当前位置:文档之家› 大穿透深度地质雷达、探地雷达

大穿透深度地质雷达、探地雷达

大穿透深度地质雷达、探地雷达
大穿透深度地质雷达、探地雷达

100m大穿透深度地质雷达COBRA Plug-in 一、前言

常用的地质雷达探测深度一般在10-15米以内,要增加探测深度必须采用低频天线,然而它又使屏蔽发生困难,限制了低频天线的应用领域。为此,瑞典RADARTEM公司研发和生产了大穿透深度Cobra plug-In地质雷达,该系统采用先进的实时采样技术,使信噪比提高45dB,勘探深度增加一倍以上,采用具有强烈抗干扰能力的、半屏蔽技术的收发一体天线,进一步保障了最大勘探深度,勘探深度0-100m,在北京和厦门地区的应用结果表明,在很强干扰地区仍可获得十分可靠的探测结果。此外该公司研发的双通道、双天线CobraWifi地质雷达具有极高的分辨率和极强的抗干扰能力,探测深度0-10m。

二、原理简介

地质雷达探测的工作原理,简单地说是通过特定仪器向地下发送脉冲形式的高频、甚高频电磁波。电磁波在介质中传播,当遇到存在电性差异的地下目标体,如空洞、分界面等时,电磁波便发生反射,返回地面用接收天线接收,并对接收数据进行处理和分析,根据接收到的雷达波形、强度、双程时间等参数便可推断地下目标体的空间位置、结构、电性及几何形态,从而达到对地下隐蔽目标物的探测(如图1 所示) ,可以非常安全和方便地用于很多领域,并具有很高的探测精度和分辨率。

图1 探地雷达工作原理示意图

图1 中T 为发射天线, R 为接收天线,电磁波在地下介质中遇到目标体和基岩时发生反射, 信号返回地面由天线R 接收并记录再通过主机的回放处理,就可以得到雷达记录的回波记录(如图2 所示) 。

图2 探地雷达回波记录示意图

图2 中横坐标的单位为m ,横轴代表地表面的探测距离,纵坐标代表电磁波从发射到遇见地下目标体或基岩时反射回地面并被仪器接收所需要的时间t。,即双程反射时间t,按下式算出目标体的埋藏深度:

其中, t 为目标层雷达波的双程反射时间; c 为雷达波在真空中的传播速度(0. 3 m/ ns) ; εr 为目标层以上介质的相对介电常数均值。

地质雷达数据处理方法与地震反射法数据处理方法基本相同,主要有以下几方面:1) 滤波及时频变换处理;2) 自动时变增益或控制增益处理;3) 多次重复测量平均处理;4) 速度分析及雷达合成处理等。数据处理的目的旨在优化数据资料、突出目标体、最大限度地减少外界干扰,为进一步解释提供清晰可辨的图像。处理后的雷达剖面图和地震反射的时间剖面图相似,可依据该图进行地质解释。

电磁波在地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,因此在探地雷达的运用中,探测结果能否反应出目标体与以下的因素有关:

1)纵向分辨率:λ/4

探地雷达在纵向上能分辨的最小厚度是发射电磁波波长的1/4。

2)横向分辨率:r f=λ /2(λ-雷达子波波长,h-目标体的埋藏深度)

探地雷达在水平能够分辨的最小尺寸为r f。

3)反射能力:P r=(ε?ε)

(ε+ε)2

(ε ost-背景介质的相对介电常数,εtarget-目

标体的相对介电常数)

当P r>0.01就能有足够的反射。

4)探测深度:约为雷达子波的波长的10倍。

一般来说,时间等效采样技术的探地雷达其极限探测深度为10倍发射雷达子波波长,实时采样技术的地质雷达探测深度要大的多。

三、实时采样与时间等效采样技术

为了实现被测信号的重构,采集系统都需要对连续的信号进行离散化的采集,我们称之为数字采样。

目前市场上出售的地质雷达一般都采用时间等效采样技术,而Cobra plug_In采用的是最先进的实时采样技术。所谓实时采样就是对雷达反射信号进行实时逐点顺序采样,只要采样速率满足奈奎斯特采样定理的要求,便可还原反射信号的真实波形,简单地说就是当一个信号周期完成后,被测信号也同时完成、同时储存,并且是反射信号的真实波形,(如图3)。

图3 实时采样示意图

由于地质雷达的信号频率非常高,所以实时采样技术对采样速率的要求也非常高,对采样数据的存储速度和存储容量的要求也非常高。但A/D转换器的采样速率、数据存储速度、数据存储容量等,都是有限制的,所以一般的地质雷达无法实现实时采样。因而都采取一种变通的方式。也即把实时采样中的多个相同周期、不同时间的真实反射信号(图

4A)。重新组合成一个相同周期的仿真信号(图4B),以降低采样数量、数据存储数据数量和存储容量。前提是,反射信号必须是严格的周期信号,但这是很难达到的,因此一般地质雷达所采用的时间等效采样技术会造成反射信号失真,降低了信噪比。然而,实时采样技术,由于采样量非常大,所以叠加次数非常多,其信噪比相对时间等效采样技术高45dB,理论研究和实际表明,信噪比每提高30dB,穿透深度就提高两倍。

