,这种方法只能通过计算机计算,且计算精度与单元离散化程度,离散方式等有着密切关系。

心得体会

作为我们院的学生,在大一大二期间学了很多力学理论,但对许多基本概念的理解许多人基本上只是定留在一个符号的认识上,理论知识不够,更没有太多的感性认识,实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都有所遗忘,在很大程度上耽误了这门课的学习。

学习ANSYS的过程其实是一个不断解决问题的过程,问题遇到的越多,解决的越多,实际运用ANSYS的能力才会越高。对于初学者,必将会遇到许多问

题,对遇到的问题最好记下来,认真思考,逐个解决,积累经验。只有这样才会印象深刻,避免以后凡同类的错误,即使遇到也能很快的解决。

我开始学ANSYS时是照着例题做的,可一旦遇到问题自己又不会了,我才明白每一步都需要自己思考,只有思考了,东西才能成为自己的,慢慢自己解决的多了,运用ANSYS的能力也提高了。

其实,ANSYS的使用并不是太难,基本上照着例题的步骤一点一点做,并不需要考虑太多问题,学ANSYS真正难得的是讲一个实际问题转化成一个ANSYS 能解决的问题。这才是ANSYS学习所要解决的核心问题,可以说其他问题都是围绕着它展开的。对于初学者,注重的是ANSYS的实际操作,而提高“将一个实际问题转化成一个ANSYS能解决的问题”的能力是一直所忽视的,这可能造成很多人化许多时间学ANSYS,而实际应用能力却很难提高的一个重要原因。此外,还有一点,一开始学习ANSYS主要是熟悉ANSYS软件,掌握处理问题的一般问题,不是用它来解决很复杂的问题来体现你的能力有多强,一心想找有难度的问题,往往容易被问题挂死在一棵大树上而失去整片森林。因此,最好多找些容易点的,涉及不同类型的题来练习。

对于有限元模型的加载,相对而言是一件比较简单的工作,但当施加载荷或边界条件的面比较多时,需要使用选择命令将这些面全部选出来,以保证施加的载荷和边界条件的正确性。

参考文献

1、《结构分析中的有限单元法及其应用》主编:颜云辉谢里阳韩清凯东北大学出版社

2、《材料力学Ⅰ》第五版主编:刘鸿文高等教育出版社

3、《现代设计方法课程设计指导书》主编:杨永清周丽沈阳理工大学出版

4、《材料力学Ⅰ同步辅导及习题全解》第五版主编:潘丽娜刘星东中国水利水电出版社

某工程的温度应力计算

某工程的温度应力计算 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (+++++++++++)/12 =。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

结构力学课程设计报告

一. 课程设计的目的 1. 通过实验及数据分析熟练掌握结构力学求解器的使用方法,了解求解器的主要 功能,了解数据输入和输出的基本操作过程,主要参数的意义和编辑方法。 2. 通过实践进一步了解结构在广义荷载作用下内力和位移的分布状态和变化规 律,从而指导我们探索和发现更合理的结构形式,为将来的学习和科研工作打 下坚实的基础 二. 课程设计的内容 (1).对图示两类桁架进行分析 在相同荷载作用下,比较各类桁架的受力特点; 讨论各种杆件(上弦杆,下弦杆,竖杆,斜杆)内力随 随高跨比变化的规律; 若增加杆件使其成为超静定桁架,内力有何变化。 (2).两种结构在静力等效荷载作用下,内力有哪些不同? 平行弦桁架 1/2 1 1 1 1 1 1/2 三角桁1/2 1 1 1 1 1 1/2

(3)、用求解器自动求解功能求a=2和a=1.0时的各杆内力。比较两种情况内力分布,试用试算法调整a 的大小,确定使弯矩变号的临界点a 0,当a=a 0时结构是否处于无弯矩状态? (4) 、图示为一个两跨连续梁,两跨有关参数相同(l =6m ,E =1.5*106kPa ,截面0.5*0.6m 2,线膨胀系数1.0*10-5)。第一跨底部温度升高60oC ,分析变形和内力图的特点。 (4) 、计算下支撑式五角形组合屋架的内力,并分析随跨高 比变化内力变化规律。当高度确定后内力随f 1,f 2的比例不同的变化规律(四个以上算例)。 1/4 11×(1/2) 1/4 1/2 1 1 1 1 1 1/2 a a a a 3 6m 6m

