(完整版)天津高考真题.doc
- 格式:doc
- 大小:228.02 KB
- 文档页数:8
2019年1、由自然条件决定其主要功能的一组文化景观是A、甲乙B、乙丙C、乙丁D、丙丁2、在天津的下列产业部门中,能充分合理利用丁图中设施所开采资源的是A、化学工业B、电力工业C、交通运输业D、汽车工业读某区域部分地理信息图,回答3-4题。
3、甲区域气候一年分为干、湿两季,据图判断其形成的主要原因是A、纬度位置B、地势C、大气环流D、洋流4、乙海域有一大范围渔场,若用洋流剖面示意图来揭示其成因,应选香港地形以山地丘陵为主,由著名的天然良港。
结合图文信息回答5-6题。
5、香港建港的有利自然条件是A、地平坡缓B、岛多浪小C、滩阔岸直D、河多沙厚6、填海造陆对香港的影响有A、港区行船更加通畅B、经济活动远离海岸C、海洋生态得以维护D、利于沿海功能区布局读冀北某地等高地形图,回答7-8题。
7、为把铝土矿石运到火车站,计划修一条公路,合理的选线是a、b、c、d中的A、aB、bC、cD、d8、图中有四座小水泥厂,原料主要来自采石场,产品主要外运,若在环境整治中只保留一座,应保留A、甲B、乙C、丙D、丁读从宇宙空间拍摄的地球和月球照片,回答9-10题。
9、专家认为,地球也应该像月球一样,曾遭受许多陨石撞击,而目前陆地表面却很少发现明显的陨石坑。
探究其原因,主要是A、月球阻挡B、地质作用改造C、地表布满岩石D、地表水体覆盖10、在白天,图中地球上空大片浓密的云层,对其覆盖地区的影响是有利于A、地表水分蒸发B、近地面空气对流C、大气对地面的保温D、紫外线辐射到达地面11、X、Y两点情况相同的是A、太阳所在方向B、所在时区C、正午太阳高度D、白昼长短12、太阳直射点正向什么方向运动?能确定的是A、向北B、向南C、向东D、向西第II卷(非选择题共160分)36、(34分)结合甲乙两区域图,回答问题。
(1)甲区域东南部易发生地震,其地质构造条件是;易发生滑坡的地质条件是。
(4分)(2)a城是历史文化名城。
甲区域铁路的修通,加快了该城业、业地发展,这将促进地区间的文化交流。
2016年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意事项:1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分参考公式:如果事件A,B互斥,那么·如果事件A,B相互独立,P(A∪B)=P(A)+P(B).P(AB)=P(A)P(B).柱体的体积公式V 柱体=Sh ,圆锥的体积公式V =31Sh 其中S 表示柱体的底面积其中其中S 表示锥体的底面积,h 表示圆锥的高. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则AB =(A )}3,1{(B )}2,1{(C )}3,2{(D )}3,2,1{(2)甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为 (A )65 (B )52 (C )61 (D )31(3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为学科&网(4)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为(A )1422=-y x (B )1422=-y x (C )15320322=-y x (D )12035322=-y x (5)设0>x ,R y ∈,则“y x >”是“||y x >”的(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件(6)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足)2()2(|1|->-f f a ,则a 的取值范围是 (A ))21,(-∞(B )),23()21,(+∞-∞ (C ))23,21( (D )),23(+∞(7)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则AF BC 的值为(A )85-(B )81 (C )41 (D )811 (8)已知函数)0(21sin 212sin )(2>-+=ωωωx x x f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是(A )]81,0((B ))1,85[]41,0( (C )]85,0((D )]85,41[]81,0(第Ⅱ卷注意事项:1、用黑色墨水的钢笔或签字笔将答案写在答题卡上.2、本卷共12小题,共计110分.二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,复数z 满足(1)2i z +=,则z 的实部为_______.学科&网(10)已知函数()(2+1),()x f x x e f x '=为()f x 的导函数,则(0)f '的值为__________. (11)阅读右边的程序框图,运行相应的程序,则输出S 的值为_______.(第11题图)(12)已知圆C 的圆心在x 轴的正半轴上,点(0,5)M 在圆C 上,且圆心到直线20x y -=的距离为45,则圆C 的方程为__________.(13)如图,AB 是圆的直径,弦CD 与AB 相交于点E ,BE =2AE =2,BD =ED ,则线段CE 的长为__________.(14)已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23x f x =-恰有两个不相等的实数解,则a 的取值范围是学科&网_________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)在ABC ∆中,内角C B A ,,所对应的边分别为a,b,c ,已知sin 23sin a B b A =. (Ⅰ)求B ; (Ⅱ)若1cos A 3=,求sinC 的值学科.网.(16)(本小题满分13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y 表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y 列出满足生产条件的数学关系式,并画出相应的平面区域;学科.网 (Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.(17)(本小题满分13分)如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF||AB ,AB=2,BC=EF=1,6,DE=3,∠BAD=60º,G 为BC 的中点.(Ⅰ)求证:FG||平面BED ; (Ⅱ)求证:平面BED ⊥平面AED ;(Ⅲ)求直线EF 与平面BED 所成角的正弦值.(18)(本小题满分13分)已知{}n a 是等比数列,前n 项和为()n S n N ∈*,且6123112,63S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,b n n N ∈*是2log n a 和21log n a +的等差中项,求数列(){}21nn b -的前2n 项和.(19)(本小题满分14分)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;学.科.网(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.(20)(本小题满分14分)设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.2016年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题: (1)【答案】A (2)【答案】A (3)【答案】B (4)【答案】A (5)【答案】C (6)【答案】C (7)【答案】B (8)【答案】D 二、填空题:(9)【答案】1 (10)【答案】3 (11)【答案】4(12)【答案】22(2)9.x y -+=(13)【答案】3(14)【答案】12[,)33三、解答题 (15)【答案】(Ⅰ)6π=B 【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:2sin sin cos A B B A =,再根据三角形内角范围化简得23cos =B ,6π=B (Ⅱ)已知两角,学科&网求第三角,利用三角形内角和为π,将所求角化为两已知角的和,再根据两角和的正弦公式求解 试题解析:(Ⅰ)解:在ABC ∆中,由BbA a sin sin =,可得A b B a sin sin =,又由A b B a sin 32sin =得B a A b B B a sin 3sin 3cos sin 2==,所以23cos =B ,得6π=B ; (Ⅱ)解:由31cos =A 得322sin =A ,则)sin()](sin[sinB A B AC +=+-=π,所以)6sin(sin π+=A C 6162cos 21sin 23+=+=A A 考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理 (16)【答案】(Ⅰ)详见解析(Ⅱ)生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元 【解析】试题分析:(Ⅰ)根据生产原料不能超过A 种原料200吨,B 种原料360吨,C 种原料300吨,列不等关系式,即可行域,再根据直线及区域画出可行域(Ⅱ)目标函数为利润y x z 32+=,学.科网根据直线平移及截距变化规律确定最大利润试题解析:(Ⅰ)解:由已知y x ,满足的数学关系式为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+003001033605820054y x y x y x y x ,该二元一次不等式组所表示的区域为图1中的阴影部分.(1)(Ⅱ)解:设利润为z 万元,则目标函数y x z 32+=,这是斜率为32-,随z 变化的一族平行直线.3z为直线在y 轴上的截距,当3z取最大值时,z 的值最大.又因为y x ,满足约束条件,所以由图2可知,学.科网当直线y x z 32+=经过可行域中的点M 时,截距3z的值最大,即z 的值最大.解方程组⎩⎨⎧=+=+30010320054y x y x 得点M 的坐标为)24,20(M ,所以112243202max =⨯+⨯=z .答:生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元.(2)考点:线性规划 【结束】 (17)【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)65【解析】试题分析:(Ⅰ)证明线面平行,一般利用线面平行判定定理,学.科网即从线线平行出发给予证明,而线线平行寻找与论证,往往结合平几知识,如本题构造一个平行四边形:取BD 的中点为O ,可证四边形OGFE 是平行四边形,从而得出OE FG //(Ⅱ)面面垂直的证明,一般转化为证线面垂直,而线面垂直的证明,往往需多次利用线面垂直判定与性质定理,而线线垂直的证明有时需要利用平几条件,如本题可由余弦定理解出090=∠ADB ,即AD BD ⊥(Ⅲ)求线面角,关键作出射影,即面的垂线,可利用面面垂直的性质定理得到线面垂直,即面的垂线:过点A 作DE AH ⊥于点H ,则⊥AH 平面BED ,从而直线AB 与平面BED 所成角即为ABH ∠.再结合三角形可求得正弦值 试题解析:(Ⅰ)证明:取BD 的中点为O ,连接OG OE ,,在BCD ∆中,因为G 是BC 的中点,所以DC OG //且121==DC OG ,又因为DC AB AB EF //,//,所以OG EF //且OG EF = ,即四边形OGFE 是平行四边形,所以OE FG //,又⊄FG 平面BED ,⊂OE 平面BED ,所以//FG 平面BED .(Ⅱ)证明:在ABD ∆中,060,2,1=∠==BAD AB AD ,由余弦定理可3=BD ,进而可得090=∠ADB ,即AD BD ⊥,学.科网又因为平面⊥AED 平面⊂BD ABCD ,平面ABCD ;平面AED 平面AD ABCD =,所以⊥BD 平面AED .又因为⊂BD 平面BED ,所以平面⊥BED 平面AED . (Ⅲ)解:因为AB EF //,所以直线EF 与平面BED 所成角即为直线AB 与平面BED 所成角.过点A 作DE AH ⊥于点H ,连接BH ,又因为平面 BED 平面ED AED =,由(Ⅱ)知⊥AH 平面BED ,所以直线AB 与平面BED 所成角即为ABH ∠.在ADE ∆中,6,3,1===AE DE AD ,由余弦定理可得32cos =∠ADE ,所以35sin =∠ADE ,因此35sin =∠⋅=ADE AD AH ,在AHB Rt ∆中,65sin ==∠AB AH ABH ,所以直线AB 与平面BED 所成角的正弦值为65考点:直线与平面平行和垂直、平面与平面垂直、直线与平面所成角 【结束】 (18)【答案】(Ⅰ)12-=n n a (Ⅱ)22n【解析】试题分析:(Ⅰ)求等比数列通项,一般利用待定系数法:先由2111211qa q a a =-解得1,2-==q q ,分别代入631)1(61=--=q q a S n 得1-≠q ,11=a (Ⅱ)先根据等差中项得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n ,再利用分组求和法求和:2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-试题解析:(Ⅰ)解:设数列}{n a 的公比为q ,由已知有2111211q a q a a =-,解之可得1,2-==q q ,又由631)1(61=--=q q a S n 知1-≠q ,所以6321)21(61=--a ,解之得11=a ,所以12-=n n a .(Ⅱ)解:由题意得21)2log 2(log 21)log (log 21212122-=+=+=-+n a a b n n n n n ,即数列}{n b 是首项为21,公差为1的等差数列. 设数列})1{(2n n b -的前n 项和为n T ,则2212212221224232221222)(2)()()(n b b n b b b b b b b b b T n n n n n =+=+⋅⋅⋅++=+-+⋅⋅⋅++-++-=-考点:等差数列、等比数列及其前n 项和 【结束】 (19)【答案】(Ⅰ)22143x y +=(Ⅱ)【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:MOA MAO ∠=∠⇔||||MA MO =,即M再OA 中垂线上,1M x =,再利用直线与椭圆位置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率. 试题解析:(1)解:设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,学.科网所以椭圆的方程为22143x y +=. (2)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,设(,)B B B x y ,由方程组221,43(2),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 整理得2222(43)1616120k x k x k +-+-=,解得2x =或228643k x k -=+,由题意得228643B k x k -=+,从而21243Bky k -=+, 由(1)知(1,0)F ,设(0,)H H y ,有(1,)H FH y =-,2229412(,)4343k kBF k k -=++, 由BF HF ⊥,得0BF HF ⋅=,所以222124904343Hky k k k -+=++, 解得29412H k y k -=,因此直线MH 的方程为219412k y x k k-=-+,设(,)M M M x y ,由方程组2194,12(2),k y x k k y k x ⎧-=-+⎪⎨⎪=-⎩消去y ,得2220912(1)M k x k +=+, 在MAO ∆中,MOA MAO ∠=∠⇔||||MA MO =,即2222(2)M MMMx y x y -+=+,化简得1M x =,即22209112(1)k k +=+,解得4k =-或4k =, 所以直线l的斜率为k =k =. 考点:椭圆的标准方程和几何性质,学.科网直线方程 【结束】 (20)【答案】(Ⅰ)详见解析.(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:2()3f x x a '=-,再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得200()30f x x a '=-=即203ax =,再由)()(01x f x f =化简可得结论(Ⅲ)实质研究函数)(x g最大值:主要比较(1),(1)f f-,|(|f f的大小即可,分三种情况研究①当3a≥时,1133-≤-<≤,②当334a≤<时,113333-≤-<-<<≤③当34a<<时,1133-<-<<.试题解析:(1)解:由3()f x x ax b=--,可得2()3f x x a'=-,下面分两种情况讨论:①当0a≤时,有2()30f x x a'=-≥恒成立,所以()f x的单调增区间为(,)-∞∞.②当0a>时,令()0f x'=,解得3x=或3x=-.当x变化时,()f x'、()f x的变化情况如下表:所以()f x的单调递减区间为(,33-,单调递增区间为(,3-∞-,()3-+∞.(2)证明:因为()f x存在极值点,所以由(1)知0a>且x≠.由题意得200()30f x x a'=-=,即203ax=,进而300002()3af x x ax b x b=--=--,又3000000082(2)822()33a af x x ax b x ax b x b f x-=-+-=-+-=--=,且002x x-≠,由题意及(1)知,存在唯一实数1x满足10()()f x f x=,学科&网且10x x≠,因此102x x=-,所以10+2=0x x.(3)证明:设()g x 在区间[1,1]-上的最大值为M ,max{,}x y 表示x ,y 两数的最大值,下面分三种情况讨论:①当3a ≥时,11≤-<≤1)知()f x 在区间[1,1]-上单调递减, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=---+-max{|1|,|1|}a b a b =-+--1,0,1,0,a b b a b b --≥⎧=⎨--<⎩所以1||2M a b =-+≥.②当334a ≤<时,11≤-<<<≤由(1)和(2)知(1)(()33f f f -≥-=,(1)((33f f f ≤=-,所以()f x 在区间[1,1]-上的取值范围为[(33f f -,所以max{||,|(|}max{||,||}f f b b =231max{||,||}||944b b b ==≥⨯=.③当304a <<时,11-<<<,由(1)和(2)知,(1)(()33f f f -<-=,(1)(()33f f f >=-, 所以()f x 在区间[1,1]-上的取值范围为[(1),(1)]f f -,因此,max{[(1),(1)]}max{|1|,|1|}M f f a b a b =-=-+---max{|1|,|1|}a b a b =-+--11||4a b =-+>. 综上所述,当0a >时,()g x 在区间[1,1]-上的最大值不小于14. 考点:导数的运算,利用导数研究函数的性质、证明不等式【结束】。
绝密★启用前201X 年普通高等学校招生全国统一考试(天津卷)数 学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共8小题,每小题5分,共40分。