图4 等效采样示意图

简而言之,等效采样就是将多个周期的不同时间的采样点组合而成的一个完整周期的信号。这种采样方式虽然大大降低了对采集系统硬件的要求。但是,这种采样方式的前提必须是周期信号,地质雷达反射信号不是严格的周期信号,因此,等效采样会造成反射信号失真,影响了测量的准确性和正确性。理论研究和实践表明,实时采样技术比等效采样技术提高信噪比45dB,而信噪比每提高30dB穿透深度就提高两倍。

四、SE低频天线的半屏蔽技术

低于100Hz的低频天线(LF)无法像高频天线(HF)那样进行金属屏蔽,因为低频天线尺寸较大,屏蔽后体积太大,又笨重,无法应用,目前所有地质雷达制造商生产的低频天线都是非屏蔽天线。这些非屏蔽低频天线发射的雷达电磁波仅50%进入地下,50%进入空中。进入空中的电磁波遇到树木和其它地面物体时便会反射回来,形成强烈的干扰,限制了低频天线的应用。

Cobra Plug-in地质雷达采用的是 SE系列半屏蔽低频天线,是radarteam公司从设计理念上制作的具有半屏蔽效果的低频天线,而非物理意义上的金属屏蔽天线,具有很强的抗干扰能力。它是电阻性负载的曲面天线,安装在圆柱体上,具有向地下发射的绝对优势和向空中发射最小的低频天线,90%电磁波能量进入地下,仅10%能量进入空中。所以SE低频天线穿透深度大,受地面物体例如树、路灯等干扰最小。

雷达波射线

图5 SE系列半屏蔽天线模式

五、仪器介绍

Radarteam Sweden AB是全球探地雷达天线研发和制造的领导者,其COBRA系列探地雷达已经被广泛的运用于各个领域中,包括公路检测、溶洞探测、大坝病害诊断、地质构造探测、管线探测、军事与安全、考古探测、冰川考察等等。

COBRA探地雷达系列包括最新一代具有实时采样技术的Cobra PLUG-IN GPR和双通道超高分辨率的Cobra Wifi。

1.COBRA PLUG-IN

COBRA plug-In探地雷达为Radarteam公司最新一代的产品,它将传统的分离式低频天线组合成了一体,大大的提升了施工的效率。COBRA plug-In基于不同的工作目的配有三种不同频率的天线可选。

图6 搭载SE-70天线的Cobra plug-In

图7 Cobra 采集系统单元、控制单元以及天线SE-150、SE-40、SE-70(从左至右)

作为现阶段最先进的低频雷达系统,Cobra plug-In相对与其他的雷达系统而言有如下特点:

1)先进的实时采样技术使信噪比提高45dB,勘探深度是同频率的等效采样技术的两

倍,最深可达100m。

2)收发一体,空气耦合,体积小,重量小。施工非常方便,非困难地形条件下完全

可以一个人完成工作。

3)先进的半屏蔽技术,具有很强的抗电磁干扰能力。

采集系统主要技术参数:

SUBECHO系列天线主要技术指标:

2.

地质雷达测量技术

地质雷达测量技术 内容提要:本文在简述地质雷达基本原理的基础上,介绍了地质雷达检测隧道衬砌质量的工作方法,通过理论分析、实际资料计算、实测效果等方面说明采用地质雷达技术检测隧道衬砌质量的必要性和可靠性。 关键词:地质雷达测量技术 1 前言 地质雷达(Geological Radar)又称探地雷达(Ground Penetrating Radar),是一项基于不破坏受检母体而获得各项检测数据的检测方法,在我国已在数百项工程中得到了应用,并取得了显著成效。同时,随着交通、水利、市政建设工程等基础设施的大力发展,以及国家对工程质量的日益重视,工程实施过程中仍急需用物理勘探的手段解决大量的地质难题,因此,地质雷达极其探测技术市场前景十分广阔。 地质雷达作为一项先进技术,具有以下四个显著特点:具有非破坏性;抗电磁干扰能力强;采用便携微机控制,图象直观;工作周期短,快速高效。它不仅用于管线探测,还可用于工程建筑,地质灾害,隧道探测,不同地层划分,材料,公路工程质量的无损检测,考古等等。 2 地质雷达技术原理 地质雷达是运用瞬态电磁波的基本原理,通过宽带时域发射天线向地下发射高频窄脉冲电磁波,波在地下传播过程中遇到不同电性介质界面时产生反射,由接收天线接收介质反射的回波信息,再由计算机将收到的数字信号进行分析计算和成像处理,即可识别不同层面反射体的空间形态和介质特性,并精确标定物体的深度(图1)。

图1 地质雷达检测原理图 3 雷达的使用特性 3.1无损、连续探测,不破坏原有母体,避免了后期修补工作,可节约大量的时间和费用。 3.2 操作简便,使用者经过2-3天培训就能掌握。 探测时,主机显示器实时成像,操作人员可直接从屏幕上判读探测结果,现场打印成图,为及时掌握施工质量提供资料,提高了检测速度和科学水平。并且通过数据分析,还可以了解道路的结构情况,发现道路路基的变化和隐性灾害,使日常管理和维护更加简单。 3.3 测量精度高,测试速度快。在车载工作方式下,测试速度大大提高,当车速达80Km/h时,系统仍能正常工作。 3.4 收、发天线离地面的探测高度可以针对不同的埋地目标进行调整,以达到最佳的探测能力和探测分辨率:同时还可以调节收发天线之间的距离寻找系统工作的最好效果。 3.5 测点密度不受限制,便于点测和普查。 工作方式的灵活使得用户可以连续普查某一段工程的质量,也可随时对异常区域进行重点探测 和分析。 3.6 便于维护与保养。 本系统采用了结构化设计,对于使用不当或其它原因造成的质量问题,简单地更换接插件即可保证雷达的正常工作。 3.7 可扩充配置。 通过选择相应的发射源和收发天线,再配上相应的处理软件,就可以在中、深层探测范围,如地下管线、地基空洞、钢筋分布、堤坝密实程度等方面扩大应用。 4 地质雷达在检测隧道衬砌质量中的应用 新建隧道施工中为确保隧道衬砌质量,采用传统“钻、看”的检测方法显然已不能满足“多断面、全方位”的检测要求,业主和施工单位都在探索采用无损检测技术有效监控和确保隧道衬砌质量的新方法。 隧道衬砌的质量检测包括1)隧道衬砌厚度,2)隧道衬砌背后未回填的空区,3)隧道衬砌的密实程度,4)施工时坍方位置及坍方的处理情况。5)有时还可检测围岩中地下水向隧道侵入的位置。4.1 工作方法

