当前位置:文档之家› 霍尔组件产生脉冲的原理

霍尔组件产生脉冲的原理

霍尔组件产生脉冲的原理

霍尔组件产生脉冲的原理:因为霍尔传感器本身是磁场和霍尔元件之间由于磁性交替变化二产生的脉冲信号变化。两者之间通常会设有遮光元件,能够在变化过程中间断的影响到两者之间的磁通量,有磁场照射霍尔元件导通,反之霍尔元件截止,不断的交替变化引起了脉冲的信号变化。

秒脉冲发生器

设计题目:秒脉冲发生器的设计 设计小组:第三组

1 秒脉冲发生器整体设计方案 1.1秒脉冲发生设计方案概述 秒脉冲发生器是由100HZ时钟产生电路和分频电路两部分构成,其中100HZ时钟产生电路主要由555定时器组成的时钟电路,主要用来产生100HZ的脉冲信号;分频电路主要由74LS192组成的100进制计数器电路,主要用于将100HZ 脉冲信号分成1HZ脉冲信号。该方案通过了Multisim软件仿真,并得到了1HZ的脉冲信号,基本实现了工程训练的要求。

1.2 秒脉冲发生器整体设计电路设计图 图1 秒脉冲发生器整体设计电路设计图1.3 秒脉冲发生器整体设计电路仿真图 图2 秒脉冲发生器整体设计电路仿真图

2 各分电路的元件介绍及设计方案 2.1 100HZ时钟产生电路 图3 100HZ时钟产生电路 2.1.1元件介绍 555芯片引脚图及引脚描述: 555的8脚是集成电路工作电压输入端,电压为5~18V,以UCC表示;从分压器上看出,上比较器A1的5脚接在R1和R2之间,所以5脚的电压固定在2UCC/3上;下比较器A2接在R2与R3之间,A2的同相输入端电位被固定在UCC/3上。 1脚为地。2脚为触发输入端;3脚为输出端,输出的电平状态受触发器控制,而触发器受上比较器6脚和下比较器2脚的控制。 当触发器接受上比较器A1从R脚输入的高电平时,触发器被置于复位状态,3脚输出低电平; 2脚和6脚是互补的,2脚只对低电平起作用,高电平对它不起作用,即电压小于1Ucc/3,此时3脚输出高电平。6脚为阈值端,只对高电平起作用,低电平对它不起作用,即输入电压大于2 Ucc/3,称高触发端,3脚输出低电平,但有一个先决条件,即2脚电位必须大于1Ucc/3时才有效。3脚在高电位接近电源电压Ucc,输出电流最大可打200mA。 4脚是复位端,当4脚电位小于0.4V时,不管2、6脚状态如何,输出端3脚都输出低电平。 5脚是控制端。

几种简单的函数信号发生器电路图分析

几种简单的函数信号发生器电路图分析 时间:2012-01-10 15:30 作者:赛微编辑来源:赛微电子网 引言 随着模拟电路技术和电力电子技术发展,电路设计中对信号的精度、稳定性、抗干扰能力等要求进一步提高,电子行业中将一些功能进行集成到IC芯片供其他的厂家来使用。在电路设计中,我们除了正常的电源输入之外,还需要提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形来给某个电路提供输入。 这种可以提供三角波、方波、正弦波、脉冲波、单次脉冲等特殊的波形的电路或者仪器(函数信号发生器的种类),我们可以称之为函数信号发生器,它对电子工程师设计的整个系统来说,发挥着重要的作用,它具有各种内置信号、自定义的任意波形和脉冲能力,能帮助您验证设计,检验新的构想,从而让整个设计更具有可靠性。 本文结合几种简单的函数信号发生器电路图,并对其工作原理(函数信号发生器原理)、可以实现的功能和性能、电路特点等方面做了详细的分析,供电子发烧友参考。 程控函数信号发生器电路图 它主要由主控制器LPC2114、MAX038、D/A转换器以及八选一模拟开关CD4051LED显示、键盘、波段切换,波形处理和峰值检波等部分组成,研究了LPC2114通过D/A转换器实现对MAX038频就绪和占空比的调控方法,并给出