一. 课程设计的数据 1. 第(1)题数据 1) 平行弦桁架 a) 高跨比1:4(每小格比例2:3) 输出图形: 输出内力值: 内力计算 杆端内力值 ( 乘子 = 1) ----------------------------------------------------------------------------------------------- 3m 3m 3m 3m f 2 f 1 f =1.2m q =1kN/m

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

电测法应力分析实验

第二章 电测法应力分析实验 电测法是实验应力分析中应用最广泛和最有效的方法之一,广泛应用于机械、土木、水利、材料、航空航天等工程技术领域,是验证理论、检验工程质量和科学研究的有力手段。 第一节 矩形截面梁的纯弯曲实验 一、实验目的 1.熟悉电测法的基本原理和静态电阻应变仪的使用方法。 2.测量矩形截面梁在纯弯曲时横截面上正应力的分布规律。 3.比较正应力的实验测量值与理论计算值的差别。 二、实验设备和仪器 1.多用电测实验台。 2.YJ28A-P10R 型静态电阻应变仪。 3.SDX-I 型载荷显示仪。 4.游标卡尺。 三、实验原理及方法 实验装置如图2-1所示,矩形截面梁采用低碳钢制成。在梁承发生纯弯曲变形梁段的侧面上,沿与轴线平行的不同高度的线段22-、11-、00-、11'-'、 22'-'(00-线位于中性层上,22-线位于梁的上表面,22'-'线位于梁的下表面,11-和11'-'、22-和22'-'各距00-线等距,其距离分别用1y 和2y 表 示)上粘贴有五个应变片作为工作片,另外在梁的右支点以外粘贴有一个应变片作为温度补偿片。 将五个工作片和温度补偿片的引线以半桥形式分别接入电阻应变仪后面板上的五个通道中,组成五个电桥(其中工作片的引线接在每个电桥的A 和B 端,温度补偿片接在电桥的B 和C 端)。当梁在载荷作用下发生弯曲变形时,工作片的

电阻值将随着梁的变形而发生变化,通过电阻应变仪可以分别测量出各对应位置的应变值实ε。根据胡克定律,可计算出相应的应力值 实实εσE = 式中,E 为梁材料的弹性模量。 梁在纯弯曲变形时,横截面上的正应力理论计算公式为 z I y M ?=理σ 式中:2/Fa M =为横截面上的弯矩; 123/bh I z =为梁的横截面对中性轴的惯性矩;y 为中性轴到欲求应力点的距离。 图2-1 矩形截面梁的纯弯曲 四、实验步骤 1.测量矩形截面梁的各个尺寸,预热电阻应变仪和载荷显示仪。 2.将各种仪器连接好,各应变片按半桥接法接到电阻应变仪的所选通道上。 3.逐一调节各通道的电桥平衡。 4.摇动多用电测实验台的加载机构,采用等量逐级加载(可取kN 1=?F ),每增加一级载荷,分别读出各电阻应变片的应变值。 5.记录实验数据。 6.整理仪器,结束实验。 五、实验数据的记录与计算 实验数据的记录与计算见表2-1。 六、注意事项 1.加载时要缓慢,防止冲击。 2.读取应变值时,应保持载荷稳定。 3.各引线的接线柱必须拧紧,测量过程中不要触动引线,以免引起测量误差。

传感器课程设计

哈尔滨远东理工学院传感器课程设计小型称重系统设计 姓名: 专业:电子信息工程 学号: 指导教师: 机器人学院 二0一七年六月二十五日

目录 第1章绪论............................................... 错误!未定义书签。 选题背景............................................... 错误!未定义书签。 目的和意义............................................. 错误!未定义书签。第2章设计方案及其论述..................................... 错误!未定义书签。 模型建立及电路原理..................................... 错误!未定义书签。 电路图 (4) 第3章数据图表及分析 (6) 数据图表 (6) 数据分析 (7) 结论 (8)

