当前位置:文档之家› 固定间隙的空气式静电放电

固定间隙的空气式静电放电

固定间隙的空气式静电放电
固定间隙的空气式静电放电

固定间隙的空气式静电放电

吴 勇,刘尚合,原青云

(军械工程学院静电与电磁防护研究所,石家庄050003)

摘 要:为更好地研究空气式静电放电,利用新型ESD 模拟测试系统研究了固定间隙的空气式静电放电特性。在

较宽范围的电压电平下,用数字存储示波器测量放电电流的上升时间、峰值、自制金属半圆环上的耦合电压峰2峰值,并记录了放电电流和耦合电压的波形。分析测量结果及其与放电电压和放电间隙之间的变化关系,可知在一定的间隙间距上,放电电流随着放电电压的增大而增大,高压放电也能产生上升沿比较陡的电流脉冲;在一定的放电电压下,存在着一个放电间隙间距使得放电电流峰值最大或耦合电压最大;不同电压下的频谱分布和能量分布不一样。

关键词:静电放电;空气放电;固定间隙;放电电流;耦合电压;频谱中图分类号:O441.1文献标志码:A 文章编号:100326520(2009)0420909205

基金资助项目:国家自然科学基金(60671044)。

Project Supported by National Natural Science Foundation of China (60671044).

Air Electrostatic Discharge at a Fixed G ap Distance

WU Y ong ,L IU Shang 2he ,YUAN Qing 2yun

(Elect ro static and Elect romagnetic Protection Research Instit ute ,Ordnance Engineering College ,

Shijiazhuang 050003,China )

Abstract :Using a new electrostatic discharge (ESD )simulation and testing set 2up ,we investigated the characteris 2tics of air ESD at a fixed gap distance.At a wide 2broad voltage levels ,the rise 2times ,the peak currents of discharge and the peak 2peak voltages induced on the home 2made semi 2metal 2loop were measured using a digital memory oscillo 2scope ,and the waveforms of the discharge currents and induced voltages were recorded.The correlations of meas 2ured results with the discharge voltages and the discharge distances were analyzed.Analysis shows that the dis 2charge currents increase along with the discharge voltages and the high voltage discharge can also give rise to the fairly steeper current pulse at some fixed gap distance ;there exists a discharge gap at which the peak currents of dis 2charge ,and the peak values of induced voltages are largest under fixed discharge voltage ;the f requency spectrum distribution and the energy distribution of induced voltages under different voltages are different.The study of this work provides a reference for ESD immunity test methodology.

K ey w ords :electrostatic discharge (ESD );air ESD ;fixed gap distance ;discharge current ;induced voltage ;spec 2trum

0 引言

随着新工艺、新技术的不断出现和微电子器件的小型化发展趋势,使得电子设备(系统)的电磁敏感度提高,而抗过电压能力下降[1,2]。静电放电(ESD )作为一种常见的近场危害源,能够对电子设备(系统)造成直接和间接干扰或损伤[326]。因此,对电子产品进行兼容性试验特别是ESD 抗扰度试验变得极其重要。通过试验可以了解电子设备遭受外部ESD 骚扰的失效机制,实现潜在性失效预测、降低风险和提出改进措施[7]。

国际电工委员会(IEC )规定了两种ESD 模拟器的放电方式:接触式放电和空气式放电[8]。接触式放电虽然具有较好的重复性,也能反映实际ESD

过程中的一些主要特点,但它并不能真正代表实际生活中的静电放电事件。因为在实际生活中,绝大多数的静电放电是空气放电,或者说空气式放电更能真实地模拟实际生产和生活中的静电放电过程。但是,IEC 标准没有对空气式放电给予详细规定,这是因为空气式放电涉及到外部火花通道的形成过程,温度、湿度以及模拟器放电电极接近被测物体的速度等因素,放电的重复性和再现性差。所以对空气式放电进行研究,对静电抗扰度试验方法的完善具有重要的意义。目前国内外对空气放电的定量研究并不是很多。文献[9]中对固定间隙的空气式静电放电的辐射场进行了分析,指出电子集成电路的EM I 能力与放电电压并不是相一致的。本文在此基础上对固定间隙的空气式静电放电的放电电流的峰值、上升时间、金属半圆环上的耦合电压峰2峰值等放电特性进行了进一步的研究。

?

909? 第35卷第4期

2009年 4月

高 电 压 技 术

High Voltage Engineering

Vol.35No.4

Apr. 2009

图1 ESD模拟测试装置图

Fig.1 Schem atic diagram for ESD simulation

and measurement

1 实验装置及实验方法

实验布局如图1所示。整个实验装置主要包括:ESD模拟器、电流靶、法拉第笼、半圆环天线和示波器等构成。其中半圆环和电流靶装配在大小为1.5m×1.5m的法拉第笼后壁上,电流靶位于后壁的中心通过20dB衰减器接入到示波器,小圆环距离电流靶中心36cm,在半圆环上耦合的感应电压直接通过同轴电缆接入到示波器。ESD模拟器采用Noiseken公司生产的ESS-200AX,其输出电压为0.2~30kV。使用Tekt ronix TDS7154B存储示波器(采样频率为20GHz,模拟带宽为1.5GHz),为了避免静电放电产生的骚扰而将示波器放置在法拉第笼内,整个法拉第笼被良好接地。

金属小环半径为15mm,由线径0.5mm的铜导线做成。通过小环上耦合电压的测量来近似地表征ESD的磁场特性。同时,采用该半圆环天线测量可以抑制低频成分,提高高频成分的动态范围[10]。(测量环境温度21.6~22.5°C,相对湿度34.6%~36.2%)

实验时,ESD模拟器的放电电压2~28kV,步长2kV,放电间距见图1。间距从0.6mm开始,然后按0.6mm的步长增加,在每个间距上按上述的一系列的电压值放电,直到示波器观测不到放电电压为止。

2 实验结果及分析

2.1 放电电流峰值及上升时间、耦合电压峰峰值与放电电压的关系

图2、3、4分别为4个放电间隙间距上放电电流峰值及上升时间、

耦合电压峰峰值与放电电压的关系。

图2 放电电流峰值与放电电压的关系

Fig.2 Correlation betw een the discharge voltages

and the peak currents of

discharge

图3 放电电流上升时间与放电电压的关系

Fig.3 Correlation betw een the discharge voltages

and the rise times of disch arge

currents

图4 耦合电压峰峰值与放电电压的关系

Fig.4 Correlation betw een the discharge voltages

and the peak2peak values of induced voltages

从图2中可以看出:放电电流峰值I与放电电压U基本上呈正比关系,即在各个不同的放电间隙间距上放电电流都随着ESD放电电压的增加而增大。这说明放电电压是决定放电电流的主要因素。

从图3中可以看出:①在0.6mm的小间隙间距上,电压从0到20kV时,上升时间基本上保持在

?