地质雷达在地下管线探测中的应用研究

地质雷达在地下管线探测中的应用研究 发表时间:2018-09-04T14:12:30.883Z 来源:《建筑学研究前沿》2018年第11期作者:尹凡 [导读] 在城市建设发展速度不断加快的背景下,城市地下空间的利用率也不断提升。 上海京海工程技术有限公司 200131 摘要:在城市建设发展速度不断加快的背景下,城市建设中针对地下空间管线探测的工作量日益增多。更为关键的是,随着地下管线施工工艺的发展以及管道材质的多元化完善,地下管线探测的难度也在日益增加。地质雷达作为一种高频宽度电磁波地下管线探测技术,适用于地下浅层深度的探测作业,具有分辨率高、准确可靠、安全无损、快捷连续等一系列优势,在地下管线探测领域中具有非常确切的应用价值。本文即在分析地质雷达探测原理的基础之上,概述地质雷达技术在地下管线探测中的应用优势,并就其实际应用要点展开分析与探讨,望能够引起业内人士的高度关注与重视。 关键词:地下管线;地质雷达;探测;应用 在城市建设发展速度不断加快的背景下,城市地下空间的利用率也不断提升,地下管线类型众多且在用途、材料性质以及尺寸上均存在非常明显的差异性,因此针对不同类型地下管线需应用的探测技术也会存在一定的差异性。传统意义上所选用的地下管线探测技术无法准确针对损伤程度进行评估,地下管线的铺设质量也难以得到准确的反应,由此可能导致一系列质量安全隐患的产生,对地下管线探测质量产生非常不良的影响。地质雷达作为一种高频宽度电磁波地下管线探测技术,适用于地下浅层深度的探测作业,具有分辨率高、准确可靠、安全无损、快捷连续等一系列优势,在地下管线探测领域中具有非常确切的应用价值,本文即针对地质雷达技术在地下管线探测领域中的应用问题进行分析与探讨。 1 地质雷达探测原理 地质雷达是一种用于评估并分析地下介质分布情况的高频电磁技术。地下雷达探测以地下介质在介电性方面的差异为依据,通过天线发射或接收高频电磁波信号的方式,利用工作软件处理所接收信号并成像,从而帮助工作人员得到相应探测结果。应用地质雷达技术进行地下管线探测的基本原理如下图(见图1)所示。 图1:地质雷达的技术进行地下管线探测的基本原理示意图 在应用地质雷达技术进行地下管线探测作业的过程中,最基础的操作过程是:由放置于地面的天线面向地下待探测区域发射高频电磁脉冲信号,在高频电磁脉冲信号于地下空间内进行传播的过程当中,若遭遇相对介电常数不同(及有不同电性表现)的界面时,高频电磁脉冲信号中一部分透射界面并继续向地下空间其他区域进行传播,而另一部分信号则在该位置直接反射会地面,由地面所安装接收天线进行接收并记录至主机中。在这一操作过程当中,若地下介质波速已知或地下探测空间中介质的相对介质常数已知,则可以根据所测定反射波自发射天线发出至接收天线接受耗时(以下定义为t)的具体结果,计算所地质雷达技术所探测物体的埋深以及具体位置。在这一过程当中,假定T为发射天线,R为地面接收天线,h为地下管线目标体顶部埋设深度,r为电磁波双程走时,则可建议如下所示关系:vt=(4h2+x2)-1 (1) 该式中,定义屏蔽式发射体现为t,接收天线为r,两者距离为x,若两者距离高度相近,即在x无线趋近于0的情况下,可将式(1)转换为: h=1/2vt (2) 根据上式,若电磁波在介质中的传播速度v处于已知状态,并且电磁发射博的走时的t可以加以准确计算,则就能够通过以上方式得到待测定目标物体的深度取值。 2 地质雷达技术在地下管线探测中的应用价值 第一,分辨率高。在地下管线探测过程中,应用地质雷达探测技术具有较高的分辨率,所呈现出的地下管线分布图像清晰度高,能够直接掌握所探测区域地下管线的实际分布情况,并在探测结果的辅助下展开科学有效的设计施工作业,强化地下管线设计质量,并更好的为地下管线正式施工提供服务,保障地下管线铺设的安全性与可靠性。同时,依托于地质雷达技术所提供的高分辨率图像,还能够为整个城市建设探测提供重要指导,支持对城市建设水平的综合评定与分析。 第二,准确可靠。地质雷达探测技术的准确性高,在应用地下管线探测的过程中呈现出了连续性的特点,确保所探测地下管线分布数据状态的完整性与动态性。地质雷达探测技术通过对介质介电性质以及几何形态的分析,以改变电磁场强度以及波形特征,使功能、形态以及性质存在差异的地下管线能够通过地质雷达探测图像所呈现出来,方便工作人员对地下管线进行合理的选取,确保管线铺设质量,并为后续针对地下管线的高精度探测提供指导。 第三,快捷无损。地质雷达探测技术在地下管线探测中的应用在浅层分布探测目标中有良好的适用性,检测过程安全且缺损。整个检测过程中,通过对高频宽谱无损电磁波的发射与接收,来辨别被探测区域中地下介质的分布情况,也可在现代化互联网辅助技术的支持下,转移至地面进行探测,发挥地质雷达技术高速反射的功能优势,方便相关工作人员更为及时与准确的掌握地下管线分布情况,及时对安全隐患进行识别与防控,以促进地下管线探测质量与探测效率的进一步提升与优化。 3 地质雷达技术在地下管线探测中的应用实例 在地下管线探测过程中,工作人员首先需要对探测区域内的地下管网资料进行收集与整理,展开实际调查,安排专人进入地下管线探测区域现场,寻找露头窨井,将其打开进行拍照、丈量深度、填写记录等。然后,针对现场发现的露头金属管或电力管线,应当在爱地下