了在0.1Hz~20MHz内产生精确的正弦波、方波和三角波的方法。此外,它还具有可调范围大、精度高、信号稳定等特点,可以应用于各种电子测量和控制场合。 LPC2114主要通过D/A转换器TLC5618、DAC0832和八选一模拟开关CD4051对MAX038输出的波形、频率以及占空比进行控制。通过对A1和A0端的不同设置来选择不同的波形。当A1为高电平、A0为任意时,输出波形为正弦波;当A1、A0同时为低电平时,输出波形为方波;当A1为低电平、A0为高电平时,输出波形为三角波。 MAX038输出波形的幅值为2 V(P-P),最大输出电流为+20 mA,输出阻抗的典型值为0.1 Ω。可直接驱动100 Ω的负载。为了得到更大的输出幅度和驱动能力,就需要对波形信号作进一步处理,下图为一个波形输出与驱动电路。

信号发生器电路的焊接与调试-电路图

一、信号发生器电路安装与调试考核评分表 准考证号姓名规定时间分钟 开始时间结束时间实用时间得分 考核内容及要求配分评分标准扣分 1 元器件清点检查:在10分钟内对所有元 器件进行检测,并将不合格元器件筛选出来进 行更换,缺少的要求补发。 10 超时更换或要求补发按损坏 元件扣分,扣3分/个。 2 安装电路:按装配图进行装接,要求不装 错,不损坏元器件,无虚焊,漏焊和搭锡,元 器件排列整齐并符合工艺要求。 30 漏装,错装或虚焊、漏焊、 搭锡,扣2分/个,安装不整 齐和不符合工艺要求的扣1 分/处,损坏元件扣3分/个。 3 电源电路:接通交流电源,测量交流电压 和各直流电压+12V、-12V、V CC 、-5V。 信号发生器电路:接通+12V、-12V、V CC 、 -5V电源。测量函数信号波形:方波、正弦波、 三角波形。 20 电压测试方法不正确扣10 分,测量值有误差扣5分。 4 选择C=10uf,调节RW13、RW14、RW15, 记录方波的占空比: 1、 2、 3、 10 不会用示波观察输出信号波 形扣10分, 调节不正确扣5分, 波形记录不正确扣5分。 5 改变电容:100nf——100uf,并调节RW11, 记录正弦波输出频率f: 1、 2、 3、 10 最大不失真电压测试方法不 正确扣5分,测量值不准确 扣5分,不会计算最大不失 真功率扣5分。 6 调节RW21、RW22, 记录正弦波输出Vpp: 1、 2、 3、 10 不会测试功放电路的灵敏度 扣5分,不会计算电压放大 倍数扣5分。 7 调节电位器RW16、RW17, 记录正弦波形的失真: 1、 2、 3、 10 测量方法不正确扣5分, 测量数据每处2分,不会绘 制频响曲线扣5分 开始时间:结束时间:实用时间:

脉冲信号发生器的使用方法

脉冲信号发生器的使用方法 脉冲信号发生器可以产生重复频率、脉冲宽度及幅度均为可调的脉冲 信号,广泛应用于脉冲电路、数字电路的动态特性测试。脉冲信号发生器一般 都以矩形波为标准信号输出。脉冲信号发生器的种类繁多,性能各异,但 内部基本电路应包括主振级一般由无稳态电路组成,产生重复频率可调的周期 性信号。隔离级由电流开关组成,它把主振级与下一级隔开,避免下一级对主 振级的影响,提高频率的稳定度。脉宽形成级一般由单稳态触发器和相减电路 组成,形成脉冲宽度可调的脉冲信号。放大整形级是利用几级电流开关电路对 脉冲信号进行限幅放大,以改善波形和满足输出级的激励需要。输出级满足脉 冲信号输出幅度的要求,使脉冲信号发生器具有一定带负载能力。通过衰减器 使输出的脉冲信号幅度可调。 如(1)XC-15型脉冲信号发生器的面板开关、旋钮的功能及使用 ①频率粗调开关和频率细调旋钮。调节频率粗调开关和频率细调旋钮, 可实现1kHz~100MHz的连续调整。粗调分为十挡 (1kHz、3kHz、10kHz、100kHz、300kHz、1MHz、3MHz、10MHz、30MHz 和100MHz),用细调覆盖。频率细调旋钮顺时针旋转时频率增高,顺时针旋转 到底,为频率粗调开关所指频率;逆时针旋转到底,为此频率粗调开关所指刻 度低一挡。例如,频率粗调开关置于10kHz挡,频率细调旋钮顺时针旋转到底 时输出频率为10kHz;逆时针旋转到底时输出频率为3kHz。 ②延迟粗调转换开关和延迟细调旋钮。调节此组开关和旋钮,可实现延 迟时间5ns~300,tts的连续调整。延迟粗调分为十挡 (5ns、10ns、30ns、l00ns、300ns、1μs、3μs、10μs、30μs和100μs),用细调覆盖。延迟时间加上大约30ns的固有延迟时间等于同步输