1

9

?Ap r.2009High Voltage Engineering Vol.35No.4 

0.5~1ns,上升沿比较陡。②在3.0mm和3.6 mm的间隙间距上,低压放电时的上升时间很大,但是随着放电电压的增大,上升时间逐渐变小。这说明在一定的间隙间距上,高压放电能产生上升沿比较陡的电流脉冲。

从图4中可以看出:①在小间隙间距上时,小环上的耦合电压峰峰值随着放电电压的增大而增大,基本上呈线形关系,且在1.2mm的间隙间距上的曲线斜率比0.6mm时的大。②在较大的间隙间距上,耦合电压峰峰值都变小了,且与放电电压没有很好的相关性,这主要是实验环境和电弧长度影响的结果。

2.2 放电电流及上升时间、耦合电压峰峰值与放电间隙间距的关系

图5、6、7分别给出了放电电压为4、8、16、24 kV时,放电电流峰值及上升时间、耦合电压峰峰值随放电间隙间距的变化曲线。从图中可以看出:

1)当放电电压较低时,只能在较小的间隙间距范围内发生空气式ESD,而当放电电压较高时,在较大的间隙间距范围内都能够发生空气式ESD[11213]。可以得到:电压低空气击穿间隙间距小,电压高空气击穿间隙间距大。

2)在放电电压一定的情况下,放电电流的上升时间先是随着放电间隙间距的增大而增大然后再减少。这说明在一定的间隙间距上,高压放电也能产生上升沿比较陡的电流脉冲。

3)在高压的情况下,当放电电流的上升时间较小时,放电电流峰值和耦合电压达到最大值;当上升时间到达最大值后,放电电流峰值和耦合电压开始趋于一个稳定值。这表明放电电流峰值和耦合电压与放电电流的上升时间存在着密切的关系。

4)在放电电压一定的情况下,存在着一个放电间隙间距能使得放电电流峰值最大或耦合电压最大,但是这个放电间隙间距并不是越小越好。这与空气放电时复杂的电离过程相关。当间隙间距很小时,虽然模拟器电极与电流靶之间的场强很强,空气击穿很强烈,但是由于间隙小,空气击穿电离没能达到饱和的程度即已放电,也就是说此时空气中单位体积内电离的离子数目并不是最多,所以产生的电流峰值不是最大。但是当间隙间距逐渐变大时,场强依然保持很强,使得空气中单位体积内的离子数目逐渐变大,直到电离到达饱和,使得产生的电流峰值最大。当间隙间距继续增大时,场强开始变弱,空气击穿不完全,使得单位体积内电离的离子数目开始变小,从而电流峰值变小。

5)在达到最高的电流峰值和耦合电压后,

随着

图5 放电电流峰值与放电间隙间距的关系

Fig.5 Correlation betw een the gap distances

and the peak currents of

discharge

图6 放电电流上升时间与放电间隙间距的关系Fig.6 Correlation betw een the gap distances

and the rise times of disch arge

currents

图7 耦合电压峰峰值与放电间隙间距的关系

Fig.7 Correlation betw een the gap distances and the

peak2peak values of induced voltages

放电间隙间距的增大,耦合电压和放电电流峰值迅速衰减并趋于一个稳定值,最后才衰减为零。主要考虑到火花弧长和火花通道的等效阻抗的影响。

6)不同放电电压和不同放电间隙下的空气式ESD事件存在着明显的区别。当放电电压较低时,放电电流峰值和耦合电压都比较小,而且是直接趋

?

1

1

9

?

 2009年4月高 电 压 技 术第35卷第4期

于零。当放电电压比较高时,存在着一个明显的“平

稳区”,且持续间隙间距比较长。最大放电电流峰值是“平稳区”内电流峰值的两倍左右,而最大耦合电压峰值是“平稳区”内耦合电压峰值的十几倍[14]。由于半圆环天线主要测量的是高频成分,这说明在“平稳区”内的间隙间距上时,空气放电产生的高频成分变得很少而且比较稳定。2.3 耦合电压的频谱分析

在0.6mm 的放电间隙间距上,放电电压8、26kV 时的耦合电压快速傅立叶变换之,图8、9可见:

两种电压下的频谱分布范围不同,8kV 时能量主要集中在0.6~1.25GHz ,而26kV 时能量主要集中在两个频段即0.1~0.4GHz 和0.6~1.25GHz 。在0.6~1.25GHz 的频段时,26kV 的幅值大约为8kV 时的两倍。可以根据耦合电压的频谱特性,来近似地反映ESD 辐射场的频谱特性,从而有助于从器件频率响应的角度来认清微电子器件的失效机理[15,16]。

3 结论

a )各不同的放电间隙间距上放电电流都随着ESD 放电电压的增加而增大,基本上呈正比关系。

b )在一定的间隙间距上,高压放电能产生上升

沿比较陡的电流脉冲。

c )在小间隙间距上时,小环上的耦合电压与放电电压基本上呈线形关系,而在较大的间隙间距上时,它们之间就没有很好的相关性。

d )在高压的情况下,放电电流峰值和耦合电压与放电电流的上升时间存在着密切的关系。

e )在放电电压一定的情况下,存在着一个放电间隙间距能使得放电电流峰值最大或耦合电压最大,但是这个放电间隙间距并不是越小越好。

f )在达到最高的电流峰值和耦合电压后,随着放电间隙间距的增大,耦合电压和放电电流峰值迅速衰减并趋于一个稳定值,最后才衰减为0。

g )不同电压下的频谱分布不一样,相同频率段上的能量大小也不一样。

参考文献

[1]刘尚合,武占成,朱长清,等.静电放电及危害防护[M ].北京:

北京邮电大学出版社,2004.

[2]Rhoades W T.Avoidance of ESD effect s [C ]∥IEEE Interna 2

tional Symposium on EMC.Seattle ,WA ,USA :IEEE ,1988:962100.

[3]陈砚桥,刘尚合,武占成.静电放电电磁脉冲的实验研究[J ].强

激光与粒子束,1999,11(3):3592362.

CH EN Yan 2qiao ,L IU Shang 2he ,WU Zhan 2cheng.Experimen

2

图8 8kV 时耦合电压的频谱图

Fig.8 Correlation betw een the gap distances and the

peak 2peak alues of induced

voltages

图9 26kV 时耦合电压的频谱图

Fig.9 Spectrum of induced voltage at 26kV

tal study on emp fields radiated by ESD[J].High Po wer Laser &P article Beams.1999,11(3):3592362.

[4]刘尚合,魏光辉,刘直承,等.静电理论与防护[M ].北京:兵器

工业出版社,1999.

[5]Y oshiaki M ,Taro N ,K ozo Tetal.Soft ESD phenomena in

GMR heads in t he HDD manufacturing process [J ].Journal of Electrostatics ,2006,64(2):72279.

[6]Tabata Y ,Tomita H.Malfunctions of high impedance circuit s

caused by electrostatic discharges[J ].Journal of Electrostatics ,1990,19(24):1552166.

[7]Lachance J ,Lawrence R ,Stegner S.Strategies to improve con 2

fidence in immunity testing under CISPR24[C ]∥International Symposium on Electromagnetic Compatibility.Zurich ,Switzer 2tand :[s.n.],2001:84288.

[8]IEC 610002422 International standard[S],2001.

[9]Honda M.EMI power analysis of transient fields from fixed gap

ESD [C ]//Industry Applications Conference.Japan :Impulse Phys Lab ,2002:2842289.

[10]Ramachandran Chundru ,David Pommerenke ,Kai Wang.

Characterization of human metal ESD reference discharge e 2vent and correlation of generator parameters to failure levels 2Part 1:Reference Event [J ].IEEE Transactions on Electro 2magnetic Compatibility ,2004,46(11):4982504.

[11]Pommerenke D.ESD :t ransient fields ,arc simulation ,and

rise 2time limit [J ].Journal of Electrostatics ,1995,36(1):31254.

[12]Mesayt s.Physics of pulse breakdown in gases [M ].Russia :

Nauka Publishers ,1991.