地表雷达检测技术方案

地表雷达检测技术 方案 贵州道兴建设工程检测有限责任公司 贵阳市轨道交通2号线兴筑西路站-水井坡站区间

地表雷达探测技术方案 方案编制: 技术审核: 方案批准: 贵州道兴建设工程建设工程检测有限责任公司 3月15日 目录 1 工程概况 ........................................................................... 错误!未定义书签。 2 探测项目和方法................................................................ 错误!未定义书签。 3 编制依据 ........................................................................... 错误!未定义书签。 4 雷达探测的基本原理........................................................ 错误!未定义书签。

5 探测流程 ........................................................................... 错误!未定义书签。 6 检测仪器和设备................................................................ 错误!未定义书签。 7 需有关单位配合的事项.................................................... 错误!未定义书签。 7 质量和安全保证措施........................................................ 错误!未定义书签。 8 预期成果 ........................................................................... 错误!未定义书签。 9 本工程项目安排................................................................ 错误!未定义书签。

地质雷达

地质雷达在隧道超前地质预报中的应用 摘要:本文简要介绍了地质雷达基本原理及其探测深度、精度,并结合实例阐述了地质雷达的工程应用。 关键词:地质雷达;隧道超前地质预报;掌子面 引言 目前,我国修建大量穿越山岭的特长隧道。由于这些隧道大都处于地下各种复杂的水文地质、工程地质岩体中。为了摸清和预知周围的水文地质和工程地质条件,隧道地质超前预报显示出越来越重要的作用。在隧道开挖掘进过程中,提前发现隧道前方的地质变化,为施工提供较为准确的地质资料,及时调整施工工艺,减少和预防工程事故的发生非常重要。一、地质雷达基本原理及探测深度、精度 地质雷达( Ground Penetrating Radar, 简称GPR, 也称探地雷达) 是利用超高频(106Hz~109Hz)电磁脉冲波的反射探测地下目的体分布形态及特征的一种地球物理勘探方法。发射天线( T) 将信号送入地下,遇到地层界面或目的体反射后回到地面再由接收天线( R) 接收电磁波的反射信号,通过对电磁波反射信号的时域特征和振幅特征进行分析来了解地层或目的体特征(见图1)

图1 地质雷达反射探测原理图 根据波动理论,电磁波的波动方程为: P = │P│e-j(αx-αr)﹒e-βr(1)(1)式中第二个指数-βr是一个与时间无关的项,它表示电磁波在空间各点的场值随着离场源的距离增大而减小,β为吸收系数。式中第一个指数幂中αr表示电磁波传播时的相位项,α为相位系数,与电磁波传播速度V的关系为: V = ω/α(2)当电磁波的频率极高时,上式可简略为: V = c/ε1/2(3)式中c为电磁波在真空中的传播速度;ε为介质的相对介电常