DDS信号发生器电路设计

1. 信号产生部分 1.1 频率控制字输入模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity ddsinput is port(a,b,c,clk,clr:in std_logic; q1,q2,q3,q4,q5:buffer unsigned(3 downto 0)); end ddsinput; architecture a of ddsinput is signal q:std_logic_vector(2 downto 0); begin q<=c&b&a; process(cp,q,clr) begin if clr='1'then q1<="0000";q2<="0000";q3<="0000";q4<="0000";q5<="0000"; elsif clk 'event and clk='1'then

DDS信号信号发生器电路设计 case q is when"001"=>q1<=q1+1; when"010"=>q2<=q2+1; when"011"=>q3<=q3+1; when"100"=>q4<=q4+1; when"101"=>q5<=q5+1; when others=>NULL; end case; end if; end process; end a; 1.2 相位累加器模块 library ieee; use ieee.std_logic_1164.all; use ieee.std_logic_unsigned.all; use ieee.std_logic_arith.all; entity xiangwei is port(m:in std_logic_vector(19 downto 0); clk,clr:in std_logic; data:out std_logic_vector(23 downto 0)); end xiangwei; architecture a of xiangwei is signal q:std_logic_vector(23 downto 0); begin process(clr,clk,m,q) begin if clr='1'then q<="000000000000000000000000"; elsif (clk'event and clk='1')then q<=q+m; end if; data<=q; end process; end a;

信号发生器的基本原理

信号发生器的基本原理- 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率 稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后 也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡 器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其 优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器 采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。

秒信号发生器

一、硬件电路设计 (1)复位电路 复位是使单片机处于某种确定的初始状态。单片机工作从复位开始。在单片机RST引脚引入高电平并保持2个机器周期,单片机就执行复位操作。复位操作有两种基本方式:一种是上电复位,另一种是上电与按键均有效的复位。如图1所示为复位电路: 图1复位电路 开机瞬间RST获得高电平,随着电解电容C3的充电,RST引脚的高电平将逐渐下降。若该高电平能保持足够2个机器周期,就可以实现复位操作。根据经典电路选择参数,选取C3=10μF,R1=10KΩ。 (2)晶振电路 单片机的时钟信号通常有两种产生方式:一是内部时钟方式,二是外部时钟方式。内部时钟方式是利用单片机内部的振荡电路产生时钟信号。外部时钟方式是把外部已有的时钟信号引入到单片机内。本次设计中,采用的是12MHz晶振,配上30pF的电容,构成谐振,这样有助于输出稳定的波形。图2所示为晶振电路: 图2晶振电路

在单片机的XTAL1和XTAL2引脚外接石英晶体(简称晶振),作为单片机内部振荡电路的负载,构成自激振荡器,可在单片机内部产生时钟脉冲信号。C1和C2的作用是稳定振荡频率和快速起振。根据经典电路选择参数,本电路选用晶振12 MHz,C1=C2=33PF。其中晶振周期(或外部时钟信号周期)为最小的时序单位。 (3)串口调试电路 二、程序设计 程序思路说明:只需要4个按键。关于频率和占空比的确定,对于12M晶振,输出频率为1KHZ,这样定时中断次数设定为 10,即10MS 中断一次,则TH0=FF,TL0=F6;由于设定中断时间为10ms,这样可以设 * *定占空比可从1-99%变化。即10ms*100=1s #include #define uchar unsigned char #define uint unsigned int uchar timer0_tick,ZKB=1;//timer0_tick计数,ZKB占空比 uchar i=0,n=0,temp=0; code seven_seg[10]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //1,2,3, 4, 5, 6, 7, 8, 9 code scan[2]={0xfd,0xfe}; uchar counter[2]={0,0}; sbit AN1=P3^2;//调整个位 sbit AN2=P3^3;//调整十位 sbit AN3=P3^4;//启动按键