?219?Ap r.2009High Voltage Engineering Vol.35No.4 

[13]杨津基.气体放电[M ].北京:科学出版社,1983.

[14]贺其元.静电放电抗扰度试验方法和能量耦合规律研究[D ].

石家庄:军械工程学院,2008.

H E Qi 2yuan.Study on t he immunity testing met hods and ener 2gy coupling mechanism of electrostatic discharge [D ].Shi 2jazhuang ,China :Ordnance Engineering College ,2008.[15]朱长青,刘尚合,魏 明,等.静电放电电流的频谱分析与计算

[J ].高电压技术,2003,29(8),23225.

ZHU Chang 2qing ,L IU Shang 2he ,WEI Ming ,et al.An analy 2sis and calculation on spectrum of esd current [J ].High Volt 2age Engineering ,2003,29(8),23225.

[16]贺其元,刘尚合,陈京平.对空气静电放电的频谱研究[J ].军械

工程学院学报,2006,18(4):25228.

H E Qi 2yuan ,L IU Shang 2he ,CH EN Jing 2ping.Study on air e 2lectrostatic discharge in t he frequency domain [J ].Journal of Ordnance Engineering College ,2006,18(4):252

28.

WU Y ong

吴 勇

1985—,男

从事电磁防护理论与技术的研究

E 2mail :704301733@163.

com

L IU Shang 2he CA E member

刘尚合

1937-,男,中国工程院院士,教授,博

从事专业为武器系统与运用工程

收稿日期 2008206210 修回日期 2008208220 编辑 蒋英圣

?

319? 2009年4月

高 电 压 技 术第35卷第4期

静电放电测试规范

静电放电测试规范1.测试目的:为使静电干扰耐受性测试时,能有一统一之规范及流程可供依 循,特订定本程序书,本试验的目的是仿真静电对电子产品所造成的干扰,并判别其耐受性。 2.适用范围:执行静电干扰耐受性测试时,适用之。 3.名词定义: 3.1ESD:electrostatic discharge(静电放电),当两个不同电位的物体, 直接接触或非常靠近时所产生的电荷放电现象。 3.2RGP:一个平坦之导电表面并以其电位作为共同的基准。 3.3Contact discharge:接触放电,直接的静电放电试验方法的一种,由产 生器的电极尖端直接接触EUT,并以产生器之放电开关实施静电放电。 3.4Air discharge:空间放电, 直接的静电放电试验方法的一种,由产生 器的圆形充电电极快速接近EUT,而产生火花的静电放电。 3.5EUT:待测设备。 3.6Degradation:劣化为EUT受电磁干扰所造成的产品功能障碍。 3.7HCP:水平耦合面,用以模凝邻近EUT的物体对EUT的静电放 电所使用的水平金属面板。 3.8VCP:垂直耦合面,用以模凝邻近EUT的物体对EUT的静电放电所使用 的垂直金属面板。 4.职责: 测试服务,案件执行。 场地维护。

提供相关信息于测试服务上。 5.办法: 试验等级:试验等级如下 X:此等级依厂商需求而定 接触放电为优先采用的测试方法,空气放电必须是接触放电不能使用时才使用。依不同的放电测试方法而有不同的电压,其严酷度是不相同的。 ESD产生器之特性 - Rc充电电阻:50 MΩ~100MΩ. - Cs 储能电容:150pF±10%。 -Rd 放电电阻:330Ω±10%。 -输出电压极性:正与负。 -输出电压指示值之容许误差值:±5%。 -具有圆形放电电极及尖形放电电极。 -放电回路电缆,长2m。 -具有接触放电开关及空间放电开关。 -可调整之放电操作模式如单击放电极及每秒20次之重复放电。

静电放电esd)最常用的三种模型及其防护设计

静电放电(ESD)最常用的三种模型及其防护设 计 ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌握?ESD?的相关知识。为了定量表征 ESD 特性,一般将 ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body?Model,人体模型: 该模型表征人体带电接触器件放电,Rb 为等效人体电阻,Cb 为等效人体电容。等效电路如下图。图中同时给出了器件 HBM 模型的 ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是?200pF,等效电阻为 0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取 200pF。由于机器模型放电时没有电阻,且储电电容大于人体模式,同等电压对器件的损害,机器模式远大于人体模型。 ESD机器模型等效电路图及其ESD等级 3.CDM:Charged?Device?Model,充电器件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它绝缘材料(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为电容器的一个极板而存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下: ESD充电器件模型等效电路图及其ESD等级 器件的 ESD 等级一般按以上三种模型测试,大部分 ESD 敏感器件手册上都有器件的 ESD数据,一般给出的是 HBM 和 MM。 通过器件的 ESD 数据可以了解器件的 ESD 特性,但要注意,器件的每个管脚的 ESD 特性差异较大,某些管脚的 ESD 电压会特别低,一般来说,高速端口,高阻输入端口,模拟端口 ESD电压会比较低。 ESD 防护是一项系统工程,需要各个环节实施全面的控制。下图是一个 ESD 防护的流程图: ESD 防护设计流程图 ESD 防护设计可分为单板防护设计、系统防护设计、加工环境设计和应用环境防护设计,单板防护设计可以提高单板 ESD 水平,降低系统设计难度和系统组装的静电防护要求。当系统设计还不能满足要求时,需要进行应用环境设计防护设计。ESD 敏感器件在装联和整机组装时,环境的 ESD 直接加载到器件,所以加工环境的 ESD 防护是至关重要的。 一般整机、单板、接口的接触放电应达到±2000V(HBM)以上的防护要求。器件的 ESD 防护设计是在器件不能满足 ESD 环境要求的情况下,通过衰减加到器件上的 ESD 能量达到保护器件的目的。ESD 是电荷放电,具有电压高,持续时间短的特点,根据这些特点,ESD 能量衰减可通过电压限制、电流限制、高通滤波、带通滤波等方式实现,所以防护电路的形式多种多样,这里就不一一列举。

静电放电抗扰度试验 IEC T 标准总结及重点分析

静电放电抗扰度试验|IEC61000-4-2|GB/T17626.2标准总结及重点分析 1.1静电放电的起因: 静电放电的起因有多种,但GB/T17626.2-2006主要描述在低湿度情况下,通过摩擦等因素,使人体积累了电荷。当带有电荷的人与设备接触时,就可能产生静电放电。 1.2试验目的: 试验单个设备或系统的抗静电干扰的能力。它模拟: (1)操作人员或物体在接触设备时的放电。 (2)人或物体对邻近物体的放电。 静电放电可能产生的如下后果: (1)直接通过能量交换引起半导体器件的损坏。 (2)放电所引起的电场与磁场变化,造成设备的误动作。 1.3放电方式: 直接放电(直接对设备的放电):接触放电为首选形式;只有在不能用接触放电的地方(如表面涂有绝缘层,计算机键盘缝隙等情况)才改用气隙放电。 间接放电:水平耦合,垂直耦合 1.4静电放电发生器原理图及波形参数: 注:图中省略的C d是存在于发生器与受试设备,接地参考平面以及偶合板之间的分布电容,由于此电容分布在整个发生器上,因此,在该回路中不可能标明。