第1章绪论 选题背景 称重技术自古以来就被人们所重视,作为一种计量手段,广泛应用于工农业、科研、交通、内外贸易等各个领域,与人民的生活紧密相连。电子称重器是电子称重器中的一种,称重器是国家法定计量器具,是国计民生、国防建设、科学研究、内外贸易不可缺少的计量设备,称重器产品技术水平的高低,将直接影响各行各业的现代化水平和社会经济效益的提高。因此,称重技术的研究和称重器工业的发展各国都非常重视。工业生产中,称重传感器已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域,可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。本实验是利用金属箔式应变片设计一个小型称重装置。硬件部分是在Multisim中仿真设计,使用电压变化进行模拟测量物体重量从而达到实验效果。 目的和意义 1)掌握金属箔式应变片的应变效应,单臂、全桥电桥工作原理和性能。 2)学会建立仿真模型。 3)比较单臂双臂与全桥电桥的不同性能、了解其特点。 4)学会使用全桥电路。 5)了解物体重量与电压的关系效应。 6)了解电路原理。

实验应力分析考试试题及答案

共 1 页第 1 页

一、名词解释 1.电阻应变片 电阻应变片是利用电阻应变片受力后出现变形致使电阻值发生变化的原理来测量被测物理量的大小的一种传感器。 2.压电效应 物质在机械力作用理发生变形时,内部产生极化,而表面产生符号相反的电荷,而当外力消失时表面电荷也随之消失,这种现象称之为压电效应。 3.中间转换器 被测非电量参数经传感器变换后转化为电参量,通常必须经过再变换、放大、预处理等工作后才能进行显示、记录或由计算机进行数据处理。这些中间环节是测量系统不可缺少的组成部分,通称中间变换器。 4.D/A和A/D转换器 在检测与控制信号中,如位移、速度、温度等连续的物理量经传感器变换为连续的电压压或电流,通称为模拟量。在很多情况下仪表显示、数据处理要用数字来表示,这些用数字来代替的离散量称为数字量。测试仪器内将模拟量转为数字量装置即是A/D转换器,反之数字量转为模拟量装置即是D/A转换器。 5.最小二乘法 最小二乘法在误差理论中的基本含义是在具有多精度的多次测量中求最可靠(最可信赖)的值时,当各测量值的残差平方为最小时的结果。在所有拟合的方程的方法中,最小二乘法的误差最小。 6.热电偶 由两种不同的导体A和B两端相连组成回路。当两个接头端的温度不同时在回路中就有电流通过,即回路内出现了电动势,称为热电势。组成回路的A、B 导体称为热电极。整个回路则称之为热电偶。 7.电阻温度计 电阻温度计是根据导体或半导体的电阻值随温度变化而改变的性质,通过测试电阻的大小来了解温度变化的一种温度计。这种温度计可测量-200~5000℃的范围。尤其在低温测量方面性能更佳,最低可达1~3K。 8.随机振动

塑料课程设计

塑料课程设计 课程名称 班级与班级代码 专业 学号: 姓名: 提交日期:年月日 青岛科技大学高分子科学与工程学院 ABS直角弯头设计 1.设计目的: 运用所学的基础理论和专业知识通过课程设计的实践,巩固和掌握专业知识,并为今后的毕业论文做必要的准备。通过塑料工程课程设计,掌握塑料工程设计中材料的选择、制品设计结构的设计、加工设备的确定、生产工艺的要求,学习资料的查找、收集,方案的特点及几种方案的比较,提高计算、绘图能力。建立起一个完善的、符合塑料制品生产要求的整体过程。 2.设计任务和要求 设计任务:输水直角弯头 设计要求:5万个/月 3.设计 设计的一般程序