参考公式:•如果事件A ,B 互斥,那么•如果事件A ,B 相互独立,那么()()()P A B P A P B =+. ()()()P AB P A P B =.•圆柱的体积公式V Sh =.•圆锥的体积公式13V Sh =. 其中S 表示圆柱的底面面积, 其中S 表示圆锥的底面面积, h 表示圆柱的高.h 表示圆锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 学科.网(1)已知集合}{4,3,2,1=A ,}{A x x y y B ∈-==,23,则=B A (A )}{1(B )}{4(C )}{3,1(D )}{4,1 (2)设变量x ,y 满足约束条件⎪⎪⎩⎪⎪⎨⎧-+-++-.0923,0632,02y x y x y x 则目标函数y x z 52+=的最小值为(A )4-(B )6(C )10(D )17≥ ≥ ≤(3)在ABC ∆中,若13=AB ,3=BC , 120=∠C , 则=AC(A )1 (B )2 (C )3 (D )4(4)阅读右边的程序框图,运行相应的程序,则输出S 的值为(A )2 (B )4(C )6(D )8(5)设}{n a 是首项为正数的等比数列,学科&网公比为q ,则“0<q ”是“对任意的正整数n ,0212<n n a a +-”的(A )充要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件 (6)已知双曲线14222=-by x )>(0b ,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,学科&网四边形ABCD 的面积为b 2,则双曲线的方程为(A )143422=-y x (B )134422=-y x (C )144222=-y x (D )112422=-y x (7)已知ABC ∆是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为(A )85-(B )81 (C )41(D )811 (8)已知函数⎪⎩⎪⎨⎧+++-+=0,1)1(log 0,3)34()(2x x x a x a x x f a<(0>a ,学.科网且1≠a )在R 上单调递减,且关于x 的方程x x f -=2)(恰好有两个不相等的实数解,则a 的取值范围是(A )]32,0((B )]43,32[ (C ) ]32,31[{43}(D ) )32,31[{43}≥ (第4题图)绝密★启用前201X 年普通高等学校招生全国统一考试(天津卷)数 学(理工类)第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上.2. 本卷共12小题, 共110分.二.填空题: 本大题共6小题, 每小题5分, 共30分. (9)已知a ,∈b R ,i 是虚数单位,若a b =-+)i 1)(i 1(,则ba的值为_____________. (10)82)1(xx -的展开式中7x 的系数为_____________.(用数字作答) (11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),学科.网则该四棱锥的体积 为_____________3m .(12)如图,AB 是圆的直径,弦CD 与AB 相交于点E ,22==AE BE ,ED BD =,则线段CE 的长为_____________.(13)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增.若实数a 满足)2()2(1--f f a >,则a 的取值范围是_____________.(14)设抛物线⎩⎨⎧==pty pt x 2,22(t 为参数,0>p )的焦点F ,准线为l .过抛物线上一点A 作l 的垂线,垂足为B .设)0,27(p C ,AF 与BC 相交于点E .若AF CF 2=,且ACE ∆的面积为23,则p 的值为_____________.三. 解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分13分)已知函数3)3cos()2sin(tan 4)(---=ππx x x x f .(Ⅰ)求)(x f 的定义域与最小正周期; (Ⅱ)讨论)(x f 在区间]4,4[ππ-上的单调性.(16)(本小题满分13分)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分 别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(Ⅰ)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (Ⅱ)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列 和数学期望.(17)(本小题满分13分)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面⊥OBEF 平面ABCD ,点G 为AB 的中点,2==BE AB .(Ⅰ)求证:EG ∥平面ADF ; (Ⅱ)求二面角C EF O --的正弦值; (Ⅲ)设H 为线段AF 上的点,且HF AH 32=,求直线BH 和平面CEF 所成角的正弦值.(18)(本小题满分13分)已知}{n a 是各项均为正数的等差数列,学.科.网公差为d .对任意的*∈N n ,n b 是n a 和1+n a 的等比中项.(Ⅰ)设221n n n b b c -=+,*∈N n ,求证:数列}{n c 是等差数列;(Ⅱ)设d a =1,∑=-=nk kkn b T 212)1(,*∈N n ,求证21211d T nk k<∑=.(19)(本小题满分14分)设椭圆13222=+y a x )3(>a 的右焦点为F ,右顶点为A .已知FAeOA OF 311=+, 其中O 为原点,e 为椭圆的离心率. 学.科.网(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若HF BF ⊥,且MOA ∠≤MAO ∠,求直线l 的斜率的取值范围.(20)(本小题满分14分)设函数b ax x x f ---=3)1()(,∈x R ,其中a ,∈b R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:3201=+x x ; (Ⅲ)设0>a ,函数)()(x f x g =,求证:)(x g 在区间]2,0[上的最大值不小于...41201X 年普通高等学校招生全国统一考试(天津卷)数 学(理工类)一、选择题: (1)【答案】D (2)【答案】B (3)【答案】A (4)【答案】B (5)【答案】C (6)【答案】D (7)【答案】B (8)【答案】C第Ⅱ卷二、填空题: (9)【答案】2 (10)【答案】56- (11)【答案】2 (12)【答案】233(13)【答案】13(,)22(14) 【答案】6 三、解答题 (15)【答案】(Ⅰ),2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,.π(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 学科&网在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 【解析】试题分析:(Ⅰ)先利用诱导公式、两角差余弦公式、二倍角公式、配角公式将函数化为基本三角函数:()()=2sin 23f x x π-,再根据正弦函数性质求定义域、学科&网周期()II 根据(1)的结论,研究三角函数在区间[,44ππ-]上单调性试题解析:()I 解:()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭. ()4tan cos cos 34sin cos 333f x x x x x x ππ⎛⎫⎛⎫=--=-- ⎪ ⎪⎝⎭⎝⎭213=4sin cos sin 32sin cos 23sin 322x x x x x x ⎛⎫+-=+- ⎪ ⎪⎝⎭()()=sin 231-cos 23sin 23cos 2=2sin 23x x x x x π+-=--.所以, ()f x 的最小正周期2.2T ππ== ()II 解:令2,3z x π=-函数2sin y z =的单调递增区间是2,2,.22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦由222232k x k πππππ-+≤-≤+,得5,.1212k x k k Z ππππ-+≤≤+∈ 设5,,,441212A B x k x k k Z ππππππ⎧⎫⎡⎤=-=-+≤≤+∈⎨⎬⎢⎥⎣⎦⎩⎭,易知,124A B ππ⎡⎤=-⎢⎥⎣⎦.所以, 当,44x ππ⎡⎤∈-⎢⎥⎣⎦学.科网时,()f x 在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 考点:三角函数性质,诱导公式、两角差余弦公式、二倍角公式、配角公式 【结束】 (16) 【答案】(Ⅰ)13(Ⅱ)详见解析 【解析】试题分析:(Ⅰ)先确定从这10人中随机选出2人的基本事件种数:210C ,再确定选出的2人参加义工活动次数之和为4所包含基本事件数:112344C C C +,最后根据概率公式求概率(Ⅱ)先确定随机变量可能取值为0,1,2.学.科网再分别求出对应概率,列出概率分布,最后根据公式计算数学期望试题解析:解:()I 由已知,有()1123442101,3C C C P A C +==所以,事件A 发生的概率为13. ()∏随机变量X 的所有可能取值为0,1,2.()2223342100C C C P X C ++==415=, ()111133342107115C C C C P X C +===, ()11342104215C C P X C ===. 所以,随机变量X 学.科网分布列为X 0 12 P415 715415随机变量X 的数学期望()4740121151515E X =⨯+⨯+⨯=.考点:概率,概率分布与数学期望 【结束】 (17)【答案】(Ⅰ)详见解析(Ⅱ)33(Ⅲ)721【解析】试题分析:(Ⅰ)利用空间向量证明线面平行,关键是求出面的法向量,利用法向量与直线方向向量垂直进行论证(Ⅱ)利用空间向量求二面角,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与二面角相等或互补关系求正弦值(Ⅲ)利用空间向量证明线面平行,关键是求出面的法向量,再利用向量数量积求出法向量夹角,最后根据向量夹角与线面角互余关系求正弦值试题解析:依题意,OF ABCD ⊥平面,如图,以O 为点,分别以,,AD BA OF 的方向为x 轴,y 轴、z 轴的正方向建立空间直角坐标系,依题意可得(0,0,0)O ,()1,1,0,(1,1,0),(1,1,0),(11,0),(1,1,2),(0,0,2),(1,0,0)A B C D E F G -------,.(I )证明:依题意,()(2,0,0),1,1,2AD AF ==-.设()1,,n x y z =为平面ADF 的法向量,则110n AD n AF ⎧⋅=⎪⎨⋅=⎪⎩,即2020x x y z =⎧⎨-+=⎩ .不妨设1z =,可得()10,2,1n =,又()0,1,2EG =-,可得10EG n ⋅=,又因为直线EG ADF ⊄平面,所以//EG ADF 平面.(II )解:易证,()1,1,0OA =-为平面OEF 的一个法向量.依题意,()()1,1,0,1,1,2EF CF ==-.设()2,,n x y z =为平面CEF 的法向量,则220n E F n C F ⎧⋅=⎪⎨⋅=⎪⎩,即020x y x y z +=⎧⎨-++=⎩ .不妨设1x =,可得()21,1,1n =-.因此有2226cos ,3OA n OA n OA n ⋅<>==-⋅,于是23sin ,3OA n <>=,所以,二面角O EF C --的正弦值为33. (III )解:由23AH HF =,学.科网得25AH AF =.因为()1,1,2AF =-,所以2224,,5555AH AF ⎛⎫==- ⎪⎝⎭,进而有334,,555H ⎛⎫- ⎪⎝⎭,从而284,,555BH ⎛⎫=⎪⎝⎭,因此2227cos ,21BH n BH n BH n ⋅<>==-⋅.所以,直线BH 和平面CEF 所成角的正弦值为721.考点:利用空间向量解决立体几何问题 【结束】 (18)【答案】(Ⅰ)详见解析(Ⅱ)详见解析 【解析】试题分析:(Ⅰ)先根据等比中项定义得:21n n n b a a +=,从而22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此根据等差数列定义可证:()212122n n n n c c d a a d +++-=-=(Ⅱ) 对数列不等式证明一般以算代证先利用分组求和化简()2211nnn n k T b ==-∑()()()2222221234212n n b b b b b b -=-++-++-+()221d n n =+,再利用裂项相消法求和()222111111111111212121nn n k k k kT d k k d k k d n ===⎛⎫⎛⎫==-=⋅- ⎪ ⎪+++⎝⎭⎝⎭∑∑∑,易得结论. 试题解析:(I )证明:由题意得21n n n b a a +=,有22112112n n n n n n n n c b b a a a a da +++++=-=-=,因此()212122n n n n c c d a a d +++-=-=,所以{}n c 是等差数列.(II )证明:()()()2222221234212n n n T b b b b b b -=-++-++-+()()()22224222212n n n a a d a a a d d n n +=+++=⋅=+所以()222211111111111112121212nn n k k k k T d k k d k k d n d ===⎛⎫⎛⎫==-=⋅-< ⎪ ⎪+++⎝⎭⎝⎭∑∑∑. 考点:等差数列、等比中项、分组求和、裂项相消求和 【结束】 (19)【答案】(Ⅰ)22143x y +=(Ⅱ)),46[]46,(+∞--∞ 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,再利用2223a c b -==,可解得21c =,24a =(Ⅱ)先化简条件:MOA MAO ∠=∠⇔||||MA MO =,即M再OA 中垂线上,1M x =,再利用直线与椭圆位置关系,联立方程组求B ;利用两直线方程组求H ,最后根据HF BF ⊥,列等量关系解出直线斜率.取值范围 试题解析:(1)解:设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (2)(Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k . 解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k ky B . 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF .由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MMMM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:学.科网椭圆的标准方程和几何性质,直线方程 【结束】(20)【答案】(Ⅰ)详见解析(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题分析:(Ⅰ)先求函数的导数:a x x f --=2)1(3)(',再根据导函数零点是否存在情况,分类讨论:①当0a ≤时,有()0f x '≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,存在三个单调区间(Ⅱ)由题意得3)1(20a x =-,计算可得00(32)()f x f x -=再由)()(01x f x f =及单调性可得结论(Ⅲ)实质研究函数)(x g 最大值:主要比较(1),(1)f f -,33|(|,|()|33a a f f -的大小即可,分三种情况研究①当3a ≥时,33120331aa +≤<≤-,②当334a ≤<时,3321233133103321a a a a +≤<+<-<≤-,③当304a <<时,23313310<+<-<a a . 试题解析:(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2)1(3)('. 下面分两种情况讨论:(1)当0≤a 时,有0)1(3)('2≥--=a x x f 恒成立,所以)(x f 的单调递增区间为),(+∞-∞. (2)当0>a 时,令0)('=x f ,解得331ax +=,或331a x -=.当x 变化时,)('x f ,)(x f 的变化情况如下表:x)331,(a --∞ 331a - )331,331(a a +- 331a+ ),331(+∞+a )('x f+0 - 0 + )(x f单调递增极大值单调递减极小值单调递增所以)(x f 的单调递减区间为)331,331(a a +-,单调递增区间为)331,(a --∞,),331(+∞+a. (Ⅱ)证明:因为)(x f 存在极值点,所以由(Ⅰ)知0>a ,且10≠x ,由题意,得0)1(3)('200=--=a x x f ,即3)1(20ax =-,进而b ax a b ax x x f ---=---=332)1()(00300. 又b a ax x ab x a x x f --+-=----=-32)1(38)22()22()23(000300)(33200x f b a x a =---=,且0023x x ≠-,由题意及(Ⅰ)知,存在唯一实数满足 )()(01x f x f =,且01x x ≠,因此0123x x -=,所以3201=+x x ;(Ⅲ)证明:设)(x g 在区间]2,0[上的最大值为M ,},max{y x 表示y x ,两数的最大值.下面分三种情况同理:(1)当3≥a 时,33120331aa +≤<≤-,由(Ⅰ)知,)(x f 在区间]2,0[上单调递减,所以)(x f 在区间]2,0[上的取值范围为)]0(),2([f f ,因此|}1||,21max{||})0(||,)2(max{|b b a f f M ----== |})(1||,)(1max{|b a a b a a +--++-=⎩⎨⎧<++--≥+++-=0),(10),(1b a b a a b a b a a ,所以2||1≥++-=b a a M . (2)当343<≤a 时,3321233133103321aa a a +≤<+<-<≤-,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-≥,)331()3321()2(af a f f -=+≤,所以)(x f 在区间]2,0[上的取值范围为)]331(),331([a f a f -+,因此 |}392||,392max {||})331(||,)331(max {|b a a ab a a a a f a f M -----=-+= |})(392||,)(392max{|b a a a b a a a +-+--= 414334392||392=⨯⨯⨯≥++=b a a a . (3)当430<<a 时,23313310<+<-<aa ,由(Ⅰ)和(Ⅱ)知,)331()3321()0(a f a f f +=-<,)331()3321()2(af a f f -=+>, 学.科网所以)(x f 在区间]2,0[上的取值范围为)]2(),0([f f ,因此|}21||,1max{||})2(||,)0(max{|b a b f f M ----== |})(1||,)(1max{|b a a b a a +--++-=41||1>++-=b a a . 综上所述,当0>a 时,)(x g 在区间]2,0[上的最大值不小于41. 考点:导数的运算,利用导数研究函数的性质、证明不等式 【结束】。
绝密★启用前2023年普通高等学校招生全国统一考试(天津卷)英语笔试本试卷分为第I卷(选择题)和第Ⅱ卷(非选择题)两部分,共130分,考试用时100分钟。
第l卷1至10页,第Ⅱ卷11至12页。
答卷前,考生务必将自己地姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将解析涂写在答题卡上,答在试卷上地无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意事项:1. 每小题选出解析后,用铅笔将答题卡上对应题目地解析标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他解析标号2. 本卷共55小题,共95分。
第一部分:英语知识运用(共两节,满分45分)第一节;单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处地最佳选项。
例:Stand over there _____________ you'll be able to see it better.A. orB. andC. butD. while解析是B。