静电放电发生器简图 波形参数 等级指示电压 /kV 放电的第一个峰 值电流/A(±10 ﹪) 放电开关操作时 的上升时间t r/ns 在30ns时的电 流/A(±30﹪) 在60ns时的 电流/A(±30 ﹪) 127.50.7~142 24150.7~184 3622.50.7~1126 48300.7~1168 1.5试验的严酷度等级: 1a接触放电1b空气放电 等级试验电压/kV等级试验电压/kV 1 2 3 4 X1) 2 4 6 8 特殊 1 2 3 4 X1) 2 4 8 15 特殊 1)“X”是开放等级,该等级必须在专用设备的规范中加以规定,如果规定了高于表格中的电压,则可能需要专用的试验设备。

静电放电模式HBMIEC电路及静电等级及比较

LED静电击穿原理 以PN结结构为主的LED,在制造、筛选、测试、包装、储运及安装使用等环节,难免不受静电感应影响而产生感应电荷。若得不到及时释放,LED的两个电极上形成的较高电压将直接加上led芯片的PN结两端。 当电压超过LED的最大承受值后,静电电荷将以极短的瞬间(纳秒级别)在LED芯片的两个电极之间进行放电,功率焦耳的热量将使得LED芯片内部的导电层、PN发光层的局部形成高温,高温将会把这些层熔融成小孔,从而造成漏电以及短路的现象。 ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌握ESD的相关知识。为了定量表征ESD 特性,一般将ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body Model,人体模型: 该模型表征人体带电接触器件放电,Rb 为等效人体电阻,Cb 为等效人体电容。等效电路如下图。图中同时给出了器件HBM 模型的ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是200pF,等效电阻为0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取200pF。由于机器模型放电时没有电阻,且储电电容大 于人体模式,同等电压对器件的损害,机器模式远大于人体模型。

ESD机器模型等效电路图及其ESD等级 3.CDM:Charged Device Model,充电器件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它绝缘材料(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为电容器的一个极板而存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下:

静电放电ESD最常用的三种模型及其防护设计

静电放电E S D最常用的三种模型及其防护设计 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

静电放电(ESD)最常用的三种模型及其防护设计 ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌 握ESD 的相关知识。为了定量表征 ESD 特性,一般将 ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body ,人体模型: 该模型表征人体带电件放电,Rb 为等效人体,Cb 为等效人体。等效电路如下图。图中同时给出了器件 HBM 模型的 ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是,等效电阻为 0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取 200pF。由于机器模型放电时没有电阻,且储电电容大于人体模式,同等电压对器件的损害,机器模式远大于人体模型。 ESD机器模型等效电路图及其ESD等级 3.CDM:Charged Model,件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为的一个极板而存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下: ESD充电器件模型等效电路图及其ESD等级 器件的 ESD 等级一般按以上三种模型测试,大部分 ESD 敏感器件手册上都有器件的 ESD数据,一般给出的是 HBM 和 MM。 通过器件的 ESD 数据可以了解器件的 ESD 特性,但要注意,器件的每个管脚的 ESD 特性差异较大,某些管脚的 ESD 电压会特别低,一般来说,高速端口,高阻输入端口,模拟端口 ESD 电压会比较低。 ESD 防护是一项系统工程,需要各个环节实施全面的控制。下图是一个 ESD 防护的流程图: ESD 防护设计流程图 ESD 防护设计可分为单板防护设计、系统防护设计、加工环境设计和应用环境防护设计,单板防护设计可以提高单板 ESD 水平,降低系统设计难度和系统组装的静电防护要求。当系统设计还不能满足要求时,需要进行应用环境设计防护设计。ESD 敏感器件在装联和整机组装时,环境的 ESD 直接加载到器件,所以加工环境的 ESD 防护是至关重要的。 一般整机、单板、接口的接触放电应达到±(HBM)以上的防护要求。器件的 ESD 防护设计是在器件不能满足 ESD 环境要求的情况下,通过衰减加到器件上的 ESD 能量达到件的目的。ESD

9.4 静电的防止与利用 (人教版新教材)高中物理必修三第九章【知识点+练习】

第九章静电场及其应用 4 静电的防止与利用 知识点一静电平衡及其状态下导体的电场 1.静电平衡状态. 发生静电感应现象时,感应电荷的电场与原电场叠加,使导体内部电场减弱,直至为零,导体内部自由电子不再发生定向移动的状态. 2.处于静电平衡状态下导体中电场的特征. (1)处于静电平衡状态的导体,内部电场处处为0. (2)处于静电平衡状态的导体,其外部表面附近任何一点的电场强度方向必跟该点的表面垂直. (3)处于静电平衡状态的整个导体是个等势体,它的表面是个等势面. 3.导体内部没有电荷,电荷只分布在导体的外表面. 在导体表面,越尖锐的位置,电荷的密度越大,凹陷的位置几乎没有电荷. 知识点二尖端放电和静电屏蔽 1.所带电荷与导体尖端的电荷符号相反的粒子,由于被吸引而奔向尖端,与尖端上的电荷中和,这相当于导体从尖端失去电荷.这个现象叫作尖端放电. 2.把一个电学仪器放在封闭的金属壳(网)里,即使壳(网)外有电场,由于壳内电场强度保持为零,外电场对壳(网)内的仪器也不会产生影响的现象叫静电屏蔽. 3.尖端放电和静电屏蔽的应用、防止: (1)尖端放电: ①应用:避雷针是利用尖端放电避免雷击的一种设施. ②防止:高压设备中导体的表面尽量光滑会减少电能的损失. (2)静电屏蔽的应用:电学仪器外面有金属壳,野外高压线上方还有两条导线与大地相连,通信电缆表面包一层铅皮;高压带电作业人员穿金属网衣;通讯工具在钢筋结构房屋中接收信号较弱. 【例1】将悬挂在细线上的带正电的小球A放在不带电的金属空心球C内(不和球壁接触),另有一个悬挂在细线上的带负电的小球B向C靠近,如图所示,下列说法正确的有() A.A往左偏离竖直方向,B往右偏离竖直方向 B.A的位置不变,B往右偏离竖直方向 C.A往左偏离竖直方向,B的位置不变 D.A和B的位置都不变 【例2】如图所示,一导体AB放在一负电荷的电场中,导体AB与大地是绝缘的,当导体处于静电平衡时. (1)比较A点和B点电场强度大小. (2)比较A、B端外表面电场强度大小. (3)若A端接地,AB导体带什么电? (4)若把A端和B端用导线连接,A、B端电荷中和吗?

电子产品的静电放电测试及相关要求

电子产品的静电放电测试及相关要求 (时间:2007-1-23 共有 901 人次浏览)[信息来源:互联网] 从第一节的叙述中我们了解ESD对电子产品的危害,随着电子产品的复杂 程度和自动化程度越来越高,电子产品的ESD敏感度也越高,电子产品抵御ESD 干扰的能力已经成为电子产品质量好坏的一个重要因素。那么如何来衡量电子产品抗ESD干扰的能力?通过ESD抗扰度试验可以检测这种能力。为此越来越多的产品标准将ESD抗扰度试验作为推荐或强制性内容纳入其中。电子设备的ESD抗扰度试验也作为电子设备电磁兼容性测试一项重要内容列入国家标准和国际标准。 对不同使用环境、不同用途、不同ESD敏感度的电子产品标准对ESD抗扰度试验的要求是不同的,但这些标准关于ESD抗扰度试验大多都直接或间接引用 GB/T17626.2-1998 (idt IEC 61000-4-2:1995):《电磁兼容试验和测量技术静电放电抗扰度试验》这一国家电磁兼容基础标准,并按其中的试验方法进行试验。下面就简要介绍一下该标准的内容、试验方法及相关要求。 1.试验对象: 该标准所涉及的是处于静电放电环境中和安装条件下的装置、系统、子系统和外部设备。 2.试验内容: ESD的起因有多种,但该标准主要描述在低湿度情况下,通过摩擦等因素,使操作者积累了静电。电子和电气设备遭受直接来自操作者的ESD和对临近物体的ESD的抗扰度要求和试验方法。对电子产品而言,因操作者的ESD造成受设备干扰或损坏的几率相对其他ESD起因大得多。并且若电子产品能提高针对因操作者的ESD抗扰性,则针对因其他因素的ESD抗扰性也会有相应的提高。 3.试验目的: 试验单个设备或系统的抗静电干扰的能力。它模拟:(1)操作人员或物体在接触设备时的放电。(2)人或物体对邻近物体的放电。 4. ESD的模拟: 图1和图2分别给出了ESD发生器的基本线路和放电电流的波形。