常见聚合物的溶度参数精编资料

常见聚合物的溶度参 数

精品资料 常见聚合物的溶度参数 发布:多吉利来源:https://www.doczj.com/doc/c07768966.html, 减小字体增大字体常见聚合物的溶度参数 聚合物 d (J/cm3)1/2聚合物 d (J/cm3)1/2 聚四氟乙烯12.6 聚苯乙烯18.7 聚三氟氯乙烯14.7 聚氯化异戊二烯橡胶18.7~19.2 聚二甲基硅氧烷14.9 聚甲基丙烯酸甲酯18.7 乙丙橡胶16.1 聚醋酸乙烯酯19.2 聚异丁烯16.1 聚氯乙烯19.4 聚乙烯16.3 双酚A聚碳酸酯19.4 聚丙烯16.3 聚偏氯乙烯20.0~25.0 聚异戊二烯(天然橡胶) 16.5 乙基纤维素17.3~21.0 聚丁二烯17.1 聚氧化乙烯20.3 丁苯橡胶17.1 纤维素二硝酸酯21.6 聚甲基丙烯酸叔丁酯16.9 聚对苯二甲酸乙二酯21.8 聚甲基丙烯酸正己酯17.6 聚甲醛22.6 聚甲基丙烯酸正丁酯17.8 纤维素二乙酸酯23.2 聚丙烯酸丁酯18.0 聚乙烯醇25.8 聚甲基丙烯酸乙酯18.3 尼龙66 27.8 聚甲基苯基硅氧烷18.3 聚甲基丙烯酸a氰基酯28.7 聚丙烯酸乙酯18.7 聚丙烯腈28.7 常见聚合物的介电常数与溶度参数 聚合物 d e 聚四氟乙烯12.7 2.1 聚丙烯18.8 2.2 聚三氟氯乙烯14.7 2.24 聚乙烯17.1 2.3 聚苯乙烯15.6~21 2.5 聚乙烯醇25.78 2.5 聚二甲基硅氧烷15.1 2.75 双酚A聚碳酸酯19.4 3.0 聚醚醚酮- 3.3 聚醋酸乙烯酯21 3.3 聚对苯二甲酸乙二酯21.8 3.3 聚氯乙烯19.4 3.4 聚甲基丙烯酸甲酯18.7 3.6 尼龙 66 27.8 4.0 聚偏氯乙烯20.0~25.0 4.5-6.0 仅供学习与交流,如有侵权请联系网站删除谢谢2

地质雷达

探地雷达使用提纲 1、适用范围及适用条件 2、设计规范及收费标准 3、不同地质情况的雷达波形特征 1、适用范围及适用条件 1.1适用范围: 探地雷达法适用于基岩深度、水位深度、软土层厚度与深度,断裂构造等地质工程探查,城市路面塌陷、岩溶塌陷、土洞、滑坡面等地质灾害调查,地下水污染带监测,地基加固效果评价,路面、机场跑道、洞室衬砌检测,堤坝隐患,地下泄露,地下管线及其他埋设物探测,考古探查等。 1.2适用条件: (1)探测目的体与周边介质之间应存在明显介电常数差异,电性稳定,电磁波发射信号明显; (2)目的体在探测深度或距离范围内,其尺寸应满足探测分辨率的要求; (3)测线上天线经过的表面应相对平缓,无障碍,且易于天线移动; (4)测区内不应存在大范围金属构件、无线电发射频源等较强的电磁波干扰,或通过处理无法消除的干扰; (5)不应存在极低阻屏蔽层; (6)单孔或跨孔检测时不得有金属套管; 2地质雷达测线测点设计规范及收费标准 2.1测线测点设计规范 2.1.1工程物探应根据任务要求、探测方法、目的物的规模与埋深等因素综合确定工作比例尺,测网布置应与工作比例尺一致,测网密度应能保证异常的连续、完整和便于追踪; 2.1.2布置测线时,测线方向宜避开地形及其它干扰的影响,应垂直于或大角度相交于目的物或已知异常的走向,岩溶、采空区、防空洞等走向多变体的探测宜布设两组相互正交的测线; 2.1.3测线长度应保证异常的完整和具有足够的异常背景; 2.1.4探测范围内有已知点时,测线应通过或靠近该已知点的布设;

2.1.5点测时,测点布设位置、测量应满足资料解释推断的需要; 2.1.6工作比例尺确定后,宜参照表1选择测网密度。 表1 工作比例尺与测网密度 比例尺线距(m)点距(m)点测(点/km2)1∶25000 250 25-50 10-20 1∶10000 100 10-20 80-120 1∶5000 50 10-20 300-400 1∶2000 20 5-10 2000-2500 1∶1000 10 1-5 -- 1∶500 5 0.5-2 -- 2.2收费标准 地质雷达探测收费参见《工程勘察设计收费标准》第7章——工程物探,收费标准见表2 表2 地质雷达收费标准 地质雷达 工作方式工程勘探路面质量点测点20 (元/点)20(元/点) 连续km 13500(元/km)6300(元/km)探淤深度>10m,附加调整系数为1.3;不足4个组日按4个组日计

地质雷达探测地下管线报告格式

地下管线探测报告 编写: 检测: 审核: 批准: ****有限公司 二〇一九年七月十八日

地下管线探测报告 一、任务概况 1.1作业目的 为满足****工程施工需要,****有限公司于****有限公司年7月07日对该项目地下综合管线进行物探工作。 1.2测区概况 项目位于****市****有限公司区,物探位置参如图1.1所示。 图1.1工程场地地理位置图 二、管线探测 探测范围为以委托方指定的范围为界。 2.1管线的调查 管线的调查主要针对架空管线及明显管线点(包括接线箱、变压箱、变压器、消防栓、人孔井、阀门、窨井、仪表井等附属设施)进行。 ①明显管线点的各种数据均应直接打开井,用检验合格的钢尺量测,精