1.---I guess you want to go play tennis.---__________. That's exactly what I was thinking too.A. I didn't get itB. It's up to youC. You never knowD. You read my mind2. I __________ to send Peter a gift to congratulate him on his marriage,but I couldn't manage it.A. had hopedB. am hopingC. have hopedD. would hope3. A study shows the students who are engaged in after-school activities are happier than _________who are not.A. onesB. thoseC. theseD. them4.____________ to think critically is an important skill today's children will need for the future.A. LearnB. LearnedC. LearningD. Having learned5.___________ all the problems, several of the players produced excellent performances.A. According toB. Instead ofC. In addition toD. In spite of6.---My son got a full scholarship to his dream university!----Wow, ___________! What's he going to study?A. good for himB. go for itC. what a coincidenceD. all the best7. We can observe that artificial intelligence has already made a(n) ___________on our lives in many ways.A. statementB. impactC. impressionD. judgment8. Amy, as well as her brothers, ____________ a warm welcome when returning to the village last week.A. is givenB. are givenC. was givenD. were given9. Kate heard a man's voice in the background, but she couldn't ___________ what he was saying.A. set asideB. take backC. make outD. keep off10. Most colleges now offer first-year students a course specially ___________ to help them succeed academically and personally.A. designedB. designingC. to designD. being designed11. Their child is at the stage__________ she can say individual words but not full sentences.A. whyB. whereC. whichD. what12. The professor warned tie students that on no account _____________ use mobile phones in his class.A. should theyB. they shouldC. dare theyD. they dare13. Tom is so independent that he never asks his parents' opinion _________ he wants their support.A. sinceB. onceC. unlessD. after14. The workers were not better organized, otherwise they ____________ the task in half the time.A. accomplishedB. had accomplishedC. would accomplishD. would have accomplished15. A dog's eating habit requires regular training before it is ___________ established.A. properlyB. widelyC. originallyD. temporarily第二节:完形填空(共20小题;每小题1. 5分,满分30分)阅读下面短文,掌握其大意,然后从16~35各题所给地A、B、C、D四个选项中,选出最佳选项。
2019 年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试用时 120 分钟。
第Ⅰ卷 1至 2 页,第Ⅱ卷 3 至 5 页。
答卷前, 考生务必将自己的姓名、 准考号填写在答题卡上, 并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共 8 小题,每小题 5 分,共 40 分。
参考公式:· 如果事件 A ,B 互斥,那么 P( A U B) P( A)P( B) .· 圆柱的体积公式· 棱锥的体积公式V Sh ,其中 S 表示圆柱的底面面积, h 表示圆柱的高 .1 VSh ,其中 S 表示棱锥的底面面积, h 表示棱锥的高 .3一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合 A{ 1,1,2,3,5}, B {2,3,4},C { x R |1, x 3} ,则 ( AI C ) U B( A ){2}(B ) {2 , 3}( C ) { - 1, 2, 3}( D ) {1 , 2, 3, 4}x y2 0,x y 2 0,z4x y 的最大值为( 2)设变量 x , y 满足约束条件1, 则目标函数⋯x⋯ 1,y( A )2(B ) 3( C ) 5( D ) 6(3)设x R ,则 “x 5 ”是 “| x 1| 1”的( A )充分而不必要条件( B )必要而不充分条件( C )充要条件(D )既不充分也不必要条件(4)阅读下边的程序框图,运行相应的程序,输出S 的值为( A )5 (B ) 8 ( C) 24 ( D) 29 ( 5)已知a log 2 7, b log 3 8, c 0.30.2,则a,b,c的大小关系为( A )c b a ( B)a b c( c)b c a ( D)c a b( 6)已知抛物线y2 4x 的焦点为F,准线为l.若l与双曲线x2y2 1(a 0, b 0) 的两条渐近线分别a2 b2交于点 A 和点 B,且|AB | 4 | OF |( O 为原点),则双曲线的离心率为( A ) 2 (B ) 3 ( C) 2 ( D) 5( 7)已知函数 f (x) Asin( x )( A 0, 0,| | π) 是奇函数,且 f x 的最小正周期为π,将y f x 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),所得图象对应的函数为g x .π3π若 g 2 ,则 f4 8( A )- 2(B )2( C )2( D ) 22 x, 0 x 1, 1x a(a ( 8)已知函数 f ( x)1 x 1.若关于 x 的方程 f (x) R ) 恰有两个互异的实数解,,4x则 a 的取值范围为( A ) 5 ,9(B ) 5 , 9 ( C ) 5 , 9 U {1}( D ) 5 ,9U {1}4 44 4 4 44 42019 年普通高等学校招生全国统一考试(天津卷)数学(文史类)第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
天津市高考语文真题2023(正文部分)2023年天津市高考语文真题第一卷(选择题共85分)第一部分阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项,并在答题卡上将该项涂黑。
AAt the recent Beijing International Horticultural Exhibition, visitors were charmed and mystified by a playing device drawn by a white donkey. Belfled (身临其境) by the lifelike movements and magical voice of the singing puppet(木偶), thousands forgot that they were at an exhibition and fell into a romantic past.The puppet "maestro" is called Mr. Yang Zhenjun. Born into a family with six generations devoted to wood sculpture(雕刻), it seems that it was destined to be a "wooden" guy. He was taught wood sculpture by his father when young, and at the same time, he learned how to make simple musical instruments. When he was 13, Yang started to learn to make puppet heads from his father, the No. 1 puppet head maker in the area.World Cultural Heritage artisan Yang Zhenjun explained how one had to have skillful carving together with superimposed(重叠) painting to produce puppet faces that faithfully look like human faces. His father went to Beijing to carve and paint the 191 Xuanshan puppet heads in the famous Huguang Guild Hall《胡光岛会馆》. The heads seemed to breathe and had natural expressions, making the puppets come alive on the stage.For 29 years, Yang had traveled and provided over 300 Shadow Puppet(皮影戏) groups with more than 20,000 complete sets and 100,000 single heads which are made of sheepskin with holes cut out to show the different characters. It took him 15 years to make the 191 heads of the story " Shajiabang" alone. The heads and the facial expressions had to be very crisp and sharp.Last month, at the Beijing International Horticultural Exhibition, Yang took his work to the pavilion of Hebei Province.21. What does the underlined word “Belfled”in the first paragraph most probably mean?A. Satisfied.B. Spontaneous.C. Confused.D. Surprised.22. How many years did Yang Zhenjun's father take to accomplish the 191 Xuanshan puppet heads?A. 13.B. 15.C. 29.D. 35.23. How many complete sets of Shadow Puppet did Yang provide in total?A. Over 300.B. Over 15.C. Over 29.D. Over 191.BKnowing how much something is going to cost is a big part of any purchase decision. That’s especially true for larger things like a new houseor car. My son has been asking me to give him some driving lessons recently so he can get his driver’s license(驾照). I told him that I would be willing to do that as long as he paid for the gas(汽油) that we would use. That’s when he asked me how much it wou ld cost to fill up the car’s gas tank.I had no idea. For the entire time I have had the car, I’ve never paid attention to how much gas were would put in during each 10, 20, or even 50 miles of driving. I guessed we could look at the car’s user manual or o n the manufacturer’s website to see if we couldn’t find out. But we didn’t end up finding the answer that way.Instead, we waited until the car was almost out of gas before we drove to a gas station to fill up. We chose a station where the prices are clearly posted(公布的). My son only had a twenty-dollar bil(美元纸币), so I had to pay for the gas myself. I noted how much the cost was and kept thereceipt(发票).Back at home, I recorded the amount of gas the car had used accordingto the number of miles it showed on the dashboard(仪表盘). I needed to find out at least the rate(费率) we use the gasoline. If I recorded that information each time we filled up the tank and how much the tank had transferred(流逝), then I would be able to figure out how much each mile cost.Look ing at it like that, I don’t understand how I never noticed it before. Having paid for the car myself, and paying repair bills when accidentshappened, I had paid enough money already. I should find out how much I was spending on gas!24. What does the aut hor mean when he says he “had paid enough money already”?A. He is tired of paying for car repairs.B. He already knows how much car repairs cost.C. He has not paid much for the car.D. He wants to calculate how much he spends on gas.25. Why did the author record the amount of gas used according to the number of miles on the dashboard?A. To find the best gas station.B. To figure out how much each mile cost.C. To save money.D. To see how often they would need to fill up the tank.26. What is the purpose of this article?A. To explain how to save money by driving less.B. To persuade readers to buy a new car.C. To encourage readers to learn to drive.D. To illustrate a lesson learned about car expenses.(剩余正文内容超出字数限制,请见谅。
2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4 B. {}2,3,4 C. {}2,4 D. {}12. 设,a b ÎR ,则“33a b =”是“33a b =”( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 下列图中,相关性系数最大的是( )的获取更多高中资料关注公众号:网盘网课资源A. B.C. D.4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c>> B. b a c>> C. c a b>> D. b c a>>6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.328. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为().A.B.12+C.D.12-第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.11. 在63333x xæö+ç÷èø展开式中,常数项为______.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.13. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.14. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.15. 若函数()21f x ax =--+有唯一零点,则a 取值范围为______.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤的的16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.的2024年普通高等学校招生全国统一考试(天津卷)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至3页,第Ⅱ卷4至6页.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷(选择题)注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共9小题,每小题5分,共45分.参考公式:·如果事件A B ,互斥,那么()()()P A B P A P B =+U .·如果事件A B ,相互独立,那么()()()P AB P A P B =.·球的体积公式34π3V R =,其中R 表示球的半径.·圆锥的体积公式13V Sh=,其中S 表示圆锥的底面面积,h 表示圆锥的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 集合{}1,2,3,4A =,{}2,3,4,5B =,则A B =I ( )A. {}1,2,3,4B. {}2,3,4 C. {}2,4 D. {}1【答案】B 【解析】【分析】根据集合交集的概念直接求解即可.【详解】因为集合{}1,2,3,4A =,{}2,3,4,5B =,所以{}2,3,4A B =I ,获取更多高中资料关注公众号:网盘网课资源2. 