静电放电防护设计规范与指南

第一章概述 (2) 1.1静电和静电放电 (2) 1.2 静电放电的特点 (2) 1.3静电放电的类型 (2) 第二章静电放电模型 (3) 2.1人体带电模型 (3) 2.2 场增强模型(人体-金属模型) (3) 2.3 带电器件模型 (4) 第三章静电放电的危害 (5) 3.1 ESD造成元器件失效 (5) 3.2 ESD引起信息出错,导致设备故障 (5) 3.3 高压静电吸附尘埃微粒 (5) 第四章ESD防护设计指南 (5) 4.1 设备的ESD防护设计要求 (6) 4.2 PCB的ESD防护设计要求 (6) 4.3 通讯端口的ESD防护设计要求 (10) 第五章典型案例 (13) 5.1 某宽带园区接入产品防静电设计 (13) 5.2 某小容量带宽接入产品的防静电设计 (14) 5.3 某产品与结构工艺有关的防静电案例 (15) 5.4 ESD试验使某单板程序“跑飞” (15) 5.5 试验使单板复位 (17)

第一章概述 1.1静电和静电放电 静电式物体表面的静止电荷。物体在接触、摩擦、分离、感应、电解等过程中,发生电子或离子的转移,整电荷和负电荷在局部范围内失去平衡,就形成了静电。带有静电的物体称为带电体。当带电体表面附近的静电场梯度大到一定的程度,超过周围介质的绝缘击穿场强时,介质将会发生电离,从而导致带电体的点和部分的电荷部分或全部中和。这种现象我们称之为静电放电(ESD)。静电放电可以出现在两个物体之间,也可由物体表面静电荷直接向空气放电。 人体由于自身的动作以及与其它物体的接触、分离。摩擦或感应等因素,可以带上几千伏甚至上万伏的静电。在干燥的季节,人们在黑暗中托化纤衣服时,常常会听到“啪啪”的声音,同时还会看到火花,这就是人体的静电放电现象。在工业生产中,人是主要的静电干扰源之一。 1.2 静电放电的特点 1、静电放电时高电位,强电场,瞬时大电流的过程 大多数情况下静电放电过程往往会产生瞬时脉冲大电流,尤其是带电导体或手持小金属物体的带电人体对接地体产生火花放电时,产生的瞬时电流的强度可达到几十安培甚至上百安培。 2、静电放电会产生强烈的电磁辐射形成电磁脉冲 在静电放电过程中,会产生上升时间极快、持续时间极短的初始大电流脉冲,并产生强烈的电磁辐射,形成静电放电电磁脉冲,它的电磁能量往往会引发起电子系统中敏感部件的损坏、翻转,使某些装置中的电火工品误爆,造成事故。 1.3静电放电的类型 静电放电类型主要有下面三种: 1、电晕放电

4.静电放电测试报告

Official Test Report正式的测试报告 测试项目:静电放电测试 Project Information项目信息: Project Code: 项目代码 072V24S Project Phase: 项目阶段 研发 Software Version: 软件版本 V1.2 Sample Information样品信息: Sample Level: 样品类型 BMS Quantity: 数量 1 Serial Number: 序列号 020151125 Test Operation Information测试信息: Location: 地点上海博强 Start Date: 开始日期 2015-12-20 Finish Date: 完成日期 2015-12-21 Conclusion结论: Pass通过Fail 不通过 Other其它:测量PIN耐受电击的极限值,作为设计参考,具体请阅报告正文 Performed by测试: 樊佳伦&黄俊伟Signature Date: 2015-12-22 Written by撰写: 邓文签名:日期:2015-12-23 Checked by核查: 董安庆2015-12-24 Approved by批准: 穆剑权2015-12-25

Revision History修订履历 SN 序号Report No. 报告编号 Report Version 报告版本 Contents 变更内容 Release Date 发行日期 1 BQ-72V-BMS-0004 V1.0 New release. 2015-12-25 2

静电放电测试规范

静电放电测试规范 1.测试目的:为使静电干扰耐受性测试时,能有一统一之规范及流程可供依循,特订定本程 序书,本试验的目的是仿真静电对电子产品所造成的干扰,并判别其耐受性。 2.适用范围:执行静电干扰耐受性测试时,适用之。 3. 4. 4.2 场地维护。 4.3 提供相关信息于测试服务上。

5.办法: 5.1 试验等级:试验等级如下

5.3 实验室之测试场地配置:实验室之地面应有一铜或铝制的金属GRP,其厚度至少0.25mm。 如果使用别种金属材料,其厚度至少应有0.65mm。GRP尺寸至少1m×1m,依EUT大小而定。其每一面应超出EUT或HCP、VCP至少0.5m并连接至接地系统。EUT依使用状态架设及连接。EUT与实验室墙面及其他金属结构的距离至少1m。EUT除了所规定接地系统外,不可再有其他之接地。ESD产生器的放电回路电缆长度为2m,需连接至GRP,测试时放电回路电缆距离其他导电部分至少0.2m。HCP、VCP之材质与厚度应与GRP相同且使用两端接有470KΩ之接地线连接至GRP。其他规定如下: 5.3.1 EUT为桌上型设备之场地配置:使用高0.8m之木桌立于RGP作测试,并使用一长1.6m ×宽0.8m之HCP置于桌面,EUT及电缆以0.5mm绝缘垫与HCP隔离。EUT距离HCP各边至少0.1m。若EUT过大可使用相同之HCP以较短边相距0.3m连接,可用较大尺寸之桌面或两组桌子,此两组HCP不可搭在一起,并由两端各接470KΩ电阻之接地线个别接至RGP。如下图所示。

5.3.2 EUT属于没有接地系统之设备的测试方法:EUT 是属于设备或设备的一部份、其装设 规格或设计是不可连接至任何接地系统设备、包括可携式、电池操作双重绝缘设备 (class II equipment)。其一般性配置与5.3.1相同,但为了模凝单一静电放电,在每次放电前必须将EUT的电荷消去,EUT的金属部分,例如连接器的外壳、电池充电点、金属天线等,在实施放电前必须将电荷消除。因此需使用具有470KΩ的泄放电阻器之电缆,类似HCP、VCP所用之接地电缆。其中一颗电阻需尽量靠近EUT的测试点,最好小于20mm的距离连接,第二颗电阻需连接在电缆靠近HCP的末端(桌上型)或RGP 的末端(落地型)。使用具有泄放电阻器之电缆,会影响某些EUT的测试结果。有争议时,在测试中如果电荷在连续放电之间有足够的衰减,则优先考虑以电缆不连接的状况作测试。可以使用下列的替换方法: -在连续放电间的时间间隔,必须延长到容许从待测物的电荷自然衰减所需的时间。 -在接地电缆中有碳纤维刷的泄放电阻器(例如2×470KΩ)。 -使用空气离子器以加速待测物在其环境的自然放电过程(使用空气放电作测试时,空气离子器必须关闭)。