3.1制品设计 3.1.1 材料的选择 原料选择: 注塑级ABS 特性备注:低温冲击强度好,光泽度硬度较好。 价格:9100-9300/吨 相关参数:

生产配方: ABS 100 3.1.3 制品形状方面: 图2-1 直角弯头零件图 从零件壁厚上看,塑件最小壁厚4mm,塑件壁厚较为均匀,壁厚大小适中,不会放大充模阻力,不易出现缺料现象,也避免了壁厚太厚所容易出现的气泡、凹陷等缺陷,有利于零件的成型。 塑件冷却后会包紧在抽芯型芯上,为了使脱模顺利,φ75.4mm孔处应设置脱模斜度,查取ABS常用脱模斜度35′~1°。 该弯头属于输水管路连接件,弯头除需具备良较高的冲击强度、良好的尺寸稳定性和耐腐蚀性外,无其他较为特殊的工艺要求。塑件选择的ABS材料综合力学性能好,满足塑件机械性能要求。 综合分析,在注射成型工艺参数控制良好的条件下,零件的成型要求可以得到保证。 3.2 模具设计 3.2.1 确定生产方式 采用注射成型 注塑模具由动模和定模两大部分组成,分析直角弯头成型零件的特点,知道本次设计的模具应包括成型零件、浇注系统、导向机构、推出机构、侧抽芯机构、模温调节系统。

工程的温度应力计算

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。 当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月

份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1=(0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件的约束,水平构件的混凝土收缩会产生拉应变,这种应变可以和混凝土因温度变化产生的应变等效,可用产生等量应变的温度差(当量温差)计入混凝土收缩效应的影响。 参考王梦铁的《工程结构裂缝控制》中的相关计算方法,混凝土收缩应变的形式和发展与混凝土龄期密切相关,任意时间t (天数)时混凝土已完成的收缩应变为:)1(1024.3)1(1024.3)(01.042101.04t n t y e M M M e t -----?≈???-?=ε

实验应力分析检测题[1]

实验应力分析检测题 测试卷一 (45分钟完成) 测1.1 如图所示的平板拉伸试样受轴向力F 作用,试样上如图a 粘贴两片应变片1R 、2R , 其应变值分别为1ε、2ε。由1R 、2R 组成图b 所示的半桥测量电路,这时应变仪读数为 。 A . 11εμ)(+; B .21εμ)(+; C .11εμ)(?; D .21εμ)(? 。 测1.2 圆轴受扭矩T 的作用,用应变片测出的是 。 A . 切应变; B .切应力; C .线应变; D . 扭矩。 测1.3 图示拉杆试件,弹性模量E 、泊松比μ、横截面面积A 已知,若用电阻应变仪测得杆表面任一点处两个互成90°方向的应变为a ε、b ε,试求拉力F 。 测 1.4 如图所示,矩形截面外伸钢梁在外伸端受横向力1F 、轴向力2F 作用,弹性模量 E =200 GPa ,泊松比μ=0.3,由实验测得A 支座截面的左边,中性轴D 点的应变 (a) 测 1.1 图 (b ) 测1.3图 A 测1.4图

63010203?°×?=ε,66010343?°×=ε。求D 点主应力大小及其方向。 测试卷二(45分钟完成) 测2.1一钢制圆轴受拉扭联合作用,已知圆轴直径d =20 mm ,材料的弹性模量E =200 GPa ,现采用直角应变花测得轴表面O 点的应变值为 ,10966?×?=a ε ,105656?×=b ε 610320?×=c ε,试求载荷F 和T 的大小。 测 2.2 承受偏心拉伸的矩形截面杆如图所示,现用电测法测得该杆上、下两侧面的纵向应变1ε和2ε,试证明偏心距e 与应变1ε和2ε在弹性范围内满足下列关系:6 2121h εεεεe ×+?=。 测 2.1 图 测2.2 图