设,a b ÎR ,则“33a b =”是“33a b =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】C 【解析】【分析】说明二者与同一个命题等价,再得到二者等价,即是充分必要条件.【详解】根据立方的性质和指数函数的性质,33a b =和33a b =都当且仅当a b =,所以二者互为充要条件.故选:C.3. 下列图中,相关性系数最大的是( )A. B.C. D.【答案】A 【解析】【分析】由点的分布特征可直接判断【详解】观察4幅图可知,A 图散点分布比较集中,且大体接近某一条直线,线性回归模型拟合效果比较好,呈现明显的正相关,r 值相比于其他3图更接近1.故选:A4. 下列函数是偶函数的是( )A. 22e 1x x y x -=+ B. 22cos 1x x y x +=+ C. e 1x xy x -=+ D. ||sin 4e x x x y +=【答案】B【分析】根据偶函数的判定方法一一判断即可.【详解】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -¹,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ¹-,不关于原点对称, 则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x j +=,函数定义域为R ,因为()sin141e j +=,()sin141ej ---=,则()()11j j ¹-,则()x j 不是偶函数,故D 错误.故选:B.5. 若0.30.3 4.24.2 4.2log 0.2a b c -===,,,则a b c ,,的大小关系为( )A. a b c >>B. b a c>> C. c a b>> D. b c a>>【答案】B 【解析】【分析】利用指数函数和对数函数的单调性分析判断即可.【详解】因为 4.2x y =在R 上递增,且0.300.3-<<,所以0.300.30 4.2 4.2 4.2-<<<,所以0.30.30 4.21 4.2-<<<,即01a b <<<,因为 4.2log y x =在(0,)+¥上递增,且00.21<<,所以 4.2 4.2log 0.2log 10<=,即0c <,所以b a c >>,故选:B6. 若,m n 为两条不同的直线,a 为一个平面,则下列结论中正确的是( )A. 若//m a ,n Ìa ,则//m nB. 若//,//m n a a ,则//m nC. 若//,a a ^m n ,则m n ^D. 若//,a a ^m n ,则m 与n 相交【答案】C 【解析】【分析】根据线面平行的性质可判断AB 的正误,根据线面垂直的性质可判断CD 的正误.【详解】对于A ,若//m a ,n Ìa ,则,m n 平行或异面,故A 错误.对于B ,若//,//m n a a ,则,m n 平行或异面或相交,故B 错误.对于C ,//,a a ^m n ,过m 作平面b ,使得s b a =I ,因为m b Ì,故//m s ,而s a Ì,故n s ^,故m n ^,故C 正确. 对于D ,若//,a a ^m n ,则m 与n 相交或异面,故D 错误.故选:C .7. 已知函数()()πsin303f x x w w æö=+>ç÷èø的最小正周期为π.则函数在ππ,126éù-êúëû的最小值是( )A. B. 32-C. 0D.32【答案】A 【解析】【分析】先由诱导公式化简,结合周期公式求出w ,得()sin2f x x =-,再整体求出,126éùÎ-êúëûππx 时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】()()πsin3sin 3πsin 33f x x x x w w w æö=+=+=-ç÷èø,由2ππ3T w==得23w =,即()sin2f x x =-,当,126éùÎ-êúëûππx 时,ππ2,63x éùÎ-êúëû,画出()sin2f x x =-图象,如下图,由图可知,()sin2f x x =-在ππ,126éù-êúëû上递减,所以,当π6x =时,()min πsin 3f x =-=故选:A8. 双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A. 22182y x -= B. 22184x y -= C. 22128x y -= D. 22148x y -=【答案】C 【解析】【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【详解】如下图:由题可知,点P 必落在第四象限,1290F PF Ð=°,设2PF m =,211122,PF F PF F q q Ð=Ð=,由21tan 2PF k q ==,求得1sin q =,因为1290F PF Ð=°,所以121PF PF k k ×=-,求得112PF k =-,即21tan 2q =,2sin q =,由正弦定理可得:121212::sin :sin :sin 902PF PF F F q q =°=,则由2PF m =得1122,2PF m F F c ===,由1212112822PF F S PF PF m m =×=×=V 得m =,则2122PF PF F c c =====由双曲线第一定义可得:122PF PF a -==a b ===所以双曲线的方程为22128x y -=.故选:C9. 一个五面体ABC DEF -.已知AD BE CF ∥∥,且两两之间距离为1.并已知123AD BE CF ===,,.则该五面体的体积为( )A.B.12+ C.D.12-【答案】C 【解析】【分析】采用补形法,补成一个棱柱,求出其直截面,再利用体积公式即可.【详解】用一个完全相同的五面体HIJ LMN -(顶点与五面体ABC DEF -一一对应)与该五面体相嵌,使得,D N ;,E M ;,F L 重合,因为AD BE CF ∥∥,且两两之间距离为1.1,2,3AD BE CF ===,则形成的新组合体为一个三棱柱,该三棱柱的直截面(与侧棱垂直的截面)为边长为1的等边三角形,侧棱长为1322314+=+=+=,212111142ABC DEF ABC HIJ V V --==´´´=.故选:C.第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上.2.本卷共11小题,共105分.二、填空题:本大题共6小题,每小题5分,共30分.试题中包含两个空的,答对1个的给3分,全部答对的给5分.10. 已知i是虚数单位,复数))i 2i +×-=______.【答案】7【解析】【分析】借助复数的乘法运算法则计算即可得.【详解】))i 2i 527+×-=+-+=-.故答案为:7-.11. 在63333x xæö+ç÷èø的展开式中,常数项为______.【答案】20【解析】【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x æö+ç÷èø的展开式的通项为()63636216633C 3C ,0,1,,63rrr r r r r x T xr x ---+æöæö===×××ç÷ç÷èøèø,令()630r -=,可得3r =,所以常数项为0363C 20=.故答案为:20.12. 22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为______.【答案】45##0.8【解析】【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【详解】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y xì-+=ïí=ïî可得22240x x +-=,故4x =或6x =-(舍),故()4,4A ±,故直线()4:13AF y x =±-即4340x y --=或4340x y +-=,故原点到直线AF 的距离为4455d ==,故答案为:4513. ,,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.(1)甲选到A 的概率为______;已知乙选了A 活动,他再选择B 活动的概率为______.【答案】 ①.35②. 12【解析】【分析】结合列举法或组合公式和概率公式可求甲选到A 的概率;采用列举法或者条件概率公式可求乙选了A 活动,他再选择B 活动的概率.【详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE ,共10种情况,其中甲选到A 有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,则甲选到A 得概率为:63105P ==;乙选A 活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE ,其中再选则B 有3种可能性:,,ABC ABD ABE ,故乙选了A 活动,他再选择B 活动的概率为31=62.解法二:设甲、乙选到A 为事件M ,乙选到B 为事件N ,则甲选到A 的概率为()2435C 3C 5P M ==;乙选了A 活动,他再选择B 活动的概率为()()()133524351C 2C C P MN C P N M P M ===故答案为:35;1214. 在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点, 1,2CE DE BE BA BC ==+uur uur uuu r l m ,则l m +=______;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ×uuu r uuur的最小值为______.【答案】 ①.43②. 518-【解析】【分析】解法一:以{},BA BC uuu r uuu r 为基底向量,根据向量的线性运算求BE uuu r,即可得l m +,设BF BE k =uuu r uur ,求,AF DG uuu r uuu r ,结合数量积的运算律求AF DG ×uuu r uuur 的最小值;解法二:建系标点,根据向量的坐标运算求BE uuu r,即可得l m +,设()1,3,,03F a a a éù-Î-êúëû,求,AF DG uuu r uuu r ,结合数量积的坐标运算求AF DG ×uuu r uuur 的最小值.【详解】解法一:因为12CE DE =,即23CE BA =uur uur ,则13BE BC CE BA BC =+=+uuu r uur u uu ur r uuu r ,可得1,13l m ==,所以43l m +=;由题意可知:1,0BC BA BA BC ==×=uuu r uuu r uuu r uuu r,因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+Îuuu r uuu r uuu r uuu r,则113AF AB BF AB k BE k BA k BC æö=+=+=-+ç÷èøuuu r uuu r uuu r uuu r uuu r uuur uuu r ,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC æöæö=+=-+=-+-ç÷ç÷èøèøuuur uuu r uuu r uuu r uuu r uuu r uuur ,可得11111113232AF DG k BA k BC k BA k BC éùéùæöæöæö×=-+×-+-ç÷ç÷ç÷êúêúèøèøèøëûëûuuu r uuur uuu r uuu ruuu r uuur22111563112329510k k k k æöæöæö=-+-=--ç÷ç÷ç÷èøèøèø,又因为[]0,1k Î,可知:当1k =时,AF DG ×uuu r uuur取到最小值518-;解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E æö---ç÷èø,可得()()11,0,0,1,,13BA BC BE æö=-==-ç÷èøuuu r uuu r uuu r ,因为(),BE BA BC l m l m =+=-uuu r uuu r uuu r ,则131l m ì-=-ïíï=î,所以43l m +=;因为点F 在线段1:3,,03BE y x x éù=-Î-êúëû上,设()1,3,,03F a a a éù-Î-êúëû,且G 为AF 中点,则13,22a G a -æö-ç÷èø,可得()131,3,,122a AF a a DG a +æö=+-=--ç÷èøuuu r uuur ,则()()22132331522510a AF DG a a a +æöæö×=+---=+-ç÷ç÷èøèøuuu r uuur ,且1,03a éùÎ-êúëû,所以当13a =-时,AF DG ×uuu r uuur 取到最小值为518-;故答案为:43;518-.15. 若函数()21f x ax =--+有唯一零点,则a 的取值范围为______.【答案】()(1-È【解析】【分析】结合函数零点与两函数的交点的关系,构造函数()g x =与()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî,则两函数图象有唯一交点,分0a =、0a >与0a <进行讨论,当0a >时,计算函数定义域可得x a ³或0x £,计算可得(]0,2a Î时,两函数在y 轴左侧有一交点,则只需找到当(]0,2a Î时,在y 轴右侧无交点的情况即可得;当0a <时,按同一方式讨论即可得.【详解】令()0f x =,即21ax =--,由题可得20x ax -³,当0a =时,x ÎR,有211=--=,则x =±当0a >时,则23,2121,ax x a ax x a ì-³ïï--=íï-<ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-³ïï=íï-<ïî有唯一交点,由20x ax -³,可得x a ³或0x £,当0x £时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =时,即410x +=,即14x =-,当()0,2a Î,12x a =-+或102x a=>-(正值舍去),当()2,a Î+¥时,102x a =-<+或102x a=<-,有两解,舍去,即当(]0,2a Î时,210ax --+=在0x £时有唯一解,则当(]0,2a Î时,210ax --+=在x a ³时需无解,当(]0,2a Î,且x a ³时,由函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在12,a a æöç÷èø上单调递减,在23,a a æöç÷èø上单调递增,令()g x y ==,即2222142a x y a a æö-ç÷-ø=è,故x a ³时,()g x 图象为双曲线()222214y x a a -=右支的x 轴上方部分向右平移2a 所得,由()222214y x a a-=的渐近线方程为22a y x x a =±=±,即()g x 部分的渐近线方程为22a y x æö=-ç÷èø,其斜率为2,又(]0,2a Î,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a ³时的斜率(]0,2a Î,令()0g x ==,可得x a =或0x =(舍去),且函数()g x 在(),a +¥上单调递增,故有13a aa a ì<ïïíï>ïî,解得1a <<,故1a <<符合要求;当a<0时,则23,2121,ax x a ax x a ì-£ïï--=íï->ïî,即函数()g x =与函数()23,21,ax x a h x ax x a ì-£ïï=íï->ïî有唯一交点,由20x ax -³,可得0x ³或x a £,当0x ³时,则20ax -<,则211ax ax =--=-,即()22441x ax ax -=-,整理得()()()2242121210a xax a x a x éùéù---=++--=ëûëû,当2a =-时,即410x -=,即14x =,当()2,0a Î-,102x a =-<+(负值舍去)或102x a=-,当(),2a Î-¥时,102x a =->+或102x a=>-,有两解,舍去,即当[)2,0a Î-时,210ax --+=在0x ³时有唯一解,则当[)2,0a Î-时,210ax --+=在x a £时需无解,当[)2,0a Î-,且x a £时,由函数()23,21,ax x ah x ax x a ì-£ïï=íï->ïî关于2x a =对称,令()0h x =,可得1x a =或3x a =,且函数()h x 在21,a a æöç÷èø上单调递减,在32,a a æöç÷èø上单调递增,同理可得:x a £时,()g x 图象为双曲线()222214y x a a -=左支的x 轴上方部分向左平移2a 所得,()g x 部分渐近线方程为22a y x æö=-+ç÷èø,其斜率为2-,又[)2,0a Î-,即()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî在2x a <时的斜率[)2,0a Î-,令()0g x ==,可得x a =或0x =(舍去),的且函数()g x 在(),a -¥上单调递减,故有13a aa aì>ïïíï<ïî,解得1a <<-,故1a <<-符合要求;综上所述,()(1a Î-U .故答案:()(1-È.【点睛】关键点点睛:本题关键点在于将函数()f x 的零点问题转化为函数()g x =与函数()23,21,ax x ah x ax x a ì-³ïï=íï-<ïî的交点问题,从而可将其分成两个函数研究.三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤16. 在ABC V 中,92cos 5163a Bbc ===,,.(1)求a ;(2)求sin A ;(3)求()cos 2B A -.【答案】(1)4 (2(3)5764【解析】【分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【小问1详解】设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,为即229254922316t t t t =+-´´´,解得2t =(负舍);则4,6a c ==.【小问2详解】法一:因为B为三角形内角,所以sin B ===,再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos22564bc a A bc +-+-===´´,因为()0,πA Î,则sin A ==小问3详解】法一:因为9cos 016B =>,且()0,πB Î,所以π0,2B æöÎç÷èø,由(2)法一知sin B =,因为a b <,则A B <,所以3cos 4A ==,则3sin 22sin cos 24A A A ===,2231cos 22cos 12148A A æö=-=´-=ç÷èø()1957cos 2cos cos 2sin sin 281664B A B A B A -=+=´+=.法二:3sin 22sin cos 24A A A ===,则2231cos 22cos 12148AA æö=-=´-=ç÷èø,因为B 为三角形内角,所以sinB ===所以()9157cos 2cos cos 2sin sin 216864B A B A B A -=+=´=【17. 已知四棱柱1111ABCD A B C D -中,底面ABCD 为梯形,//AB CD ,1A A ^平面ABCD ,AD AB ^,其中12,1AB AA AD DC ====.N 是11B C 的中点,M 是1DD 的中点.(1)求证1//D N 平面1CB M ;(2)求平面1CB M 与平面11BB CC 的夹角余弦值;(3)求点B 到平面1CB M 的距离.【答案】(1)证明见解析(2(3【解析】【分析】(1)取1CB 中点P ,连接NP ,MP ,借助中位线的性质与平行四边形性质定理可得1N//D MP ,结合线面平行判定定理即可得证;(2)建立适当空间直角坐标系,计算两平面的空间向量,再利用空间向量夹角公式计算即可得解;(3)借助空间中点到平面的距离公式计算即可得解.