静电放电及防护基础知识简易版

In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编订:XXXXXXXX 20XX年XX月XX日 静电放电及防护基础知识 简易版

静电放电及防护基础知识简易版 温馨提示:本安全管理文件应用在平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 一、术语及定义 1、静电:物体表面过剩或不足的静止的电荷. 2、静电场:静电在其周围形成的电场. 3、静电放电:两个具有不同静电电位的物体,由于直接接触或静电场感应引起两物体间的静电电荷的转移.静电电场的能量达到一定程度后,击穿其间介质而进行放电的现象就是静电放电. 4、静电敏感度:元器件所能承受的静电放电电压. 5、静电敏感器件:对静电放电敏感的器

件. 6、接地:电气连接到能供给或接受大量电荷的物体,如大地、船等. 7、中和:利用异性电荷使静电消失. 8、防静电工作区:配备各种防静电设备和器材,能限制静电电位,具有明确的区域界限和专门标记的适于从事静电防护操作的工作场地. 二、静电的产生 1、摩擦:在日常生活中,任何两个不同材质的物体接触后再分离,即可产生静电,而产生静电的最普通方法,就是摩擦生电.材料的绝缘性越好,越容易摩擦生电.另外,任何两种不同物质的物体接触后再分离,也能产生静电.

静电放电(ESD)最常用的三种模型及其防护设计

ESD :ESD 的相关种,下面介 1.HBM 该模型等效电路如 2.MM 机器模型与人体模于机器模型于人体模型 静Electrostat 关知识。为介绍最常用M :Human 型表征人体如下图。图M :Machine 模型的等效模型的差异型放电时没型。 电放电(tic Discharg 为了定量表征用的三种。 Body Mode 体带电接触器图中同时给出ES e Model ,机效电路与人体异较大,实际没有电阻,且 ES ESD)最常ge ,即是静征ESD 特性el ,人体模器件放电,出了器件 H SD 人体模型机器模型:体模型相似际上机器的且储电电容SD 机器模型常用的三静电放电,每性,一般将模型: Rb 为等效HBM 模型型等效电路 似,但等效的储电电容变容大于人体模 型等效电路三种模型每个从事硬ESD 转化成效人体电阻的ESD 等级路图及其ESD 电容(Cb)是变化较大,模式,同等路图及其 ESD 及其防护硬件设计和生成模型表达方1.5k Ω,Cb 级。 D 等级 200pF ,等但为了描述等电压对器件D 等级 护设计 生产的工程方式,ESD b 为等效人等效电阻为(述的统一, 件的损害,程师都必须掌的模型有很人体电容100(Rb) 0,机器取 200pF 机器模式远掌握很多0pF 。器模。由远大

3.CDM 半导体运输及存贮擦,就会使的器件通过 器件的一般给出的 通过器较大,某些会比较低。 ESD 防 ESD 防板防护设计还不能满足的ESD 直接 一般整计是在器件的。ESD 是压限制、电M :Charged 体器件主要贮过程中,使管壳带电过管脚与地的ESD 等级的是HBM 器件的ESD 些管脚的E 。 防护是一项防护设计可计可以提高足要求时,接加载到器整机、单板件不能满足是电荷放电 电流限制、d Device Mo 要采用三种封由于管壳与电。器件本身地接触时,发ESD 级一般按以上和MM 。 D 数据可以了SD 电压会特项系统工程,可分为单板防高单板ESD 水需要进行应器件,所以加板、接口的接足ESD 环境要电,具有电压 高通滤波、odel ,充电封装型式(金与其它绝缘身作为电容发生对地放充电器件模上三种模型了解器件的特别低,一需要各个ESD 防护设计、水平,降低应用环境设加工环境的接触放电应要求的情况压高,持续 、带通滤波电器件模型:金属、陶瓷缘材料(如包容器的一个极放电引起器件模型等效电型测试,大部的ESD 特性一般来说,高个环节实施全D 防护设计系统防护设低系统设计难设计防护设计的ESD 防护应达到±2000况下,通过衰续时间短的特 波等方式实现: 瓷、塑料)。包装用的塑料极板而存贮件失效而建电路图及其部分ESD 敏感,但要注意高速端口,全面的控制计流程图 设计、加工难度和系统计。ESD 敏是至关重要0V(HBM)以衰减加到器特点,根据现。 它们在装配料袋、传 递贮电荷。CD 建立的,器件ESD 等级 感器件手册意,器件的每高阻输入端制。下图是一工环境设计和统组装的静敏感器件在装要的。 上的防护要器件上的ES 据这些特点,配、传递、递用的塑料DM 模型就是件带电模型上都有器件每个管脚的端口,模拟一个ESD 防和应用环境电防护要求装联和整机要求。器件D 能量达到,ESD 能量试验、测试料容器等)相互是基于已带型如下: 件的ESD 数据的ESD 特性差拟端口ESD 防护的流程图境防护设计求。当系统设机组装时,环件的ESD 防护到保护器件的量衰减可通过试、互磨带电据,差异电压图: ,单设计环境护设的目过电