(Proteus数电仿真)序列信号发生器电路设计

实验8 序列信号发生器电路设计 一、实验目的: 1.熟悉序列信号发生器的工作原理。 2.学会序列信号发生器的设计方法。 3.熟悉掌握EDA软件工具Proteus 的设计仿真测试应用。 二、实验仪器设备: 仿真计算机及软件Proteus 。 74LS161、74LS194、74LS151 三、实验原理: 1、反馈移位型序列信号发生器 反馈移位型序列信号发生器的结构框图如右图 所示,它由移位寄存器和组合反馈网络组成, 从寄存器的某一输出端可以得到周期性的序列 码。设计按一下步骤进行: (1)确定位移寄存器位数n ,并确定移位 寄存器的M 个独立状态。 CP 将给定的序列码按照移位规律每 n 位一组,划分为M 个状态。 若M 个状态中出现重复现象,则应增加移位寄存器的位数。用n+1位再重复上述过程,直到划分为M 个独立状态为止。 (2)根据M 各不同状态列出寄存器的态序表和反馈函数表,求出反馈函数F 的表达式。 (3)检查自启动性能。 (4)画逻辑图。 2、计数型序列信号发生器 计数型序列信号发生器和组合的结构框图 如图 所示。它由计数器和组合输出网络两部分 组成,序列码从组合输出网络输出。设计 过程分为以下两步: (1)根据序列码的长度M 设计模M (2)按计数器的状态转移关系和序列码的要求组合输出网络。由于计数器的状态设置和输出序列没有直接关系,因此这种结构对于输出序列的更改比较方便,而且还能产生多组序列码。 四、计算机仿真实验内容及步骤、结果: 1、设计一个产生100111序列的反馈移位型序列信号发生器。 1、根据电路图在protuse 中搭建电路图

脉冲信号发生器

电子技术综合训练 设计报告 题目:脉冲信号发生器 姓名:xxx 学号:xxxxxxx 班级:xx 电气及其自动化xx 同组成员:xxx 指导教师:xxx 日期:2011年1月4日

脉冲信号发生器的原理主要分为四部分,即正弦波的产生,方波的变换,分频电路和倍频电路,并由这四部分最终产生三种不同频率的信号,其要点在于电路的线路连接及焊接。通过设计体会理论与实际结合的重要性. 关键字:正弦发生多谐振荡器降频电路锁相环

一、设计任务和要求 (5) 1.1设计任务 (5) 1.2设计要求 (5) 二、系统设计 (6) 2.1系统要求 (6) 2.2方案设计 (6) 2.3系统工作原理 (7) 三、单元电路设计 (8) 3.1 RC正弦发生器 (8) 3.1.1电路结构及工作原理 (9) 3.1.2电路仿真 (9) 3.1.3元器件的选择及参数确定 (9) 3.2 555定时器组成的多谐振荡器 (9) 3.2.1电路结构及工作原理 (9) 3.2.2电路仿真 (11) 3.3 74LS161计数器降频电路 (11) 3.3.1电路结构及工作原理 (11)

3.3.2电路仿真 (11) 3.3.3元器件的选择及参数确定 (11) 3.4 锁相环升频电路 (13) 3.4.1电路结构及工作原理 (13) 3.4.2元器件的选择及参数确定 (15) 四、系统仿真 (17) 五、电路安装、调试与测试 (18) 5.1电路安装 (17) 5.2电路调试 (17) 5.3系统功能及性能测试 (17) 5.3.1测试方法设计 (18) 5.3.2测试结果及分析 (18) 结论 (19) 参考文献 (20) 总结、体会和建议 (21) 附录 (22)

秒信号发生器电路图两个

秒信号发生器电路图两个 秒信号发生器: 下面介绍的秒信号发生器可用在LED数字钟中,为数字钟提供秒基准信号。字串7 附图1电路由14位二进制串行计数器/分频器和振荡器 CD4060、BCD同步加法计数器CD4518构成的秒信号发生器。 电路中利用CD4060组成两部分电路。一部分是14级分频器,其最高分频数为16384;另一部分是由外接电子表用石英晶体、电阻及电容构成振荡频率为32768Hz的振荡器。震荡器输出经14级分频后在输出端Q14上得到1/2秒脉冲并送入由1/2 CD4518构成的二分频器,分频后在输出断Q1上得到秒基准脉冲。 检验电路是否工作,可测量CD4060的9脚有无振荡信号输出。调整微调电容可校准振荡频率。 附图2是另一款秒信号发生器电路。它由双BCD同步加计数器CD4518、四输入端与非门CD4011和四2输入端或非门CD4001等构成。 电路中利用CD4060组成两部分电路。一部分是14级分频器,