【小问1详解】取1CB 中点P ,连接NP ,MP ,由N 是11B C 的中点,故1//NP CC ,且112NP CC =,由M 是1DD 的中点,故1111122D M DD CC ==,且11//D M CC ,则有1//D M NP 、1D M NP =,故四边形1D MPN 是平行四边形,故1//D N MP ,又MP Ì平面1CB M ,1D N Ë平面1CB M ,故1//D N 平面1CB M ;【小问2详解】以A 为原点建立如图所示空间直角坐标系,有()0,0,0A 、()2,0,0B 、()12,0,2B 、()0,1,1M 、()1,1,0C 、()11,1,2C ,则有()11,1,2CB =-uuur 、()1,0,1CM =-uuuu r 、()10,0,2BB =uuur,设平面1CB M 与平面11BB CC 的法向量分别为()111,,m x y z =r 、()222,,n x y z =r,则有111111200m CB x y z m CM x z ì×=-+=ïí×=-+=ïîuuur r uuuu r r ,1222122020n CB x y z n BB z ì×=-+=ïí×==ïîuuur r uuur r ,分别取121x x ==,则有13y =、11z =、21y =,20z =,即()1,3,1m =r 、()1,1,0n =r,则cos ,m =r ,故平面1CB M 与平面11BB CC;【小问3详解】由()10,0,2BB =uuur ,平面1CB M 的法向量为()1,3,1m =r,=即点B 到平面1CB M.18. 已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △.(1)求椭圆方程.(2)过点30,2æö-ç÷èø的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ×£uur uuu r 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)221129x y +=(2)存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【解析】【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:32y kx =-,()()()1122,,,,0,P x y Q x y T t , 联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用,k t 表示TP TQ ×uur uuu r,再根据0TP TQ ×£uur uuu r 可求t 的范围.【小问1详解】因为椭圆的离心率为12e =,故2a c =,b =,其中c 为半焦距,所以()()2,0,0,,0,A c B C æ-ççè,故122ABC S c =´=△故c =a =,3b =,故椭圆方程为:221129x y +=.【小问2详解】若过点30,2æö-ç÷èø的动直线的斜率存在,则可设该直线方程为:32y kx =-,设()()()1122,,,,0,P x y Q x y T t ,由22343632x y y kx ì+=ïí=-ïî可得()223412270k x kx +--=,故()222Δ144108343245760k kk=++=+>且1212221227,,3434k x x x x k k +==-++而()()1122,,,TP x y t TQ x y t =-=-uur uuu r,故()()121212123322TP TQ x x y t y t x x kx t kx t æöæö×=+--=+----ç÷ç÷èøèøuur uuu r ()()22121233122kx x k t x x t æöæö=+-++++ç÷ç÷èøèø()22222731231342342k k k t t k k æöæöæö=+´--+´++ç÷ç÷ç÷++èøèøèø()2222222327271812332234k k k t t t k k æö----++++ç÷èø=+()22223321245327234t t k t k æöéù+--++-ç÷ëûèø=+,因为0TP TQ ×£uur uuu r 恒成立,故()223212450332702t t t ì+--£ïíæö+-£ïç÷èøî,解得332t -££.若过点30,2æö-ç÷èø的动直线的斜率不存在,则()()0,3,0,3P Q -或()()0,3,0,3P Q -,此时需33t -££,两者结合可得332t -££.综上,存在()30,32T t t æö-££ç÷èø,使得0TP TQ ×£uur uuu r 恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.19. 已知数列{}n a 是公比大于0的等比数列.其前n 项和为n S .若1231,1a S a ==-.(1)求数列{}n a 前n 项和n S ;(2)设11,2,kn n k k k n a b b k a n a -+=ì=í+<<î,11b =,其中k 是大于1的正整数.(ⅰ)当1k n a +=时,求证:1n k n b a b -³×;(ⅱ)求1nS i i b =å.【答案】(1)21n n S =- (2)①证明见详解;②()131419nn S ii n b=-+=å【解析】【分析】(1)设等比数列{}n a 的公比为0q >,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知12,1k k n a b k -==+,()121n k k b -=-,利用作差法分析证明;②根据题意结合等差数列求和公式可得()()1211213143449k k k k i i b k k ---=éù=---ëûå,再结合裂项相消法分析求解.【小问1详解】设等比数列{}n a 的公比为0q >,因为1231,1a S a ==-,即1231a a a +=-,可得211q q +=-,整理得220q q --=,解得2q =或1q =-(舍去),所以122112nn n S -==--.【小问2详解】(i )由(1)可知12n n a -=,且N*,2k k γ,当124kk n a +=³=时,则111221111k k k k k a n n a a -++ì=<-=-í-=-<î,即11k k a n a +<-<可知12,1k k n a b k -==+,()()()1111222121k k k n a k k b b a a k k k k --+=+--×=+-=-,可得()()()()1112112122120kn k n k k k k k k k k b k a b ---=--+=--³--=-׳-,当且仅当2k =时,等号成立,所以1n k n b a b -³×;(ii )由(1)可知:1211nn n S a +=-=-,若1n =,则111,1S b ==;若2n ³,则112k k k a a -+-=,当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列,可得()()()111211112221122431434429k k k k k k k k i i b k kk k k -------=-éù=×+=×=---ëûå,所以()()()232113141115424845431434499nnS n n i i n b n n -=-+éù=+´-´+´-´+×××+---=ëûå,且1n =,符合上式,综上所述:()131419nn S ii n b=-+=å.【点睛】关键点点睛:1.分析可知当1221k k i -<£-时,12i i b b k --=,可知{}i b 为等差数列;2.根据等差数列求和分析可得()()1211213143449k k k k i i b k k ---=éù=---ëûå.20. 设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处切线方程;(2)若()(f x a x ³在()0,x ¥Î+时恒成立,求a 的取值范围;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.【答案】(1)1y x =- (2){}2(3)证明过程见解析【解析】【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a =,再证明2a =时条件满足;(3)先确定()f x 的单调性,再对12,x x 分类讨论.【小问1详解】的由于()ln f x x x =,故()ln 1f x x =¢+.所以()10f =,()11f ¢=,所以所求的切线经过()1,0,且斜率为1,故其方程为1y x =-.【小问2详解】设()1ln h t t t =--,则()111t h t t t¢-=-=,从而当01t <<时()0h t ¢<,当1t >时()0h t ¢>.所以()h t 在(]0,1上递减,在[)1,+¥上递增,这就说明()()1h t h ³,即1ln t t -³,且等号成立当且仅当1t =.设()()12ln g t a t t =--,则()((ln 12ln f x a x x x a x x a x g æö--=-=-=×ç÷øè.当()0,x ¥Î+的取值范围是()0,¥+,所以命题等价于对任意()0,t ¥Î+,都有()0g t ³.一方面,若对任意()0,t ¥Î+,都有()0g t ³,则对()0,t ¥Î+有()()()()112012ln 12ln 1212g t a t t a t a t at a t t t æö£=--=-+£-+-=+--ç÷èø,取2t =,得01a £-,故10a ³>.再取t =,得2022a a a £+-=-=-,所以2a =.另一方面,若2a =,则对任意()0,t ¥Î+都有()()()212ln 20g t t t h t =--=³,满足条件.综合以上两个方面,知a 的取值范围是{}2.【小问3详解】先证明一个结论:对0a b <<,有()()ln 1ln 1f b f a a b b a-+<<+-.证明:前面已经证明不等式1ln t t -³,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a --=+=+<+---,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a bbæö---ç÷--èø=+=+>+=+----,所以ln ln ln 1ln 1b b a aa b b a -+<<+-,即()()ln 1ln 1f b f a a b b a-+<<+-.由()ln 1f x x =¢+,可知当10ex <<时()0f x ¢<,当1e x >时()0f x ¢>.所以()f x 在10,eæùçúèû上递减,在1e ,éö+¥÷êëø上递增.不妨设12x x £,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x ££<时,有()()()()()()122122121ln 1f x f x f x f x x x x x x -=-<+-<-<情况二:当1210ex x <££时,有()()()()12121122ln ln f x f x f x f x x x x x -=-=-.对任意的10,e c æùÎçúèû,设()ln ln x x x c c j =--()ln 1x x j =+¢.由于()x j ¢单调递增,且有11110j =+<+=-+=¢,且当2124ln 1x c c ³-æö-ç÷èø,2cx >2ln 1c ³-可知()2ln 1ln 1ln 102c x x c j æö=+>++=-³ç÷èø¢.所以()x j ¢在()0,c 上存在零点0x ,再结合()x j ¢单调递增,即知00x x <<时()0x j ¢<,0x x c <<时()0x j ¢>.故()x j 在(]00,x 上递减,在[]0,x c 上递增.①当0x x c ££时,有()()0x c j j £=;②当00x x <<112221e e f f cæö=-£-=<ç÷èø,故我们可以取1,1q c öÎ÷ø.从而当201cx q <<->()1ln ln ln ln 0x x x c c c c c c q cj ö=-<-<--=-<÷ø.再根据()x j 在(]00,x 上递减,即知对00x x <<都有()0x j <;综合①②可知对任意0x c <£,都有()0x j £,即()ln ln 0x x x c c j =--£.根据10,ec æùÎçúèû和0x c <£的任意性,取2c x =,1x x =,就得到1122ln ln 0x x x x -£.所以()()()()12121122ln ln f x f x f x f x x x x x -=-=-£.情况三:当12101ex x <££<时,根据情况一和情况二讨论,可得()11e f x f æö-££ç÷èø,()21e f f x æö-££ç÷èø而根据()f x 的单调性,知()()()1211e f x f x f x f æö-£-ç÷èø或()()()1221e f x f xf f x æö-£-ç÷èø.故一定有()()12f x f x -£成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合()f x 的单调性进行分类讨论.的。
一般高等学校招生全国统一考试(天津卷)理科综合物理部分第Ⅰ卷一、单项选择题(每题6分,共30分。
每题给出旳四个选项中,只有一种选项是对旳旳)1.质点做直线运动旳速度—时间图象如图所示,该质点()A.在第1秒末速度方向发生了变化B.在第2秒末加速度方向发生了变化C.在前2秒内发生旳位移为零D.第3秒末和第5秒末旳位置相似2.如图所示,电路中R1、R2均为可变电阻,电源内阻不能忽视,平行板电容器C旳极板水平放置。
闭合开关S,电路到达稳定期,带电油滴悬浮在两板之间静止不动。
假如仅变化下列某一种条件,油滴仍能静止不动旳是()A.增大R1旳阻值B.增大R2旳阻值C.增大两板间旳距离D.断开开关S3.研究表明,地球自转在逐渐变慢,3亿年前地球自转旳周期约为22小时。
假设这种趋势会持续下去,地球旳其他条件都不变,未来人类发射旳地球同步卫星与目前旳相比()A.距地面旳高度变大B.向心加速度变大C.线速度变大D.角速度变大4.如图所示,平行金属板A、B水平正对放置,分别带等量异号电荷。
一带电微粒水平射入板间,在重力和电场力共同作用下运动,轨迹如图中虚线所示,那么()A.若微粒带正电荷,则A板一定带正电荷B.微粒从M点运动到N点电势能一定增长C.微粒从M点运动到N点动能一定增长D.微粒从M点运动到N点机械能一定增长5.平衡位置处在坐标原点旳波源S在y轴上振动,产生频率为50Hz旳简谐横波向x轴正、负两个方向传播,波速均为100m/s。
平衡位置在x轴上旳P、Q两个质点随波源振动着,P、Q旳x轴坐标分别为x P=3.5m、x Q=-3 m。
当S位移为负且向-y方向运动时,P、Q两质点旳()A.位移方向相似、速度方向相反B.位移方向相似、速度方向相似C.位移方向相反、速度方向相反D.位移方向相反、速度方向相似二、不定项选择题(每题6分,共18分。
每题给出旳四个选项中,均有多种选项是对旳旳。
所有选对旳得6分,选对但不全旳得3分,选错或不答旳得0分)6.下列说法对旳旳是()A.玻尔对氢原子光谱旳研究导致原子旳核式构造模型旳建立B.可运用某些物质在紫外线照射下发出荧光来设计防伪措施C.天然放射现象中产生旳射线都能在电场或磁场中发生偏转D.观测者与波源互相远离时接受到波旳频率与波源频率不一样7.如图1所示,在匀强磁场中,一矩形金属线圈两次分别以不一样旳转速,绕与磁感线垂直旳轴匀速转动,产生旳交变电动势图象如图2中曲线a、b所示,则()A.两次t=0时刻线圈平面均与中性面重叠B.曲线a、b对应旳线圈转速之比为2∶3C.曲线a表达旳交变电动势频率为25 HzD.曲线b表达旳交变电动势有效值为10 V8.一束由两种频率不一样旳单色光构成旳复色光从空气射入玻璃三棱镜后,出射光提成a、b两束,如图所示,则a、b两束光()A.垂直穿过同一块平板玻璃,a光所用旳时间比b光长B.从同种介质射入真空发生全反射时,a光顾界角比b光旳小C.分别通过同一双缝干涉装置,b光形成旳相邻亮条纹间距小D.若照射同一金属都能发生光电效应,b光照射时逸出旳光电子最大初动能大第Ⅱ卷注意事项:本卷共4题,共72分。
绝密★启用前2024年普通高等学校招生全国统一考试(天津卷)英语笔试(第二次)本试卷分为第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分,共130分,考试用时100分钟。
第Ⅰ卷1至7页,第Ⅰ卷8至9页。
答卷前,考生务必将自己的姓名、考生号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I卷注意事项:1. 每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2. 本卷共55小题,共95分。
第一部分:英语知识运用(共两节,满分45分)第一节:单项填空(共15小题;每小题1分,满分15分)从A、B、C、D 四个选项中,选出可以填入空白处的最佳选项。
例:Stand over there ______ you’ll be able to see it better.A.orB. andC. butD. while答案是B。
1.第1小题缺。
2.第2小题缺。
3.When he went out of his way to help me, I told him how ______ I was for his assistance.A.sensitiveB. annoyedC. reliableD. grateful4. From the first explorers to today’s travellers, humans have always had a desire ______ new places.A. to discoverB. to be discoveringC. to be discoveredD. to have discovered5. Spring Festival is a time of good cheer in the ______ of family and friends.A. companyB. absenceC. shapeD. attempt6. This online course ______ , but you can still access and use the original version.A. has updatedB. had updatedC. has been updatedD. had been updated7. 第7小题缺。
天津高考试题及答案语文试题及答案一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)1. 下列关于原文内容的理解和分析,正确的一项是(3分) - A. 正确选项- B. 错误选项- C. 错误选项- D. 错误选项答案:A2. 关于原文论证的相关分析,不正确的一项是(3分)- A. 正确选项- C. 错误选项- D. 错误选项答案:B3. 根据原文内容,下列说法不正确的一项是(3分)- A. 正确选项- B. 错误选项- C. 错误选项- D. 错误选项答案:D(二)实用类文本阅读(本题共3小题,12分)4. 下列对材料相关内容的理解和分析,不正确的一项是(4分) - A. 正确选项- C. 错误选项- D. 错误选项答案:B5. 下列对材料相关内容的概括和分析,正确的一项是(4分) - A. 正确选项- B. 错误选项- C. 错误选项- D. 错误选项答案:A6. 根据材料,下列对“XX”的理解,不正确的一项是(4分) - A. 正确选项- B. 错误选项- C. 错误选项答案:D(三)文学类文本阅读(本题共3小题,15分)7. 下列对小说相关内容和艺术特色的分析鉴赏,不正确的一项是(5分)- A. 正确选项- B. 错误选项- C. 错误选项- D. 错误选项答案:B8. 小说中“XX”的细节描写有哪些作用?请结合作品简要分析。
(6分)答案:- 作用一:细节描写增强了人物形象的立体感。
- 作用二:细节描写深化了主题的表达。
- 作用三:细节描写丰富了情感的层次。
9. 小说以“XX”为标题,有怎样的意图?请结合全文进行分析。
(4分)答案:- 意图一:标题体现了小说的核心主题。
- 意图二:标题暗示了人物的命运或性格。
- 意图三:标题激发读者的阅读兴趣。
二、古代诗文阅读(34分)(一)文言文阅读(本题共5小题,20分)10. 下列对文中画波浪线部分的断句,正确的一项是(3分)- A. 正确选项- C. 错误选项- D. 错误选项答案:A11. 下列对文中加点词语的相关内容的解说,不正确的一项是(3分)- A. 正确选项- B. 错误选项- C. 错误选项- D. 错误选项答案:B12. 下列对原文有关内容的概括和分析,不正确的一项是(3分)- A. 正确选项- B. 错误选项- D. 错误选项答案:D13. 把文中画横线的句子翻译成现代汉语。
2023天津高考英语真题及答案解析(word)2023天津高考英语真题及答案解析(word)2023天津高考英语难度一般,单选题难度不变,传统考点(从句、时态、非谓语等)仍是重点。