温度应力计算

6.1混凝土施工裂缝控制6.1.1混凝土温度的计算 ①混凝土浇筑温度:T j =T c +(T q -T c )×(A 1 +A 2 +A 3 +……+A n ) 式中:T c —混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌 合温度比当时温度高2-3 ℃,我们按3 ℃计;、 T q —混凝土浇筑时的室外温度(考虑最夏季最不利情况以30 ℃计); A 1、A 2 、A 3 ……A n —温度损失系数,A 1 —混凝土装、卸,每次A=0.032(装 车、出料二次);A 2 —混凝土运输时,A=θt查文献[5]P 33表3-4得6 m3滚动式搅拌车运输θ=0.0042,运输时 间t约30分钟,A=0.0042×30=0.126;A 3 —浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003× 240=0.72; T j =33+(T q -T c )×(A 1 +A 2 +A 3 )=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃ ②混凝土的绝热温升:T(t)=W×Q×(1-e-mt)/(C×r) 式中:T(t)—在t龄期时混凝土的绝热温升(℃); W—每m3混凝土的水泥用量(kg/m3),取350kg/m3; Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号矿渣水泥Q =335kJ/kg(文献[5] P 14 表2-1); C—混凝土比热0.97 KJ/(kg·K) ; r—混凝土容重2400 kg/m3; e—常数,2.71828; m—与水泥品种、浇筑时温度有关,可查文献[5]P 35 表3-5; t—混凝土龄期(d)。 混凝土最高绝热温升T h =W×Q/(C×r)=350×335/(0.97×2400)=50.37(℃) ③混凝土内部中心温度:T max (t)=T j + T 1 (t) 式中:T max (t)—t龄期混凝土内部中心温度; T j —混凝土浇筑温度(℃);

应变片课程设计

题目:应变片课程设计 悬臂梁的应力测试 2015 年 1 月

一、力学篇应变实验课程设计细则 ------------------- 3 二、实验器材 ------------------------------------- 4 三、实验预想步骤 --------------------------------- 4 四、实验操作步 ----------------------------------- 5 五、实验数据及分析 ------------------------------- 8 六、电阻应变片的选择 ----------------------------- 8 七、电阻应变片的粘贴工艺 ------------------------ 18 八、实验心得 ------------------------------------ 20

前言 应变式传感器可以用来检测:位移压力力矩应变温度湿度光强辐射热加速度液体流量等物理参数。目前是国内外应用量最为广泛的一种传感器,它在世界上占各类传感器80%以上。 本次课程设计根据实验室条件和应变式传感器的特点,从应变片粘贴工艺要求设计机械结构测点布置应变片电源电路应变片补偿电路检测误差分析构建圆筒偏载试验等为题,使学生从简单受力结构分析入手,运用计算机模拟软件确定测点布置,结合动手具体粘贴应变片,对应变片实测数据校准整定;从而完成一个完整的测试工作。 一、任务设计与要求 1 应用力学知识(理论力学材料力学),运用软件ansys分析简支梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 2 应用力学知识(理论力学材料力学),运用软件ansys分析悬臂梁受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性; 3 应用力学知识(理论力学材料力学),运用软件ansys分析传动轴受力集中区,确定测点布置位置,采用钢板尺作为测试对象,验证理论分析和仿真分析及实验分析的结果一致性;

工程的温度应力计算

工程的温度应力计算文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

一、温差效应理论 1,局部温差不对整体结构产生影响,只考虑整体温差。 2,出现温差时梁板等水平构件变形受到竖向构件的约束而产生应力,同时竖向构件会受到相应的水平剪力。 3,使用阶段由于外围有幕墙,屋顶有保温,首层室外楼板也有覆土或其他面层,且室内有空调,常年的温度较为稳定,可不考虑使用阶段的温差效应,只考虑施工阶段的温差效应。 二、温差取值 对于温差T1-T2,即施工阶段基准温度T1-施工后保温围护前的最低或最高温度T2: 1,施工阶段最低或最高温度(T2)选取: A,对地下室构件,即使地下水位较高,回填土也会在地下室施工完成不久后封闭,温度变化对结构影响很小很缓慢,可考虑地区季节性平均温度变化(地下结构一般从设置后浇带、尽早回填等措施来降低温差的影 响,一般不需要计算)。 B,对地上结构,可以认为完全暴露在室外。可能达到的最低和最高温度可取当地最近十年的历史最低、最高气温(一般参考荷载规范里的基本气温数据,比如青岛地区为-9/33度)。 2,施工阶段基准温度(T1)选取: 结构在后浇带合拢前各部分面积较小,温度效应可以忽略不计。因此后浇带浇注时的温度作为温差效应里的基准温度T1。