确到厘米。实际作业时按规程及甲方提供表格所列各类管线调查内容,参考各专业部门提供的资料,到实地调查核实,查清各类被调查管线的类型、管径、材质、埋深、起止、走向以及同类管线的连接关系,以便进行仪器探测。在调查量取时首先认真仔细量读,确保调查成果的准确性。其次,管线调查时应注意量取各类管线的偏距,即管道中心线至井盖中心的水平偏移距。 ②在实地调查中应邀请管线权属单位的管线管理人员、管线的规划、设计、施工人员和当地居民等熟悉管线情况的人员协助。 2.2地下管线探测原理 金属管线探测采用电磁感应原理。地下金属管线在发射机发出的电磁场的激励下产生感应电流,该感应电流又在管线的周围产生二次感应磁场,通过接收机接收该二次磁场来确定地下管线的位置与深度。 发射机现场工作有三种方式:第一种采用偶极电磁感应法,探测时将发射机的发射线圈垂直地放在地表,或水平放置于管线的正上方;第二种是采用直接感应法,探测时用夹钳夹住管线,发射机通过夹钳直接激发管线;第三种是采用充电法,直接将发射机的一极接在管线的一端,另一极接在待测管线的另一端或较远处的大地上,使发射电流直接流过被测管线。直接感应法和充电法应具备管线露头的条件,其中充电法只能用于给水、热力等管线外露且不带电的管线,多用于管线的追踪;偶极电磁感应法适用范围较广,既可应用于已知管线的追踪,也可以进行未知管线的普查。 接收机接收电磁场有两种方式:一种是采用垂直线圈接收,该接收方法在地下管线的正上方信号最大,离开管线信号逐渐减小,极大值点与半极大值点的水平距离x为管线中心线的埋深h,如图3.1所示。另一种是采用水平线圈接收,该接收方法在地下管线的正上方信号最小,在管线两侧各有一个

第二讲 国内外地质雷达技术发展状况

第二讲国内外地质雷达技术发展状况(历史与现状) 探地雷达的历史最早可追溯到20世纪初,1904年,德国人Hulsmeyer首次将电磁波信号应用与地下金属体的探测。1910年Leimback和Lowy以专利形式在1910年的专利,他们用埋设在一组钻孔里的偶极子天线探测地下相对高的导电性质的区域,并正式提出了探地雷达的概念。1926年Hulsenbeck第一个提出应用脉冲技术确定地下结构的思路,指出只要介电常数发生变化就会在交界面会产生电磁波反射,而且该方法易于实现,优于地震方法[1,2]。但由于地下介质具有比空气强得多的电磁衰减特性,加之地下介质情况的多样性,电磁波在地下的传播比空气中复杂的多,使得探地雷达技术和应用受到了很多的限制,初期的探测仅限于对波吸收很弱的冰层厚度(1951,B.O.Steenson,1963,S.Evans)和岩石和煤矿的调查(J.C.Cook)等。随着电子技术的发展,直到70探地雷达技术才重新得到人们的重视,同时美国阿波罗月球表面探测实验的需要,更加速了对探地雷达技术的发展,其发展过程大体可分为三个阶段: 第一阶段,称为试验阶段,从20世纪70年代初期到70年代中期,在此期间美国,日本、加拿大等国都在大力研究,英国、德国也相继发表了论文和研究报告,首家生产和销售商用GPR的公司问世,即Rex Morey和Art Drake成立的美国地球物理测量系统公司(GSSI),日本电器设备大学也研制出小功率的基带脉冲雷达系统。此期间探地雷达的进展主要表现在,人们对地表附近偶极天线的辐射场以及电磁波与各种地质材料相互作用的关系有了深刻的认识,但这些设备的探测精度、地下杂乱回波中目标体的识别、分别率等方面依然存在许多问题。 第二阶段,也称为实用化阶段,从20世纪70年代中后其到80年代,在次期间技术不段发展,美国、日本、加拿大等国相继推出定型的探地雷达系统,在国际市场,主要有美国的地球物理探测设备公司(GSSI)的SIR系统,日本应用地质株式社会(OYO)的YL-R2地质雷达,英国的煤气公司的GP管道公司雷达,在70年代末,加拿大A-Cube公司的Annan和Davis等人于1998年创建了探头及软件公司(SSI),针对SIR系统的局限性以及野外实际探测的具体要求,在系统结构和探测方式上做了重大的改进,大胆采用了微型计算机控制、数字信号处理以及光缆传输高新技术,发展成了EKKO Ground Penetrating Radar 系列产品,简称EKKO GPR系列。瑞典地质公司(SGAB)也生产出RAMAC 钻孔雷达系统,此外,英国ERA公司、SPPSCAN公司,意大利IDS公司、瑞典及丹麦也都在生产和研制各种不同型号的雷达。80年代全数字化的GPR问世,具有划时代的意义,数字化GPR不仅提供了大量数据存储的解决方案,增强了实时和现场数据处理的能力,为数据的深层次后处理带来方便,更重要的是GPR 因此显露出更大的潜力,应用领域得以向纵身拓展。 第三阶段,从上个世纪80年代至今,可称为完善和提高阶段。在此期间,GPR技术突飞猛进,更多的国家开始关注探地雷达技术,出现了很多探地雷达的研究机构,如荷兰的应用科学研究组织和代尔夫大学,法国_德国的Saint-Louis 研究所(ISL),英国的DERA,瑞典的FOA,娜威科技大学和地质研究所,比利时的RMA,南非的开普敦大学,澳大利亚昆士兰大学,美国的林肯实验室和Lawrence Livermore国家实验室以及日本的一些研究机构等等。同时,探地雷达也得到了地球物理和电子工程界的更多关注,对天线的改进、信号的处理、地下目标的成像等方面提出了许多新的见解。GSSI公司在商业上取得了极大的成功,

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集 1

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1 常见介质的电性参数值 媒质电导率 / (S/m) 介电常 数(相对 值) 电磁波速度/ (m/ns) 空气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰岩(干)10-97 0.11 灰岩(湿) 2.5х10-28~10 0.11~0.095 粘土(湿)10-1~1 8~12 0.11~0.087 混凝土10-9~10-86~15 0.12~0.077 钢筋∞∞