以下是关于2023天津高考英语真题及答案解析的相关内容,供大家参考!2023年一般高等学校招生全国统一考试(天津卷)英语一、单项选择1.—I worked on your car the whole night. How is it running?— It is running great! . You were such a big help!A. Its a pityB.I couldnt agree moreC. Forget itD.I can hardly thank you enough2. Food and medical supplies to all the residents after the hurricane last Sunday.A. distributeB. distributedC. are distributedD. were distributed3. we achieve great success in our work, we should not betoo proud.A. Ever sinceB. Even ifC. In caseD. As though4. gardening may be hard physical work, those who love it find it very relaxing mentally.A. AlthoughB. OnceC. SinceD. Unless5. Critical reasoning, together with problem-solving, teenagers to make better decisions.A. prepareB. preparesC. is preparingD. are preparing6. his restless students occupied with an indoor sport on rainy days, James Naismith created basketball.A. To be keptB. KeptC. To keepD. Keeping7. The children failed to hide their disappointment when they found out the school the party.A. cancelsB. will cancelC. has cancelledD. had cancelled8. When people are depressed, some experience a loss of while others cant stop eating.A. appetiteB. powerC. memoryD. sight9. The city temperatures have returned from record low to normal, the citizens to enjoy the outdoors again.A. allowingB. being allowedC. having allowedD. having been allowed10. The experienced climber was the potential danger in such extreme weather and decided to wait until the following day.A. completely blind toB. totally lost inC. pretty keen onD. well aware of11. Mental health involves you procees things such as stress and anxiety.A. howB. whatC. whyD. which12.Im far and I ll never get this report done by Friday.A. below surfaceB. beyond controlC. behind scheduleD. above average13. If we continue to environmental problems, we will regret it sooner or later.A. highlightB. identifyC. ignoreD. prevent14.—Angela just doesnt like me. She wont even say hello.— . Actually, shes very shy.A.I have no ideaB. Dont jump to conclusionsC. Dont mention itD. There is no doubt about it15. Guide books are prepared to suit the convenience of the traveler, routes round a city or a site are often suggested.A. for whichB. with whichC. for whomD. with whom二、完形填空When I was in sixth grade, I joined the band pro-gram to learn to play the clarinet(单簧管). The beginning of the year had gone_1_. But as most students progressed, I seemed to fall behind. One day. when my teacher told us to play in front of the other students, I was filled with fear. I knew I would_2_. When I began to play, my rhythms(节奏) were good, but my tone was another_3_.“ Did you practice your les-son?” the teacher barked at me. I felt so_4_and my world came_5_down in an instant.From then on, I hated playing the clarinet and I kept getting_6_. With the day of the new performance approaching,I grew increasingly upset. In a moment of_7__,I asked for sickleave. It was so relieving and such a(n)_8_way out.The avoidance of my lessons continued until my mum asked me abo ut it. “I want to quit.” My tears started_9_.“ If you really want to quit, why are you crying?” asked mum. She_10_and I realized I wanted to stay in band and, by not facing my fears, I had created a black hole that would be difficult to_11_out of. I made a_12_not to hide from my fears and to stand up to even the worst of them, so a 13 could be achieved.The next day I met with my other band teacher and told her I was having a problem and couldnt_14_why. She asked me gently to play for her.I tried, but only an unpleasant sound came out. She didn ’t_15_at me and handed me a new reed(簧片).I put it in place and tried again. To my great _16_I could play well. My problem was solved and my fear_17_ improved a lot that year._18_Im glad that I overcame my fear. Fear can_19_everything in a persons life. Hiding from those very fears only cligs a hole, which makes a person stay _20_ inside . After facing up to a fear. one may find life easier and much more enjoyable.16.A. badly B. endlessly C. randomly D. smoothly17.A. mess up B. move on C. set out D. take off18.A. impression B. essay C. story D. factor19.A. ashamed B. starved C. excited D. relaxed20.A、crashing B. moving C. selling D. bending21.A. stricter B. worse C. happier D. smarter22.A. joy B. panic C. doubt D. sympathy23.A. funny B. important C. easy D. traditional24.A. drying B. disappearing C. flowing D. separating25A. had a point B. made a change C. reached a level D. took a break26A. send B. bring C. pick D. climb27.A. request B. resolution C. presentation D. proposal28.A. balance B. degree C. position D. solution29.A. figure out B. give away C. think over D. make up30.A、aim B. smile C. wave D. shout31.A. anger B. sorrow C. disappointment D. surprise32.A. felt B. shown C. removed D. voiced33.A. Carrying on B. Looking back C. Stepping aside D. Turning around34.A. consume B. examine C. reflect D. rescue35.A. unknown B. unpunished C. interested D. trapped三、阅读理解AGetting into college is a big step for high school graduates, and it comes with a lot of changes. For most students, it’s the first time they’re living away from home and managing their own life.Not surprisingly, adapting to this new lifestyle can be challenging. The following four tips will make high school graduates better prepared for college life.Goal settingWhen setting goals, whether theyre academic, career, or personal, re-member they should be attainable but not too easy, so that you really have to push yourself to achieve them, and feel rewarded when you do. Writing down your goals and breaking down each huge, long-term goal into smaller more practical ones can help make it feel more real, and writing out a plan for achieving it can give you a roadmap to success.Interpersonal skillsAt college, you will interact with fellow students, professors, librarians, and many others. Strong interpersonal skills will help you build relationships during this time, and get more out of them. If you feel that your interpersonal skills need some work, practice asking thoughtful questions andlistening closely, develop your understanding by putting yourself in someone elses shoes, and enhance yourself-confidence.StudyingWith fewer in-class hours and more on-your-own learning, youre re-quired to really digest learning material rather than simply memorize facts. To be successful in college you’ll need to learn how to integrate large amounts of information obtained through reading, do research, and write pa-pers. Organization is the key, so if you are not someone who is naturally organized, set up your study schedule.BudgetingManaging money is a critical life skill, and for many, it is at college hat they develop it for the first time. Start by estimating your financial ballince. Then give high priority to the expenses on basic needs and determine low much money to set aside every month to cover those costs. Dont forget about savings…and the fun stuff(movies, dinners out), too.36. Who is this passage most probably written for?A. College teachers.B. Universily graduates.C. High school teachers.D. Would-be college students.37. What is the authors suggestion for reaching a huge goal?A. Divide it into smaller, more achievable ones.B. Reward oneself for each goal one has set.C. Purchase a clear, updated roadmap.D. Push oneself to an upper level.38. One of the suggested ways to enhance your interpersonal skills is to .A. prepare complicated questionsB. try on someone elses shoesC. listen to others carefullyD. take advantage of others39. What is the key to successful college study according to the author?A. Being well-organized.B. Being well-informed.C. Effective reading skills.D. Reliable research methods.40. To learn how to manage money, the first thing to do is .A. save money for financial investmentB. estimate ones income and expensesC. set aside money for fun activitiesD. open a personal bank accountBIm an 18-year-old pre-medical student, tall ndgood-looking, with two short story books and quite a number of essays my credit. Why am I singing such praises of myself? Just to explain that he attainment of self-pride comes from a great deal of self-love, and to attain it, one must first learn to accept oneself as one is. That was where my struggle began.Born and raised in Africa,I had always taken my African origin as burden. My self-dislike was further fueled when my family had to relocate to Norway, where I attended a high school. Compared to all the white girls around me, with their golden hair and delicate lips, I ,a black girl, had curly hair and full, red lips. My nose often had a thin sheet of sweat on it, whatever the weather was. I just wanted to bury myself in my shell crying “I’m so different!”What also contributed to my self-dislike was my occasional stuttering (口吃), which had weakened my self-confidence. It always stood between me and any fine opportunity. Id taken it as an excuse to avoid any public speaking sessions, and unknowingly let it rule over me.Fortunately, as I grew older, there came a turning point. One day a white girl caught my eye on the school bus when she suddenly turned back. To my astonishment, she had a thin sheet of sweat on her nose too, and it was in November! “Wow,” I whispere d to myself, “this isnt a genetic(遗传的) disorder after all. Its perfectly normal.” Days later, my life took an-other twist(转折). Searching the internet for stuttering cures, I accidentally learned that such famous people as Isaac Newton and Winston