当工程进展顺利,地上各层结构的合拢时间可以精确到季节甚至月份时候,这里的基准温度可取当季或当月的近十年平均气温。当施工进度无法掌握时,基准温度可取近十年月平均气温值T1= (0.0+2.4+6.4+11.9+17.0+20.9+24.4+25.2+22.1+16.9+9.2+3.5)/12 =13.3。因此一般适当控制后浇带合拢温度时,基准温度T1可按15度进行计算:降温温差T1-T2=15-(-9)=24℃;当计算地上结构升温温差时,升温温差T1-T2=15-33=18℃。 表1 2000年~2009年青岛月平均气温 只有当地上结构一层顶合拢日期距屋面合拢的日期超过一年时,最大负温差和最大正温差才会共存在一个工程中,因正温差主要产生压应力,所以温度效应仍是按最大负温差来控制。 探讨:对于有后浇带的工程,在满足至少两个月的条件下是否可将后浇带浇注时间限定在温度较低的月份,至少避开最高的月份夜间浇筑,这样计算最大负温差时的基准温度(T1)会降低,相应最大负温差也会减小。 三、混凝土长期收缩的影响 根据王梦铁的《工程结构裂缝控制》中相关计算公式和表格。 混凝土收缩是一个长期的过程,影响最终收缩量的因素有水泥成分、温度、骨料材质、级配、含泥量、水灰比、水泥浆量、养护时间、环境温度和气流场、构件的尺寸效应、混凝土振捣质量、配筋率、外加剂等。由于竖向构件

大体积混凝土温度应力计算

大体积混凝土温度应力计 算 Last revision on 21 December 2020

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

圆筒内作用压力的应力分析实验报告

圆筒内作用压力的应力分析实验报告 圆筒内作用压力的应力分析实验报告 小组成员:焦翔宇1120190146 李雪枫1120190149 宋佳1120190152 一实验目的: 1.了解薄壁容器在内压作用下,筒体的应力分布情况;验证薄壁容器筒体应力计算的理论公式。 2.熟悉和掌握电阻应变片粘贴技术的方法和步骤。 3.掌握用应变数据采集测量仪器测量应变的原理和操作方法。 二实验原理:① 理论测量原理 如右图是圆筒内作用压力的压力传感器结构简图,在压力P1作用下,圆筒外表面的周向应力σy 和轴向应力σx 分别为: 周向应变和周向应变分别为: 由上式可见,圆筒外表面的周向应变比轴向应变打,亮着又均为正值。为了提高灵敏度,并达到温度补偿的目的,将两个应变敏感元件R1、R4安装在圆筒外壁的周向;两个应变敏感元件R2、R3安装在圆筒上,见右图。四个应变敏感元件的应变分别为: 采用恒压电桥电路。输出电压为: 由上式可知:在这种情况下,采用恒压电桥电路时,压力与输出电压之间存在非线性关系。采用双恒流源电路时,输出电压为: 由上式可见:在小变形情况下,采用双恒流源电路时,压力与输出电压之间为线性关系。在大变形情况下,赢考虑变形的影响,这是周向应变为: 圆筒内的径向压力使得圆筒的半径变大,周向力使圆筒的半径减小。可得到由于径向压力引起的圆筒半径变化为: 轴向力引起的直径变化为: 圆筒半径的变化量为: 变形后,两半径的比值为: 应变敏感元件R1、R4处的应变值为: 由上式可见:考虑圆筒变形的影响后,压力与圆筒外壁应变之间为非线性关系。由于 ,因此是递增非线性。