地质雷达二衬检测施工细则

雷达检测施工细则 为保证本项目部在本次雷达检测过程中能够及时准确地完成任务,我检测组特针对雷达检测施工工作做出以下细则,本细则自即日期开始实施,要求全部检测人员认真、严格执行。 一、前期准备工作 (一)雷达检测组技术负责人制定雷达检测工作进度表,下发全体技术人员,要求技术人员按此进度表制定详细工作计划,以便于雷达检测组能及时地向施工方提前发出雷达检测通知,便于施工单位提前做好雷达检测的必要准备工作,以保证施工单位调整施工进度,且利于我方及时、高效地完成雷达检测工作。(二)雷达检测组技术负责人要根据检测目的计算好仪器的参数设置,以保证能在现场采集到全面、高效的数据记录;布线方式可根据掌子面地质情况及施工条件,现场设计合理的采集测线。 (三)雷达检测组技术负责人在出发前进行仪器的全面检查,避免由人为因素造成工地采集过程中出现采集中断。 二、现场采集工作 (一)雷达采集过程中要求有至少两名专业技术人员在场,以保证仪器操作、天线布设及仪器采集过程中的维护工作,同时在采集过程中要做好仪器的保护工作,防止人为或落石等造成仪器的损坏情况发生。 (二)雷达检测数据采集现场保证至少一人为专业地质描述人员,按要求做好掌子面及周边围岩的描述。 三、雷达检测组描述人员管理 (一)雷达检测组描述人员做好现场记录,为能准确记录现场地质情况,要求描述人员带必要的工具(地质锤、罗盘、放大镜、皮尺、花杆)。 (二)描述人员要对周边围岩进行详细的描述,对于大于25cm的裂隙或节理一定要进行详细描述(包括长度、走向、宽度、数量),对其可能的延伸方向要进行三维推断描述。要求描述信息准确,有效,并在野外做出描述草图,以备后期的资料整理与存档。 (三)雷达检测描述人员要对记录进行全面记载,包括: 1、断面号,要求为简单易记,能反映断面所处隧道的准确位置。 2、里程号,要求精确到0.1m (如XX检测的位置为K66+000.3)。 3、面积,要求有整体的把握,并对其做出准备合理的描述,包括影响深度、范围、影响消失边界。 (四)雷达检测描述人员也要准确记录已支护拱顶及周边变形及渗水情况,做好野外描述,要求描述语言要严格按规范中语言对地质情况进行客观描述,对有疑义处必须进行必要的咨询,对确难定义处要求争取多人意见,最终得出结论,并做好记录。 (五)雷达检测采集人员在现场采集过程中要及时做好雷达记录与现场地质情况的对比,以便于为后期的资料处理过程中提供参考。 (六)雷达检测采集人员要做好现场的班报记录(包括检测位置、文件名、仪器

隧道衬砌地质雷达无损检测技术

. . . . 隧道衬砌质量地质雷达无损检测技术 1 前言 1.1工艺概况 铁路隧道衬砌是隐蔽工程,用传统的目测或钻孔对其质量进行检测有较大的局限性;应用物理勘探的方法对隧道衬砌混凝土进行无损检测,可取得快速、安全、可靠的效果。 1.2工艺原理 电磁反射波法(地质雷达)由主机、天线和配套软件等几部分组成。根据电磁波在有耗介质中的传播特性,当发射天线向被测介质发射高频脉冲电磁波时,电磁波遇到不均匀体(接口)时会反射一部分电磁波,其反射系数主要取决于被测介质的介电常数,雷达主机通过对此部分的反射波进行适时接收和处理,达到探测识别目标物体的目的(图1)。 图1 地质雷达基本原理示意图 电磁波在特定介质中的传播速度是不变的,因此根据地质雷达记录的电磁波传播时间ΔT,即可据下式算出异常介质的埋藏深度H: H V T =??2(1)

式中,V 是电磁波在介质中的传播速度,其大小由下式表示: V C =ε (2) 式中,C 是电磁波在大气中的传播速度,约为3.0×108m/s ; ε为相对介电常数,不同的介质其介电常数亦不同。 雷达波反射信号的振幅与反射系统成正比,在以位移电流为主的低损耗介质中,反射系数可表示为: 212 1εεεε+-=r (3) 反射信号的强度主要取决于上、下层介质的电性差异,电性差越大,反射信号越强。 雷达波的穿透深度主要取决于地下介质的电性和波的频率。电导率越高,穿透深度越小;频率越高,穿透深度越小。 2 工艺特点 电磁反射波法(地质雷达)能够预测隧道施工中衬砌的各种质量问题,分辨率高,精度高,探测深度一般在0.5m ~2.0m 左右。利用高频电磁脉冲波的反射,中心工作频率400MHz/900 MHz/1500 MHz ; 采用宽带短脉冲和高采样率,分辨率较高; 采用可调程序高次迭加和多波处理等信号恢复技术,大大改善了信噪比和图像显示性能。 (1)操作简单,对工作环境要求不高; (2)对衬砌隐蔽工程质量问题性质判断一般精度较高,分辨率可达到2~5cm ,检测的深度、结构尺寸以及里程偏差或误差小于10%,缺陷类型识别准确度达95%以上; (3)通过专业的RADAN 6.0分析软件,专业的技术人员可以迅速的完成数据处理等。 3 适用范围 地质雷达有其适用范围和适用条件,目标体与周围介质是否存在足够的电性