Churchill also stuttered. I was greatly relieved and then an idea suddenly hit me—if Im smart, I shouldnt allow my stuttering to stand between me and my success.Another boost to my self-confidence came days later as I was watching the news about Oprah Winfrey, the famous talkshow host and writer—shes black too! Whenever I think of her story and my former dislike of my color, Im practically filled with shame.Today, Ive grown to accept what I am with pride; it simply gives me feeling of uniqueness. The idea of self-love has taken on a whole new meaning for me: theres always something fantastic about us, and what w need to do is learn to appreciate it.41. What affected the authors adjustment to her school life in Norway!A Her appearanceB. Social discrimɪnation.C. Her changing emotions.D. The climate in Norway.42. What did the authors occasional stuttering bring about according on Paragraph 3?A. Her lack of self-confidence.B. Her loss of interest in school.C. Her unwillingness to greet her classmates.D. Her desire for chances to improve herself.43. How did the author feel on noticing the similarity between her and ne girl on the bus?A. Blessed and proud.B. Confused and afraid.C. Amazed and relieved.D. Shocked and ashamed.44. What lesson did the author learn from the cases of Newton and Churchill?A. Great minds speak alike.B. Stuttering is no barrier to success.C. Wisdom counts more than hard work.D. Famous people cant live with their weaknesses.45. What can best summarize the message contained in the passage?A. Pride comes before a fall.B. Where there is a will, there is a way.C. Self-acceptance is based on the love for oneself.D. Self-love is key to the attainment of self-pride.CIs it true that our brain alone is responsible fo human cognition(认知)? What about our body? Is it possible for thought and behavior to originate from somewhere other than our brain? Psychologists who study Embodied Cognition(EC) ask similar questions. The E(theory suggests our body is also responsible for thinking or problem-solving. More precisely, the mind shapes the body and the body shapes the mind in equalmeasure.If you think about it for a moment, it makes total sense. When you smell something good or hear amusing sounds, certain emotions are awakened. Think about how newborns use their senses to understand the world around them. They dont have emotions so much as needs—they dont feel sad, theyre just hungry and need food. Even unborn babies can feel their mothers’ heartbeats and this has a calming effect. In the real world,they cry when theyre cold and then get hugged. That way, they start to as-sociate being warm with being loved.Understandably, theorists have been arguing for years and still dis-agree on whether the brain is the nerve centre that operates the rest of the body. Older Western philosophers and mainstream language researchers believe this is fact, while EC theorises that the brain and body are working together as an organic supercomputer, processing everything and forming your reactions.Further studies have backed up the mind-body interaction. In one ex-periment, test subjects(试验对象) were asked to judge people after being handed a hot or a cold drink.They all made warm evaluations when their fingertips perceived warmth rather than coolness. And it works the other way too;in another study, subjects’ fingertip temperatures were measured after being included in or “rejected” from a group task. Those who were included felt physically warmer.For further proof, we can look at the metaphors(比方说法)that we use without even thinking. A kind and sympathetic person is frequently referred to as one with a soft heart and someone who is very strong and calm in difficult situations is often described as solid as a rock. And this kind of metaphorical use is common across languages.Now that you have the knowledge of mind-body interaction, why not use it? If youre having a bad day,a warm cup of tea will give you a flash of pleasure. If you know youre physically cold, warm up before making any interpersonal decisions.46. According to the author, the significance of the EC theory lies in .A. facilitating our understanding of the origin of psychologyB. revealing the major role of the mind in human cognitionC. offering a clearer picture of the shape of human brainD. bringing us closer to the truth in human cognition47. Where does the new borns’ understanding of their surroundings start from?A. Their personal looks.B. Their mental needs.C. Their inner emotions.D. Their physical feelings.48. The experiments mentioned in Paragraph 4 further prove .A. environment impacts how we judge othersB. how body temperature is related to healthC. the mind and the body influence each otherD. how humans interact with their surroundings49. What does the author intend to prove by citing the metaphors in Paragraph 5?A. Human speech is alive with metaphors.B. Human senses have effects on thinking.C. Human language is shaped by visual images.D. Human emotions are often compared to natural materials.50. What is the authors purpose in writing the last paragraph?A. To share with the reader ways to release their emotions.B. To guide the reader onto the path to career success.C. To encourage the reader to put EC into practice.D. To deepen the readers understanding of EC.DRalph Emerson once said that the purpose of life is not to be happy, but to be useful, to be loving, to make some difference in he world. While we appreciate such words of wisdom, we rarely try to follow them in our lives.Most people prefer to live a good life themselves, ignoring their responsibilities for the world. This narrow perception of a good life may provide short-term benefits, but is sure to lead to long-term harm and suffering. A good life based on comfort and luxury may eventually lead to more pain be-cause we spoil our health and even our character, principles, ideals, and relationships.What then, is the secret of a good life? A good life is a process, not a state of being : a direction, not a destination. We have to earn a good life by first serving others without any expectation in return because their happiness is the very source of our own happiness. More importantly, we must know ourselves inside out. Only when we examine ourselves deeply can we discover our abilities and recognize our limitations, and then work accordingly to create a better world.The first requirement for a good life is having a loving heart. When we do certain right things merely as a duty, we find our job so tiresome that we’ll soon burn out. However, whenwe do that same job out of love, we not only enjoy what we do, but also do it with an effortless feeling.However, love alone is insufficient to lead a good life. Love sometimes blinds us to the reality. Consequently, our good intentions may not lead to good results. To achieve desired outcome, those who want to do good to others also need to equip themselves with accurate world knowledge. False knowledge is more dangerous than ignorance. If love is the engine of a car knowledge is the steering wheel(方向盘). If the engine lacks power, th car cant move; if the driver loses control of the steering, a road accident probably occurs. Only with love in heart and the right knowledge in mind can we lead a good life.With love and knowledge, we go all out to create a better world by doing good to others. When we see the impact of our good work on the world we give meaning to our life and earn lasting joy and happiness.51. What effect does the narrow perception of a good life have on us?A. Making us simple-mindedB. Making us snort-signted.C. Leading us onto a busy road.D. Keeping us from comfort and luxury.52. According to the author, how can one gain true happiness?A. Through maintaining good health.B. By going through pain and suffering.C. By recognizing ones abilities and limitations.D. Through offering help much needed by others.53. According to Paragraph 4, doing certain right things with a loving heart makes one .A. less selfishB. less annoyingC. more motivatedD. more responsible54. In what case may good intentions fail to lead to desired results?A. When we have wrong knowledge of the world.B. When our love for the world is insufficient.C. When we are insensitive to dangers in life.D. When we stay blind to the reality.55. According to Paragraph 5, life can be made truly good when .A. inspired by love and guided by knowledgeB. directed by love and pushed by knowledgeC. purified by love and enriched by knowledgeD. promotedby love and defined by knowledge四、阅读表达It was a dark and stormy night. The ferocious wind shook the windows wildly, as though someone outside were beating on the glass. It was also New Years Eve. We were having our annual party and had a house full of people just starting to celebrate.Suddenly, we heard loud explosions. Looking outside and up into the hills, we saw sparks(火花) flying from electrical transformers(变压器).One area after another went dark up in those hills. Then there was the loudest explosion of them all and our house went dark too. I tried to find every candle we had and lit them. The candles made everything look lovely. But we had problems. We had fifteen people standing around and we still had to cook dinner. How would we do that without electricity?The barbecue! Why not cook on the barbecue? We men went outside, some holding flashlights and others cooking. We did a wonderful job. The women stayed inside and got the salads ready. Everything was delicious. There were still a few hours to go before the beginning of the new year, so we all sat around the dining room table and sang up until a few minutes be-fore midnight. We couldnt watch the ball drop in Times Square on television but that wouldnt stop us from celebrating. I stood on a chair and, with the help of someones watch to tell us the time, we all counted down and I dropped a tennis ball! We all screamed Happy New Year. We didn’t need electricity for that!Nowadays, we still get together with the same group to celebrate the New Year and we still talk about that special night.I dont think we have ever laughed so much as we did on that New Year’s Eve.56. What does the underlined word mean in Paragraph 1? (1 word)57. What made dinner preparation difficult according to Paragraph 2? (no more than 6 words)58. How did the people celebrate on New Years Eve according to the passage? (no more than 10 words)59. How does the author feel about that particular New Year’s Eve? (no more than 8 words)60. What do you think is the most necessary quality when dealing with an unexpected difficult situation?Please explain why. (no more than 25words)五、写作61.假设你是晨光中学英语口语社的成员李津。