流场空气间隙放电特性的高海拔校正

2005年8月第6卷第8期电力设备 ElectricalEauipment Agu.2005 VOI.6NO.8 换流站直流场空气间隙放电特性的高海拔校正 宿志一1,尚涛2,王代荣3 (1.中国电力科学研究院,北京市100085;2.中国南方电网有限公司,广东省广州市510620; 3.西南电力设计院,四川省成都市610021) 寨 摘要:整理和分析了中国电力科学研究院和云南电力试验研究所有关换流站直流场典型电极的操作波放电特性模拟试验数据,讨论了不同海拔高度下典型间隙的操作冲击放电电压的校正方法。文章指出:可以根据IEC和国家标准提出的g参数法以及文中得出的典型间隙公式确定海拔2000m以下的换流站直流场的空气间隙。 关键词:换流站;直流场;空气间隙;操作冲击 中图分类号:TM721;TM852 经研究表明,无论是棒一板问隙,还是导线一塔间隙,预加的直流电压都可以改善正极性操作冲击的绝缘强度。因此,可用纯正极性操作冲击来确定换流站直流场空气问隙的距离。由于空气间隙的正极性操作冲击放电电压低于负极性操作冲击放电电压,因此本文只对空气间隙的正极性操作冲击放电电压进行研究。此次试验主要是在中国电力科学研究院(简称电科院,处在低海拔地区,海拔高度为50m)高压试验大厅完成的,同时结合云南电力试验研究所(简称云南所,处在高海拔地区,海拔高度为l970m)高压试验基地的试验结果,进行了高海拔验证,从而提出了高海拔修正意见。 当换流站直流场设备空气间隙结构不同时,其操作冲击击穿电压是不一样的。根据我国葛州坝一南桥(简称葛南)高压直流换流站和天生桥一广州(简称天广)高压直流换流站以及国#1-直流工程换流站(如美国太平洋联络线Sylmar站和IPP工程Adelanto站等)直流场设备的布置情况,选取管母线一构架与遮栏、软母线一构架与遮栏作为典型电极。 1不同海拔高度下操作冲击模拟试验 1.1试验装置与试品 低海拔和高海拔的直流场典型间隙操作冲击模拟试验分别在电科院高压试验大厅(43mX30mX26.5m)和云南所户外高压试验场(1000m2)进行。试验装置与模拟试品的主要尺寸及参数见表1。 表1试验装置与模拟试品的主要尺寸及参数 试验地点电科院高压大厅(43m×30111×26.5in)云南所户外高压试验场 海拔高度/rll501970 3600kV、180kJ冲击电压发生器,可产生+250/2500妒的3600kV、180l【J冲击电压发生器,可产生试验装置 标准操作波+200/1500斗s的操作波 管母线长10in,直径110mm,两端装屏蔽环长9.6in,直径150inm,两端装屏蔽环 长10m,由4根西34mm镀锌铁管组成的分裂导线(分裂问长10In,由4根4,34mm镀锌铁管组成的分裂软母线 距为170mill),两端装屏蔽环导线(分裂间距为170mm),两端装屏蔽环 构架与遮拦模拟钢构架高1.85nl,模拟遮栏高1.8m,二者相距2.5m模拟钢构架高1.85nl,模拟遮栏高1.8in,二者 相距2.5111 导线对地距离/nl66 软母线与构架和遮栏平行(软母线在遮栏侧构架正上方); 软、硬母线与构架和遮栏垂直(软母线最低点在试品布置软母线与构架和遮栏垂直(软母线最低点在构架正上方)。硬 构架正上方) 母线只与构架和遮栏垂直(软母线最低点在构架正上方)布置 1.2试验条件与试验方法 气象参数的测量,两地统一使用动槽式水银气压计和通风式干湿温度计记录气压和干、湿球温度。为使两地试验结果易于比较,尽可能选取较干燥的晴好天气,保障试验期间天气的稳定,特别是每一间隙的试验要在同一气象条件下完成。 试验采用+250/2500灿(电科院)或+200/1500炉(云南所)操作波进行,采用升降法求取50%放电电压,每种工况放电次数为30一40次,间隙距离的试 ?本文是贵州一广州-t-500kV直流工程咨询项目“±500kV贵广直流输电工程安顺换流站外绝缘设计与高海拔修正”的子课题之一。主要工作人员还有李庆峰、梁宝生、李鹏、李明、陈磊、马仪、吴泽辉、龚天森、胡晓、余波等。

高一物理竞赛第9讲 静电屏蔽 电像法.教师版

第9讲静电屏蔽电像法 本讲提纲 1.静电感应现象 2.静电屏蔽 3.电像法以及应用 本讲对等效思维运用较多,思考的时候概念转化很快。部分不适的同学可以先只关注物理现象以及原理的解释,对于负责的运算大家可以根据自己的兴趣尽力跟进老师的讲解,不妨把部分难题当作对自己能力极限的挑战。 知识模块 引入:电场中的导体 把一块不带电的导体放到电场周围,这个导体就会感应出电荷。这个现象不难去理解,一般用电场对电荷的力就能解释。 静电感应:导体内自由电子在外电场的作用下定向移动,重新分布的现象.本讲研究的是这个现象的定量规律。如图演示的是在外电场下金属内部自由电子从移动,到最后稳定分布的过程。 知识点睛 一.静电平衡:导体中(包括表面)没有电荷的定向移动的状态. 由于感应电荷形成新的电场,最终导致金属内部合场强降为零,静电感应现象才达到了稳定,我们不妨称之为静电平衡。 1.导体内部的场强处处为零. 2.整个导体是个等势体,导体的表面是等势面. 3.净电荷分布在导体的外表面. 4.在导体表面附近,电场线一定与表面垂直. 如图是一般形状的金属放入电场后的影响

二.静电屏蔽 导体壳(网罩)不接地时,可以实现外部对内部的屏蔽,但不能实现内部对外部的屏蔽;导体壳(网罩)接地后,既可实现外部对内部的屏蔽,也可实现内部对外部的屏蔽。如下图的演示试验,当导体放到静电计周围,并用金属球壳把静电计包起来后,静电计的指针是不偏转的。 如图是静电屏蔽掉超高压的试验示意,在高压电线上工作的工人穿的也是用金属制作的衣服,屏蔽电线周围的强电场。 下面列了另外的一些关于静电屏蔽的应用,具体内容请同学们课后自己查阅资料或者咨询老师。 1.电子仪器,比如示波器的接线都是这样的屏蔽线; 2.外的天线; 3.电视信号线,外面就有一层金属丝,就为了静电屏蔽,使信号不受干扰; 4.务区怕被人打手机,又不能关机,找个金属盒子装进去,就变成了“您拨打的用户不在服务区”; 例题精讲 【例1】如图所示,把一个带正电的小球放人原来不带电的金属空腔球壳内,其结果可能是()

EMC静电放电测试基本常识

EMC静电放电测试基本常识 EMC静电放电测试基本常识 生活中,很多原因下都会产生静电,例如薄膜和卷筒之问的摩擦,胶带的分离,物体破损,或者带电的粒子。静电会在各种情景,各种生产设备的各种流程中产生,而主要产生的原因就是重复的摩擦和分离。当电荷累积到一定程度,物体问就会存在电势差,接触或者相互靠近过程会产生电荷瞬间移动,就会形成静电放电。静电放电经常会影响我们日常所用的电子产品的正常工作,甚至造成静电故障。主要是静电放电的过程是电荷移动的现象,既然有电荷的移动就有可能影响到电子产品的元器件的正常工作,特别是现代基本都是半导体工艺元器件。严重时还可能会造成元器件的损坏,静电故障就是山静电造成电子元件(例如1C集成电路))损坏的一种现象。当1C中发生静电故障时,山于静电释放,高压电流瞬问穿过1C 内部,破坏了高绝缘性二氧化硅(绝缘层)并损坏内部电路。所以在设计、生产电子产品的时候就应该考虑静电放电的影响。 为了模仿电子产品在现实环境中可能遭受的静电放电影响,国际标准委员会制订了相关的标准规范,斤民多国家或者地区都会自接采用这些标准作为本国或本地区的标准规范。特别是欧洲,凡是进入欧盟市场的电子电器产品必须符介EM(指令((2004/108/EC)要求,静电放电是EM(试验之一。 2国际标准的静电放电测试要求 在国际标准委员会制订的电磁兼容标准中,包括有基础标准和产品标准。其中静电放电测试标准是基础标准之一,有时候也叫测试技术标准。静电放电测试标准1EC61000-4-2讲述了测试原理、等级、方法等几个方而的内容。1EC61000-4-2定义了四个标准测试等级和一个开放等级。放电测试发生器的电路结构、参数见表2及放电波形所示。然后是介绍了静电放电测试布置和测试方法,1EC61000-4-2使用了两种小同的测试方法:一种是接触放电。intactdischarge,是自接对EUT放电这是首选的测试方法,如果接触放电小能被施加到EUT,接触放电还有问接接触放电即对水平祸介板HCP和垂自祸介板VCP放电测试模式,另外一种方法空气放电Airdischarge可以使用,其实一般产品标准要求的抗扰度静电放电测试都要求两种方法进行测试。 C级判定((CriterionC):指产品功能在测试前可正常被操作,但测试过程中受ESD放电影响,出现功能降低或异常,且功能无法自动回复,必须经山操作人员做重置(Re-set)或重开相L 的动做才能回复功能,这情形则仅符介C级判定结果。 D级判定((Criterion功:指产品功能在测试前可正常被操作,但测试过程中出现异常,虽经山操作人员做重置(Re-set)或重开机也小能回复功能,这种情况大概产品已损伤严重,仅符介D级判定结果。(这属小介格)。 依lEC61000-4-2法规建议,产品采购验证必须符介A级或B级的判定才能接受,C级和D级判定是小介格的。 常见欧洲标准中产品标准抗扰度要求,如家电类EN55014-2,音视频类EN55020,信息技术类EN55024,灯具类EN61547等都有规定ESD的等级和测试要求。这几类产品的ESD 要求是:接触放电14kV,空气放电1 8kV。 我们知道1EC61000-4-2规定的都是对成品的产品所做的试验,也就是最终自接到用户乎上的产品。但是可能还有些疑惑,就是我们常见到有些静电放电的技术文档会讲到静电放电的几个模式HBM.MM.CDIVIo而小是接触放电和空气放电两种方式。其实两种静电放电的测试环境是小同的,Contactdischarge和Airdischarge对应的是测试最终产品的,是对系统级来做的测试。HBM.MM.CDM是在生产过程中静电放电模式,是对生产制造级的测试。HBM