采用恒压电桥电路时,输出电压为: 由上式可见:考虑圆筒变形的影响后,采用双恒流源电路也存在着压力与输出电压之 间的非线性。 下图是圆筒内作用压力的一种压力传感器的结构图: ② 用电阻应变仪测量应变原理: 电阻应变测量法是测定压力容器筒壁应变的常用方法之一。其测量装置由三部分组成:即电阻应变片,连接导线和电阻应变仪。常用的电阻应变片是很细的金属电阻丝粘 于绝缘的薄纸上而成。见图一所示,将此电阻片用特殊的胶合剂贴在容器壁欲测之部位。当容器受内压作用发生变形时,电阻丝随之而变形。电阻丝长度及截面的改变引起其电 阻 值的相应改变,则可以用电阻应变仪测出电阻的改变,再换算成应变,直接由应变 仪上读出。 电阻丝的应变与电阻的改变有如下的关系: 由于电阻丝的电阻R 和K 值对于一定的电阻片为一已知值,故只要测得Δ R (电阻丝电阻改变)就可以求出ε值。电阻应变仪是采用电桥测量原理测出Δ R 并换成με(即为)的 变形量。 三实验步骤: 1.了解试验装置(包括管路、阀门、容器、压力自控泵等在实验装 置中的功能和操作方法)及电阻片粘贴位置,测量电气线路,转换旋钮等。 2. 制作实验用圆筒,截下一段pvc 塑料管,在两端用哥俩好胶水粘合金属块使圆筒 形成内部气密舱。再两端金属块打孔,一段装入气压计,另一端安装打气孔,粘合使其不 漏气。 3. 应变片的安装: (1)根据选择的测点位置,用砂纸打光;再按筒体的经线和纬线方向用划针或铅笔 划出测点的位置及方向;以后再用棉球、丙酮等除去污垢。 (2)测量电阻应变片的电阻值,记录电阻片的灵敏系数,以便将应变仪灵敏系数点 放在相应的位置上(实验室已准备好)。 (3)将“502”胶液均匀分布在电阻片的背面(注意:胶液均均匀涂在电阻片反面, 不可太多,引出线须向上)。随即将电阻片粘贴在欲测部位,并用滤纸垫上,施加接触 压力,挤出贴合面多余胶水及气泡(注意:电阻丝方向应与测量方向一致,用手指按紧 一至两分钟)。(4)在电阻片引出线下垫接线端子(用胶液粘贴),用于电阻应变片的

超长结构温度应力计算探讨

超长结构温度应力计算探讨 一、温度作用的特点: 温度作用是在规定时期内结构或结构构件由于温度场变化所引起的作用,具有以下特点:1)温度作用是由结构材料“热胀冷缩”效应被结构内、外约束阻碍而在结构内产生的内力作用,属于间接作用;2)温度作用随外界环境的变化而变化,有明显的时间性,属于可变作用;3)建筑结构从开始建造到拆除都会受到所处温度场影响,因而温度作用伴随着结构的生命全周期过程;4)引起结构温度变化因素很多,有气候季节变化、太阳暴晒辐射和其它人为因素(如火灾)等,诱因多样性使温度作用有别于其它(荷载)作用。 二、温度作用的规范规定: 2.1什么时候需要进行温度作用计算 根据温度作用的特点可知,结构中产生的温度作用大小主要与结构材料线膨胀系数和结构长度有关。表1为常用材料线膨胀系数αT,可见结构钢和混凝土的线膨胀系数非常接近。正因为如此,在计算钢筋混凝土结构的温度作用时才可以只按混凝土一种材料近似考虑。材料确定的情况下,长度越长,温度作用越大。 在完全没有约束的情况下,总长为100m、截面为600x600的普通混凝土梁温度每升高或降低20℃,梁长度将增加或减少20mm; 如果端部的变形完全受到约束,将在梁内部产生约2160KN(按强