其最高分频数为16384;另一部分是由外接电子表用石英晶体、电阻及电容构成振荡频率为32768Hz的振荡器。震荡器输出经14级分频后在输出端Q14上得到1/2秒脉冲并送入由1/2 CD4518构成的二分频器,分频后在输出断Q1上得到秒基准脉冲。 检验电路是否工作,可测量CD4060的9脚有无振荡信号输出。调整微调电容可校准振荡频率。 电路中,由CD4011门I构成晶体振荡电路产生的1MHz脉冲信号,经反相器门II送至由CD4518构成的多级计数分频器。其中第一级10分频后输出为100KHz,第二级输出为10KHz,第三级输出为1000Hz,第四级输出为100Hz、第6级输出为1Hz。 由CD4011的门III、IV构成R-S触发器和CD4001的一个门组成了秒信号控制门。单允许工作开关K3置“开”位置时,允许输出秒信号;置“关”位置时,禁止输出秒信号。走时、校准开关K2置“走时”位置时,输出秒信号;置“校准”位置时,输出校准信号。若秒信号与标准时间相差较大,把K1置“快校”位置,送出10KHz信号;若接近标准时间,则置“慢校”位置,送出100Hz信号。

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

CD4060秒脉冲产生电路

脉冲发生器 要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。而脉冲源产生的脉冲信号的频率较高,因此,需要进行分频,使高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1HZ)。经过分频器输出的秒脉冲信号到计数器中进行计数。将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。“时计数器”采用24进制计时器,可实现对一天24小时的累计。此时需要分别设计60进制,24进制计数器,各计数器输出信号经译码器到数字显示器,使“时”、“分”、“秒”得以数字显示出来。 值得注意的是:任何计时装置都有误差,因此应考虑校准时间电路。校时电路一般采用手动调整。手动调整可利用手动的节拍调准显示时间。 C D4060由一振荡器和14级二进制串行计数器位组成,振荡器的结构可以是RC或晶振电路,CR为高电平时,计数器清零且振荡器使用无效。所有的计数器位均为主从触发器。在CP1(和CP0)的下降沿计数器以二进制进行计数。在时钟脉冲线上使用斯密特触发器对时钟上升和下降时间无限制。 CD4060引角图

CD4060内部方框图 CD4060B典型振荡器连接 上图-RC振荡器下图-晶体振荡器RC振荡器中T=2.2R1C,R2=2*R1~10*R1

脉冲发生器是数字钟的核心部分,它的精度和稳定度决定了数字钟的质量,通常用晶体振荡器发出的脉冲经过整形、分频获得1Hz的秒脉冲。如晶振为32768 Hz,通过15次二分频后可获得1Hz的脉冲输出 CD4060秒脉冲发生器电路

函数信号发生器设计报告

目录 1设计的目的及任务 1.1 课程设计的目的 1.2 课程设计的任务与要求 2函数信号发生器的总方案及原理图 2.1 电路设计原理框图 2.2 电路设计方案设计 3 各部分电路设计及选择 3.1 方波发生电路的工作原理 3.2 方波、三角波发生电路的选择 3.3三角波---正弦波转换电路的选择 3.4总电路图 4 电路仿真与调试 4.1 方波---三角波发生电路、三角波---正弦波转换电路的仿真与调试 4.2方波---三角波发生电路、三角波---正弦波转换电路的实验结果 5 PCB制版

6 设计总结 7仪器仪表明细清单 8 参考文献 1.课程设计的目的和设计的任务 1.1 设计目的 1.掌握用集成运算放大器构成正弦波、方波和三角波函数发生器的设计方法。 2.学会安装、调试与仿真由分立器件、调试与仿真由分立器件与集成电路组成的多级电子电路小系统。 2.2设计任务与要求: 设计一台波形信号发生器,具体要求如下: 1.输出波形:方波、三角波、正弦波。

2.频率范围:在1 Hz-10Hz,10 Hz -100 Hz,100 Hz -1000 Hz 等三个波段。 3.频率控制方式:通过改变RC时间常数手控信号频率。 4.输出电压:方波UP-P≤24V,三角波UP-P=8V,正弦波UP-P>1V。 5.合理的设计硬件电路,说明工作原理及设计过程,画出相关的电路原理图。 6.选用常用的电器元件(说明电器元件选择过程和依据)。 7.画出设计的原理电路图,作出电路的仿真。 8.提交课程设计报告书一份,A3图纸两张,完成相应答辩。 2.函数发生器总方案及原理框图