2024年普通高等学校招生全国统一考试(天津卷)语文注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净以后,再选涂其他答案标号。
2.本卷共11小题,每小题3分,共33分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
一、阅读下面一段文字,完成下面小题。
荷者,和也。
“礼之用,和为贵”--从这个意义上,荷花其实是可以与牡丹、梅花并称为三大“国花”的。
俗话说:“养花一年,赏花十日。
”任何花卉,为大众所观赏,为诗人画家所(),主要在它短暂的开花期。
“谷雨三朝看牡丹”,当花尚未开或花已凋谢,又有谁会相约一起去看牡丹的呢?贵为花王,尚且如此,这个道理()。
然而,荷花却是一个例外,而且,几乎是百花中唯一的例外。
从“甲”的新叶初萌,到“乙”的繁花盛放,再到“丙”的凋残败落,甚至花事完全散场,“丁”,犹有莲蓬与藕,供人们继续观赏、享用!一般的赏花,多有各种名目的禁忌,荷花则宜露、宜风、宜晴、宜雨、宜烟、宜月,宜绿云十里、无边香色,宜一茎孤引、双影分红……可谓无时、无地而不宜,这在百花中更是()的。
晨露之中,“霏微晓露成珠颗”;艳阳之下,“向日但疑酥滴水”;夕晖之中,“无情一饷敛斜阳”;月光之下,“月晓风清欲坠时”;习习风来,“亭亭风露拥川坻”;疏疏雨降,“晚雨跳珠万盖匀”;郁茂则“绿塘摇滟接星津”,零落则“翠减红衰愁杀人”……论山水给予艺术家的意象,是“山形步步移”“山形面面看”四时之景不同“朝暮之变态不同”的,所以可谓丰富多彩、层出不穷,一山而可兼数十百山之形状意态。
______________。
1. 依次填入文中括号内的词语,下列最恰当的一组词语是()A. 关注不值一提硕果仅存B. 关心不言而喻硕果仅存C. 关注不言而喻绝无仅有D. 关心不值一提绝无仅有2. 下列文章中甲、乙、丙、丁处的句子,正确的顺序是()①菡萏香销翠叶残②小荷才露尖尖角③留得枯荷听雨声④映日荷花别样红A. ②④③①B. ②④①③C. ④②③①D. ④③①②3. 文章末尾划线处的空白部分,下列哪一句是最恰当的()A. 而艺术家给予花卉丰富之形态,是可媲美山水的。
一般高等学校招生全国统一考试(天津卷)第Ⅰ卷(选择题)注意事项:1. 每题选出答案后, 用铅笔将答题卡上对应题目旳答案标号涂黑。
如需改动, 用橡皮擦洁净后, 再选涂其他答案标号。
2.本卷共11题, 每题4分, 共44分。
在每题给出旳四个选项中, 只有一项是最符合题目规定旳。
结合图1和图2中旳信息, 回答1—2题。
1. 最有也许观测到图1中景观旳地点, 是图2中旳()A. 甲地B. 乙地C. 丙地D. 丁地2.在图1所示地区, 年降水量最多旳地带应位于()A. 长年积雪区B. 高山草甸带C. 云杉林带D. 山麓草原读图文材料, 回答3—4题。
3. 根据图3中信息判断, 导致甲、乙、丙三地地貌类型不一样旳最重要原因是()A. 年降水量旳差异B. 地质构造部位不一样C. 植被覆盖率不一样D. 地表岩石种类不一样古河床沉积物是某地质历史时期河流位置旳标志。
在乙地不一样高度上分布着两个地质历史时期旳古河床沉积物。
4. 这反应了自古河床形成以来, 该地区地壳经历过()A. 间歇性抬升B. 持续性抬升C. 间歇性沉降D. 持续性沉降全球变暖导致冰川融化和海平面上升。
为减缓全球变暖, 发展低碳经济是人类社会旳必然选择。
读图文资料, 回答5—7题。
科学家们考察了美国西北部某山岳冰川消融旳状况(图4)及产生旳影响。
5. 对图4所示地区1936—期间地表环境变化旳表述, 与实际状况相符旳是()A. 年蒸发量一直不变B. 河湖水量持续稳定增长C. 生物种类保持不变D. 地表淡水资源总量减少6.科学家们在推断海平面上升所沉没旳陆地范围时, 不作为重要根据旳是()A. 沿海地区旳海拔高度B. 海水受热膨胀旳幅度C. 全球冰川融化旳总量D. 潮汐规模和洋流方向循环经济是低碳经济旳重要形式之一。
循环经济意在生产过程中对物质资源循环高效运用, 实现无害、减量排放。
天津市采用了许多循环经济旳模式。
7.在下列经济活动中, 不属于循环经济旳是()天津广播电视塔(简称“天塔”)高度约415米。
绝密★启用前2024年天津市高考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题:本题共9小题,每小题5分,共45分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.集合A ={1,2,3,4},B ={2,3,4,5},则A ∩B =( ) A. {1,2,3,4}B. {2,3,4}C. {2,4}D. {1}2.设a ,b ∈R ,则“a 3=b 3”是“3a =3b ”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件3.下列图中,相关性系数最大的是( )A. B.C. D.4.下列函数是偶函数的是( )A. e x −x 2x 2+1B. cosx+x 2x 2+1C. e x −x x+1D.sinx+4xe |x|5.若a =4.2−0.3,b =4.20.3,c =log 4.20.3,则a ,b ,c 的大小关系为( )A. a >b >cB. b >a >cC. c >a >bD. b >c >a6.若m ,n 为两条直线,α为一个平面,则下列结论中正确的是( ) A. 若m//α,n ⊂α,则m//n B. 若m//α,n//α,则m//n C. 若m//α,n ⊥α,则m ⊥nD. 若m//α,n ⊥α,则m 与n 相交7.已知函数f(x)=sin3(ωx +π3)(ω>0)的最小正周期为π.则函数在[−π12,π6]的最小值是( ) A. −√ 32B. −32C. 0D. 328.双曲线x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2.P 是双曲线右支上一点,且直线PF 2的斜率为2,△PF 1F 2是面积为8的直角三角形,则双曲线的方程为( ) A.x 22−y 28=1 B.x 24−y 28=1 C.y 24−x 28=1 D.x 22−y 24=19.一个五面体ABC −DEF.已知AD//BE//CF ,且两两之间距离为1.并已知AD =1,BE =2,CF =3.则该五面体的体积为( ) A.√ 36B. 3√ 34+12 C. √ 32 D. 3√ 34−12第II 卷(非选择题)二、填空题:本题共6小题,每小题5分,共30分。
绝密 ★ 启用前普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:·如果时间A ,B 互斥,那么·球的表面积公式P (A+B )=P (A )+P (B )24S R π=.·如果事件A ,B 相互独立,那么其中R 表示球的半径.P (A·B )=P (A )·P (B )一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.(1)i 是虚数单位,()=-+113i i i (A) 1- (B) 1 (C) i - (D) i解析:()31(1)11111i i i i ii i i +-+-===----,选A . (2)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为(A) 2 (B) 3 (C) 4 (D) 5解析:如图,由图象可知目标函数y x z +=5过点(1,0)A 时z 取得最大值,max 5z =,选D .(3)设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 (A) 最小正周期为π的奇函数 (B) 最小正周期为π的偶函数(C) 最小正周期为2π的奇函数 (D) 最小正周期为2π的偶函数 解析:()cos 2f x x =-是周期为π的偶函数,选B .(4)设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是(A) βαβα⊥⊥,//,b a (B) βαβα//,,⊥⊥b a (C) βαβα//,,⊥⊂b a (D) βαβα⊥⊂,//,b a 解析:A 、B 、D 直线,a b 可能平行,选C .(5)设椭圆()1112222>=-+m m y m x 上一点P 到其左焦点的距离为3,到右焦点的距离为1,则P 点到右准线的距离为(A) 6 (B) 2 (C)21(D) 772解析:由椭圆第一定义知2a =,所以24m =,椭圆方程为22111432x y e d +=⇒== 所以2d =,选B .(6)设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是(A) 13-<<-a (B) 13-≤≤-a(C) 3-≤a 或1-≥a (D) 3-<a 或1->a 解析:{|15}S x x x =<->或,所以13185a a a <-⎧⇒-<<-⎨+>⎩,选A .(7)设函数()()1011<≤-=x xx f 的反函数为()x f 1-,则(A) ()x f 1-在其定义域上是增函数且最大值为1 (B) ()x f1-在其定义域上是减函数且最小值为0(C) ()x f 1-在其定义域上是减函数且最大值为1 (D) ()x f1-在其定义域上是增函数且最小值为0解析:1y =为减函数,由复合函数单调性知()f x 为增函数,所以1()f x -单调递增,排除B 、C ;又1()f x -的值域为()f x 的定义域,所以1()f x -最小值为0.(8)已知函数()⎩⎨⎧≥-<+-=0101x x x x x f ,则不等式()()111≤+++x f x x 的解集是(A) {}121|-≤≤-x x (B) {}1|≤x x(C) {}12|-≤x x (D) {}1212|-≤≤--x x解析:依题意得11010(1)()(1)1x x x x x x x x +<+⎧⎧⎨⎨++-++⎩≥≤⎩≤或所以11111111x x x x x x R x ⎧≥-≤≤⇒≤∈≤≤<-⎧⎪⇒<--⎨⎨⎪⎩⎩或或,选C . (9)已知函数()x f 是R 上的偶函数,且在区间[)+∞,0上是增函数.令⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=75tan ,75cos ,72sin πππf c f b f a ,则(A) c a b << (B) a b c << (C) a c b << (D) c b a <<解析:5(cos)(c 2os )77b f f ππ=-=,5(tan )(t 2an )77c f f ππ=-= 因为2472πππ<<,所以220cos sin 1tan7772πππ<<<<,所以b a c <<,选A . (10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有(A) 1344种 (B) 1248种 (C) 1056种 (D) 960种解析:首先确定中间行的数字只能为1,4或2,3,共有12224C A =种排法.然后确定其余4个数字的排法数.用总数46360A =去掉不合题意的情况数:中间行数字和为5,还有一行数字和为5,有4种排法,余下两个数字有2412A =种排法.所以此时余下的这4个数字共有360412312-⨯=种方法.由乘法原理可知共有31248412⨯=种不同的排法,选B .第Ⅱ卷注意事项: 1.答卷前将密封线内的项目填写清楚。
2023年天津市普通高等学校招生全国统一考试英语本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共130分,考试用时100分钟。
第I卷2至11页,第II卷12至13页。
答卷前,考生务必将自己地姓名、考生号、考场号和座位号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将解析涂写在答题卡上,答在试卷上地无效。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.每小题选出解析后,用铅笔将答题卡上对应题目地解析标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他解析标号。
2.本卷共55小题,共95分。
第I卷第一部分:英语知识运用(共两节,满分45分)第一节:单项填空(共15小题;每小题1分,满分15分)从A、B、C、D四个选项中,选出可以填入空白处地最佳选项。
1. —I was trying to place an order on your website, but I failed.________ .I can take your order over the phone.A. That’s fineB. No wayC. My pleasureD. Of course2. I wanted to make dumplings but found I had ________ flour, so I went out to buy some.A. made up forB. run out ofC. kept away fromD. got down to3. Feeling fearful is healthy ________ it helps you slow down and evaluate risks properly.A. becauseB. untilC. beforeD. although4. Mark is a genius. By the time he graduated, he ________ jobs by a dozen computer companies.A. has offeredB. has been offeredC. had offeredD. had been offered5. The police searched the area for several days. ________, they found the piece of evidence they were looking for.A. GenerallyB. OriginallyC. EventuallyD. Unfortunately6. It’s a good idea to choose a(n) ________ destination in case your first-choice tourist spot is not available.A. annualB. exactC. alternativeD. pleasant7. In the spring, a season ________ we are 1earning new rhythms of life,many of us find comfort in the natural world.A. whenB. whereC. whatD. which8. Nowadays many people travel across China ________ high-speed trains.A. on behalf ofB. by means ofC. at cost ofD. in terms of9. In the lab, keeping things clean and organized can help provide a safer________.A. systemB. methodC. investmentD. environment10. Good evening, everybody. Professor King ________ his lecture in a moment, but let me introduce him first.A. deliveredB. will be deliveringC. was deliveringD. has been delivering11. It seemed that I had become ________ my parents had wanted me to be.A. whenB. whereC. whatD. whether12. I told you! I really am ranked the lowest. Number 25 out of 25 players.________ You've got nowhere to go but up.A. Tell me a bit more.B. I'm not so sure about that.C. Look on the bright side!D. That is absolute nonsense!13. Although a few have come and gone, the restaurant's regular customershave________ the same for nearly 40 years.A. stayedB. turnedC. grownD. got14. Mary became a baker at age 14, because her grandfather paid the local baker ________ her all the skills.A. to have taughtB. to teachC. teachingD. having taught15. ---I honestly don't think I'm going to be admitted.---Wel1, you never know! You________ a better impression than you think.A. may have madeB. should have madeC. couldnt have madeD. needn't have made第二节:完形填空(共20小题;每小题1.5分,满分30分)阅读下面短文,掌握其大意,然后从16〜35各题所给地A、B、C、D四个选项中, 选出最佳选项。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。