静电放电ESD最常用的三种模型及其防护设计

静电放电(E S D)最常用的三种模型及其防护设计ESD:Electrostatic Discharge,即是静电放电,每个从事硬件设计和生产的工程师都必须掌握?ESD?的相关知识。为了定量表征 ESD 特性,一般将 ESD 转化成模型表达方式,ESD 的模型有很多种,下面介绍最常用的三种。 1.HBM:Human Body?Model,人体模型: 该模型表征人体带电接触器件放电,Rb 为等效人体电阻,Cb 为等效人体电容。等效电路如下图。图中同时给出了器件 HBM 模型的 ESD 等级。 ESD人体模型等效电路图及其ESD等级 2.MM:Machine Model,机器模型: 机器模型的等效电路与人体模型相似,但等效电容(Cb)是?200pF,等效电阻为0,机器模型与人体模型的差异较大,实际上机器的储电电容变化较大,但为了描述的统一,取 200pF。由于机器模型放电时没有电阻,且储电电容大于人体模式,同等电压对器件的损害,机器模式远大于人体模型。 ESD机器模型等效电路图及其ESD等级 3.CDM:Charged?Device?Model,充电器件模型: 半导体器件主要采用三种封装型式(金属、陶瓷、塑料)。它们在装配、传递、试验、测试、运输及存贮过程中,由于管壳与其它绝缘材料(如包装用的塑料袋、传递用的塑料容器等)相互磨擦,就会使管壳带电。器件本身作为电容器的一个极板而

存贮电荷。CDM 模型就是基于已带电的器件通过管脚与地接触时,发生对地放电引起器件失效而建立的,器件带电模型如下: ESD充电器件模型等效电路图及其ESD等级 器件的 ESD 等级一般按以上三种模型测试,大部分 ESD 敏感器件手册上都有器件的 ESD数据,一般给出的是 HBM 和 MM。 通过器件的 ESD 数据可以了解器件的 ESD 特性,但要注意,器件的每个管脚的 ESD 特性差异较大,某些管脚的 ESD 电压会特别低,一般来说,高速端口,高阻输入端口,模拟端口 ESD电压会比较低。 ESD 防护是一项系统工程,需要各个环节实施全面的控制。下图是一个 ESD 防护的流程图: ESD 防护设计流程图 ESD 防护设计可分为单板防护设计、系统防护设计、加工环境设计和应用环境防护设计,单板防护设计可以提高单板 ESD 水平,降低系统设计难度和系统组装的静电防护要求。当系统设计还不能满足要求时,需要进行应用环境设计防护设计。ESD 敏感器件在装联和整机组装时,环境的 ESD 直接加载到器件,所以加工环境的ESD 防护是至关重要的。 一般整机、单板、接口的接触放电应达到±2000V(HBM)以上的防护要求。器件的 ESD 防护设计是在器件不能满足 ESD 环境要求的情况下,通过衰减加到器件上的 ESD 能量达到保护器件的目的。ESD 是电荷放电,具有电压高,持续时间短的特

静电的防止与利用-教案

静电的防止与利用 【教学目标】 1.知道什么是静电平衡状态,能说出静电平衡产生的条件。 2.掌握静电平衡状态下的导体特点。 3.了解尖端放电、静电屏蔽现象及其应用。 【教学重难点】 掌握静电平衡状态下的导体特点。 【教学过程】 一、复习提问、新课导入 教师:上为什么给车加油前要触摸一下静电释放器? 学生回答:略 教师投影展示问题:把一只小鸟放入一个用金属网制成的鸟笼中,再把鸟笼放入高压电场中,鸟会安然无恙吗?如果人在金属笼子里,给笼子加上高压电,人安全吗? 教师:带着这两个疑问,本节课我们一齐来学习《静电的防止与利用》。(板书课题)二、新课教学 (一)静电感应 教师:把金属导体放入电场中,导体上会出现怎样的现象? 画图阐述:在电场中的导体沿着电场强度方向两端出现等量异种电荷的现象叫做静电感应。

(二)静电平衡 提问:1.电子的聚集会出现怎样的结果? 提问:2.电子是否会永远这样定向运动下去? 画图阐述:当导体内的自由电子不再发生定向移动时,导体达到静电平衡状态。 提问:3.最终会出现怎样的现象? 总结:静电平衡的条件 通过学生们互相讨论积极回答: (三)静电平衡的特点 1.处于静电平衡状态下的导体,内部的场强处处为零。 2.导体内部无电场线分布,外表面处场强方向必跟该点的表面垂直。

巩固练习 例1:如图,长为L的导体棒原来不带电,现将一带电量为q的点电荷放在距棒左端为R的某点。当达到静电平衡时,棒上感应电荷在棒内中点处产生的场强的大小为多大? (四)静电平衡时导体上电荷的分布的特点 1.静电平衡时导体内部没有净剩电荷,电荷只分布在导体的外表面。 2.处于静电平衡状态的导体,在导体的外表面越尖锐的位置,电荷的密度越大(即单位面积电荷量多),周围的场强越大。 3.尖端放电 (1)导体尖端的电荷密度很大,附近的电场很强,空气中残留的带电粒子在强电场的作用下发生剧烈的运动,把空气中的气体分子撞散,即使分子中的正负电荷分离,这个现象叫做空气的电离。 (2)那些所带电荷与导体尖端的电荷相反的粒子,由于吸引而奔向尖端,与尖端上的电荷中和,相当于导体从尖端失去电荷,这个现象叫做尖端放电。 (3)应用:避雷针是利用尖端放电避免雷击的一种设施。 (五)静电屏蔽 1.静电屏蔽的定义 教师:回到课前的问题:把一只小鸟放入一个用金属网制成的鸟笼中,再把鸟笼放入高压电场中,鸟会安然无恙吗?如果人在金属笼子里,给笼子加上高压电,人安全吗? 演示:处于静电平衡状态的导体内部没有电荷,电荷只分布在导体的表面,如果将这个导体掏空呢? 静电平衡时,内部没有电荷,所以导体壳内空腔里的电场强度也处处为0。

相关主题
文本预览
相关文档 最新文档