信号发生器的原理及应用

实验一信号发生器的原理及应用 一、实验目的 (1)熟悉直接数字合成双路函数信号发生器的工作原理以及面板装置及功能; (2)会运用UTG2025A型数字信号合成信号发生器产生标准信号和调制信号。 二、实验设备 (1)UTG2025A型函数/任意波形信号发生器1台; (2)UTD2102C数字存储示波器各1台。 三、实验原理 函数信号发生器是能产生多种特定时间函数波形(如正弦波、方波、三角波 等)供测试用的信号发生器。典型函数信号发生器由输入单元、内/外转换电路、 波形产生电路、频段转换器、扫频电路、占空比和频率调节电路、微处理器、A/D 转换器、直流功率放大器和计数显示器等组成,其电路原理方框图如下所示: 图1典型函数信号发生器电路原理框图 其中波形产生电路、频率调整电路、占空比调整电路、内外扫频控制电路、测频 单元电路等具体电路原理与分析见教材《电子测量技术》P67-P71页内容。 四、实验内容及步骤 4.1 产生标准信号 4.1.1 产生正弦波信号

实验内容:产生一个20MHz、峰峰值100mV、直流偏置-150mV的正弦波信号。 1 实验步骤: (1)确保仪器正确连接后,打开开关,等仪器自检回到主菜 单;(2)按【menu】→【波形】→【正弦波】,如下图所示: (3)按【menu】→【波形】→【参数】 选择【频率】、【幅度】、【直流偏移】、【相位】不同功能按钮进行设 置:可以用三种方法来输入频率值:(其他数字量输入类似) ①通过按方向键来移动选择光标,再通过多功能按钮来增加、减少频率值; ②通过多功能按钮选中再逆时针、顺时针旋转来增加、减少频率值; ③通过数字键盘输入:进入频率设置状态后,当您按下数字键盘任意一个按键后,屏幕弹出输入窗口,如下图所示: 键入数字后再分别选择不同单位。

模电课程教学设计简单函数信号发生器

模拟电子技术课程设计报告 简易函数信号发生器 姓名:李**,马** 班级:********** 学号:********** ********** 日期:2016.12.28

简易信号发生器设计 摘要: 函数信号发生器是一种能能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。现在我们通过对函数信号发生器的原理以及构成设计一个能变换出三角波、正弦波、方波的简易发生器。我们通过对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。按照设计的方案选择具体的原件,焊接出具体的实物图,并在实验室对焊接好的实物图进行调试,观察效果并与课题要求的性能指标作对比。最后分析出现误差的原因以及影响因素。 关键字: 方案确定、参数计算、调试、误差分析。 一.设计目的: 设计构成正弦波、三角波、方波函数信号发生器

二.函数发生器总方案: 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101 全部采用晶体管), 也可以采用集成电路(如单片函数发生器模块8038)。为进一步掌握电路的基本理论及实验调试技术,本课题采用由集成运算放大器与RC振荡电路的方式形成正弦波—方波—三角波函数发生器的设计方法。产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过比较器,整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。本课题采用先产生正弦波—方波—三角波,再调整方波的占空比进而实现产生锯齿波的电路设计方法,本课题中函数发生器电路组成框图如下所示: 由比较器和积分器组成方波—三角波产转换电路,比较器输出的方波经积分器得到三角波,三角波到锯齿波的变换电路主要由调节占空比来完成。 三. 设计任务与实验原理 实际任务: 所选为题目2:函数信号发生器

函数信号发生器的设计电路

北华航天工业学院 《电子技术》 课程设计报告 报告题目:信号发生器设计电路作

容摘要 本方案主要用集成运放LM324和UA741等元器件设计组成一个简易函数信号发生器。该函数信号发生器主要由迟滞比较器、积分器电路、二阶RC 有源低通滤波器电路等三部份组成。 迟滞比较器电路形成方波,经积分器电路输出三角波,再经二阶RC有源低通滤波器电路形成正弦波,通过电源实现1~12V可调,经过电位器实现频率调节。由此构成了一个简易的函数信号发生器。 本实验主要通过使用Multisim、protel软件等完成电路的软件设计。 关键字:集成运放方波三角波正弦波 目录 一、概述 (1) 二、方案设计与论证 (2) 1.方案一 (2) 2.方案二 (2) 三、单元电路设计与分析 (2) 1.迟滞比较器 3 2.积分器 (3) 3.低通滤波器 (3) 四、总原理图及元器件清单 (4) 五、结论 (6) 六、心得体会 (6) 七、参考文献 (6)