度等级为C30计算)的轴向压力或拉力,该力约为混凝土轴向抗拉强度标准值的3倍。 T 实际结构不可能没有约束,总会在结构中产生温度应力,当结构长度较小时,可忽略温度应力和温度变形对结构的影响。现行规范根据不同的结构形式给出该长度(温度区段长度)经验值,详见表2,当结构超出该长度时才有必要进行温度作用计算。 表2: 钢筋混凝土结构伸缩缝最大间距(m) 建筑结构设计时,应首先采取有效构造措施来减少或消除温度作用效应,如设置结构的活动支座或节点、设置温度缝、采用隔热保温措施等。当结构或构件在温度作用和其他可能组合的荷载共同作用下产生的效应(应力或变形)可能超过承载能力极限状态或正常使用极限状态时,比如结构某一方向平面尺寸超过伸缩缝最大间距或温度区段长度、结构约束较大、房屋高度较高等,结构设计中一般应考虑温度作用。

温度应力计算(学习建筑)

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i =

我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式: 2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

应力应变实验方案

运输车应力应变实验方案 一、 实验目的 1. 掌握用电阻应变片贴片技巧与理论分析方法; 2. 掌握应力应变仪数据采集分析和使用方法; 3. 验证测量应变值、理论计算值和仿真分析值的一致性; 4. 做好实验与软件分析的差异性。 二、 实验原理 应变片电测法是用电阻应变计测量结构的表面应变,再根据表面应变——应力关系确定结构件表面应力状态的一种试验应力分析方法。测量时,将电阻应变片粘贴在零件被测点的表面。当零件在载荷作用下产生应变时,电阻应变计发生相应的电阻变化,用应变仪测出这个变化,即可以计算被测点的应力和应变。 三、 仪器与耗材 电阻式应变片(120—3AA ),接线端子,装有DCS-100A 软件的PC 机,PCD —300B 数据分析仪,硅橡胶,502胶水,聚四氟乙烯薄膜,镊子,小螺丝刀,剪刀,酒精,砂纸,电胶带,透明胶带,若干导线,称砣,弹性钢板, 220V 稳压电源,悬臂梁,万用表,电烙铁。 四、 实验内容 测试运输车车架的应力应变。 五、 实验步骤 1. 粘贴应变片 1) 去污:为了使电阻应变片能准确的反映构件被测点的变形,必须使电阻应变片和构件表面能很好地结合。用砂纸去除构件表面的油污、漆、锈斑等,并用纸巾搽干净构件表面以增加粘贴力,用浸有丙酮的脱脂棉球擦洗; 2) 测量:用万用表测量应变片的完好性; 3) 贴片:先用镊子把应变片和接线端子线性的固定在透明胶带的一边,缓慢的将带有应变片和接线端子的透明胶带贴在构件表面,然后用镊子小心翼翼的把带有应变片和接线端子这边的透明胶带挑起,将准备好的502胶水用聚四氟乙烯拨片均匀的涂在构件与透明胶带之间,然后用拇指把准备好的聚四氟乙烯薄膜片迅速垂直压在带有应变片和接线端子这边的透明胶带上,并保持一分钟时间。去掉聚四氟乙烯薄膜片,用镊子小心翼翼的粘在应变片和接线端子上的透明胶带去掉,仔细检查贴在构件表面的应变片和接线端子是否粘贴好; 4) 焊接导线:将应变片上引出的两根导线通过接线端子与外部的导线焊接在一起。然后用电胶带把裸露在外面的导线固定好,最后再用万用表检测贴好的应变片是否完好。 2. 实验的标定 为了在一定程度上模拟运输车车架的承载情况,试验采用悬臂梁的形式实现标定工作,主要在一悬臂梁上粘贴应变片,通过在自由端施加已知质量的重块以施加已知载荷和弯矩,根据材料力学的理论公式26bh PL W M == σ则可得到在不同工况的应力理论值。 在悬臂梁上贴好应变片的前提下,通过采用PCD-300B 数据分析仪和DCS-100A 数据采集软件,将得到具有一定数值的模拟信号,将悬臂梁上悬挂重物质量、理论应力值和试验采集的应力平均值建

相关主题
文本预览
相关文档 最新文档