一、概述 通过集成运放构成迟滞比较器、积分器和低通滤波电路,依次分别输出方波、三角波、正弦波。通过调节电压源或滑动变阻器,可改变波形的幅值和频率。 二、方案设计与论证 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。 产生正弦波、方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波等等。 1.方案一 采用分立器件实现电路组成,主要的部件有双运放uA741运算放大器、电压比较器、积分运算电路、二阶低通滤波电路、选择开关、电位器和一些电容、电阻组成。该方案由三级单元电路组成的,第一级单元可以产生方波,第二级可以产生三角波,第三级可以产生正弦波。 2.方案二 采用集成电路实现,主要部件有高速运算放大器LM318、单片函数发生器模块5G8038、选择开关、电位器和一些电容、电阻组成。该方案通过调节不同电位器可调节函数发生器输出振荡频率大小、占空比、正弦波信号的失真,可产生精度较高的方波、三角波、正弦波,且具有较高的温度稳定性和频率稳定

精密秒脉冲发生器

精密秒脉冲发生器电路 第一种:使用价格低廉的32768HZ 晶体,配上HC4060 电路,自身工作电压 2 -6V,静态电流仅仅20 uA 左右。没有任何分频和其他多余器件,如果集成电路采用贴片封装,体积将非常小。本身具有天然的 秒闪烁脉冲信号。 也可以配套CD4060 电路,但是电压范围为 3 -18V,静态电流随电压提高而上升,在+5V 供电时,静态电流约0.25 -5uA,主要考虑的是在 3.0V 电池供电时的停振问题。而HC4060 电路工作电压可以低一些。(本电路还可以输出其他标准频率的参考信号,印刷板上预留了 5 种频率输出信号的焊盘)。 主要参数:供电:DC5V. 月误差:≤ 15S。提示:输出应该外加高输入阻抗的缓冲级。 第二种:是曾经大名鼎鼎的高频高精度晶体振荡电路,也叫“高频石英钟电路”,由于原来是驱动步进电机的,所以其输出间隔是2*0.5HZ/S,我们仅仅使用单边电路,可以得到30 个脉冲/S。其供电电压仅仅 1.5 V,神奇的低!工作电流不到1uA,输出电压也很低,因此,使用分立的PNP 三极管把电平提高到任意值。需要注意:1.5V 电源的正端子,应该就是+5V 电源的正端子。 市场上已经较难购买到5512F 电路了。 上面的电路无需太多调整,本身就有非常准确的精度。如果与单片机配套,单片机需要干的事情仅仅就是计数而已。对5512F 电路,单片机还需要生成一个秒脉冲输出信号。(0.5S 的高低交替电平输出)。 主要参数:供电:DC5V. 月误差:≤ 6S。提示:输出应该外加高输入阻抗的缓冲级。

计数译码显示在现代科学技术中应用非常广泛,它由计数器、译 码器和显示器三部分组成,包含数字电子系统的组合逻辑电路和时序 逻辑电路,因此本实验是一个综合性的实验。次实验的目的是: 掌握中规模集成计数器74LS90的功能和使用方法; 学习使用74LS48BCD码译码器和共阴极数码管显示器; 掌握计数、译码、显示电路综合应用方法; 学会用规模集成计数器74LS90等芯片设计任意进制计 数器的方法。 熟悉用Multisim仿真数字电路的方法。 实验仪器与元件 数字逻辑实验箱; 示波器; 74LS90 二——五——十进制计数器; 74LS48BCD码七段译码驱动器; 七段共阴极数码管; 仿真实验PC机; 其他可选芯片:74LS161,74LS00,74LS20。 实验器件及原理 它是一种中规模集成电路,种类很多,不但可以实现计数、分频, 而且可以实现测量、运算、定时、延时等控制功能。目前各类计数器均有典型产品,如属于二进制计数器的74LS161、74LS163……,属于十进制计数器的74LS90、74LS160等。 本实验采用的是74LS90二—五—十进制异步计数器。74LS90的内部结构是一个二分频和五分频电路,可以独立地作为二进制和五进制计数器使用,同时进行适当的连接又可以构成十进制计数器。

信号发生器的基本原理

信号发生器的基本原理 - 信号发生器使用攻略 信号发生器的基本原理 现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。 频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。 随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。 信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。 信号发生器的一大特性就是可以操控仪器输出信号的幅度,信号通过特定组合衰减量的衰减器达到预定的输出幅度。早期的衰减器是机械式的,通过刻度来读取衰减量或输出幅度。现代中高档信号发生器的衰减器单元由单片机控制继电器来切换,向电子芯片化过渡,衰减单元的衰减步进量不断缩小,精度相应提高。大频率范围的高精度衰减器和高精度信号输出属于高科技技术,这也是国内很少有企业能制造高端信号发生器的原因之一。信号发生器的信号输出范围和输出电平的精度和准确度也是标志信号发生器性能的重要指标。 信号发生器的分类与用途 信号发生器按传统工作频段分类,有超低频信号发生器、低频信号发生器、高频信号发生器、微波信号发生器。 超低频信号发生器一般是指工作频率下潜到0.1Hz以下的信号发生器,一般用于专业上的特殊用途。低频信号发生器一般是指工作频率主要在1Hz~1MHz的信号发生器,多用于音

电子电路课程设计--秒脉冲发生器

题目秒脉冲发生器 摘要 555定时器是美国Signetics公司1972年研制的用于取代机械式定时器的中规模集成电路,因输入端设计有三个5千欧的电阻而成名。此电路后来竟风靡世界。目前,流行的产品有4个:BJT两个:555,666(含两个555);COMOS两个:7555,7556(含两个7555)555定时器是一种通用的集模拟与逻辑功能为一体的中规模集成电路。利用这种集成单片,只要适当配接少量元件,可以很方便地构成脉冲产生和变换电路及具有其他定时功能的电路,在电子系统,电子玩具,家用电器等方面都有广泛的应用 555定时器可以说是模拟电路与数字电路结合的典范。我们的这个课程设计也应用到了555定时器产生秒脉冲的功能。 关键词 555定时器;脉冲;LED灯;电路;电路图

目录 (一)设计目的 (4) (二)设计要求 (4) (三)设计内容 (5) 1实验原理 (5) 2电路原理图 (5) 3实验器材 (6) 4实验步骤 (6) (四)仿真结果 (7) (五)焊接好的成品图 (8) (六)成品性能检测 (9) (七)总结 (10)

(一)设计目的 1. 培养理论联系实际的真确设计思想,训练综合运用已学过 的理论和生产实际知识去分析和解决工程实际问题的能力。 2. 学习较复杂的电子系统设计的一般方法,了解和掌握模拟、 数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3. 有利于我们逻辑思维的锻炼,程序设计能直接有效地训练 学生的创新思维、培养分析问题、解决问题能力。即使是一个简单的程序,依然需要学生有条不理的构思。 4. 有利于培养学生严谨认真的学习态度和创新能力。 5. 熟悉一些基本器件的应用。 6. 熟悉多功能板的焊接工艺技术和电子线路系统的装调技 术。 (二)设计要求 设计一个带555定时器的秒脉冲发生器,通过555定时器产生单位秒脉冲,并将其输出端接到一个LED灯泡上,我们通过观察LED灯泡的状态,可以看到它不停地闪烁,进行明暗两种状态的交替变化,交替时间大约为0.75s。

基于51单片机的信号发生器 完整电路程序

基于51单片机的低频信号发生器设计 曹晖 0945531215 电子信息工程二班 摘要 本文以STC89C51单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相 结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯 形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。本文介绍了波形的生成原理、硬件电路和软件部分的设计原理。本系统可以产生最高频率798.6HZ的波形。该信号发生器具有体积小、价格低、性能稳定、功能齐全的优点。 关键词:低频信号发生器;单片机;D /A转换;

1 1.设计任务 1.设计题目:基于51单片机的信号发生器的设计与实现 2.任务与要求: 设计一个由单片机控制的信号发生器。运用单片机系统控制产生多种波形,这些波形包括方波、三角波、锯齿波、正弦波等。信号发生器所产生的波形的频率、幅度均可调节。并可通过软件任意改变信号的波形。 3.基本要求: 1).产生三种以上波形。如正弦波、三角波、矩形波等。 2).最大频率不低于500Hz。并且频率可按一定规律调节,如周期按1T,2T,3T,4T 或1T,2T,4T,8T变化。 3).幅度可调,峰峰值在0——5V之间变化。 2.系统概述 2.1设计方案 2.1.1总体方案: 采用AT89C51单片机和DAC0832数模转换器生成波形,加上一个低通滤波器,生成的波形比较纯净。它的特点是可产生任意波形,频率容易调节,频率能达到设计的500HZ以上。性能高,在低频范围内稳定性好、操作方便、体积小、耗电少。既可满足基本要求又能充分发挥其优势,电路简单,易控制,性价比高,所以采用该方案. 2.1.2改变幅度方案: 将输出电压通过一个运算放大器的放大。这样还有个优点是幅度连续可调。既可满足基本要求,并且电路也挺简单。 2.2工作原理 数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模拟信号的方法来获得所需要的波形。89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置键盘及、数模转换及波形输出、放大电路等部分,即可构成所需的波形发生器,其信号发生器构成如下图所示。系统框图

相关主题
文本预览
相关文档 最新文档