公路水运继续教育---地质雷达探测技术在路基病害检测中的应用

第1题 由于松散体内部充填不同性状的土体排列无规律,因此松散体内部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞内部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米范围内的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

地质雷达合同新doc

密级: 合同编号:科研(2005-7)号中铁二十四局福建铁路建设有限公司科研 项目合同 项目名称:应用地质雷达法检测混凝土结构物强度及缺陷位置 的试验研究 负责单位:福州铁建工程质量检测有限公司 课题负责人:王兴照 起止年限:2005年1月至2005年12月 中铁二十四局集团福建铁路建设有限公司 2005年9月10日

一、项目简要说明: 通过本项目研究,找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土强度(R)的相关关系,利用不同介质的物性差异所引起波的反射来判定被测目标情况,进行混凝土强度及缺陷位置的判定。 二、主要研究内容及技术关键: 1、找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土强度(R)的相关关系; 2、找出相对介电常数(ε)和电磁波的传播时间(ΔT)与混凝土缺陷位置(H)之间的相关关系,即H=f(ε,ΔT); 3、混凝土结构物缺陷的定性判识。 三、达到的目标、技术经济指标和成果形成: 1、通过本项目研究,研究在一般测试环境中,地质雷达法测评混凝土强度等级范围的方法。 2、通过本项目研究,研究在不同条件下,寻找相对介电常数ε和电磁波的传播时间ΔT 及缺陷厚度H之间的关系规律。 3、通过模拟试验,研究不同预埋物及缺陷在地质雷达图像中判识。 4、形成《地质雷达检测混凝土结构物作业指导书》一份(用于指导操作人员),编制《地质雷达检测混凝土结构物方法介绍》一份(用于科普介绍和技术交流)。 成立QC小组,组织技术攻关,形成地质雷达检测混凝土结构物的攻关QC成果一份,参加公司QC成果发布。总结形成科技论文一篇。 四、采用的研究和试验方法:

地质雷达探测技术在路基病害检测中的应用继续教育答案

第1题 由于松散体部充填不同性状的土体排列无规律,因此松散体部在雷达图像上表现为杂乱的,随深度的增加,电磁波逐渐 A.强反射波,增大 B.强反射波,衰减 C.弱反射波,增大 D.弱反射波,衰减 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第2题 空洞部会形成明显的多次反射波组,形态大致为一倒悬() A.双曲线 B.抛物线 C.折线 D.圆曲线 答案:A 您的答案:D 题目分数:5 此题得分:0.0 批注: 第3题 数据处理的一般流程为: 原始数据的编辑- > 滤波- >设定时间零点- >频谱分析- >()- >属性分析、剖面叠加等- >增益- >速度求取- >高程修正- >剖面输出 A.增益 B.滤波 C.去噪 D.时窗选取 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第4题 反射系数的大小主要取决于反射界面两侧介质介电常数的差异, 差

异越大反射信号(), 反之反射信号() A.越强,越差 B.越强,越好 C.越弱,越差 D.越弱,越好 答案:A 您的答案:A 题目分数:5 此题得分:5.0 批注: 第5题 地质雷达法是一种采用()电磁波信号检测地下介质分布的方法 A.宽脉冲宽带高频 B.窄脉冲宽带高频 C.宽脉冲宽带低频 D.窄脉冲宽带低频 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 遇到不同的介质或介质中裂隙或孔隙发育程度不同时, 电磁波的反射系数、衰减系数、以及()是不一样的 A.传播速度 B.旅行时间 C.反射波频率 D.反射波振幅 答案:C 您的答案:D 题目分数:5 此题得分:0.0 批注: 第7题 现阶段,地质雷达探测技术可以检测道路路面以下()米围的空洞、疏松等路基缺陷,确定道路缺陷的位置、大小及埋深 A.4 B.5

地质雷达探测技术说明C.doc

减免税进口仪器、设备说明 今有中国地质大学(北京)地球物理与信息技术学院进口Scintrex公司CG-5型重力仪一套。 一、仪器主要部分 1.灵敏系统:主要部件由一个矩形石英框架支撑着,用一个支杆固定在密封器顶盖上。灵敏系统的位移方式属角位移。 2.测量系统:由测读装置、测程调节装置及纵、横水准器等组成,测量出弹簧长度变化后经过电子系统转化成电流的大小,从而数字化将测量值显示到主机显示屏上。 二、仪器性能 相比较其他传统金属弹簧重力仪而言Scintrex公司生产的CG-5型重力仪不容易产生掉格现象从而保证了更高的测量精度和稳定性: (一)石英材料的滞后作用比金属材料小。对于悬挂承重的石英弹簧来说,一旦去掉承重,弹簧就会精确地恢复原状,而一个金属弹簧则会保持一定的记忆。Scintrex所制造的石英传感器是整体铸造,包括石英弹簧及其悬挂连接点是一个整体结构,它的滞后作用比类似的金属部件要小许多。

(二)传感器的所有联结点,象悬挂弹簧的支点和石英弹簧本身焊成一个整体。相反,金属弹簧重力仪的各种功能部件都是通过机械连接装配在一起的。所以整体熔凝的石英传感器不会出现部件之间的滑移或内部变形。这是使石英传感器不易产生掉格的又一个重要原因,也使它很少出现测试数据混乱的现象。 (三)石英弹簧比金属弹簧具有比较大的温度系数,并且石英弹簧传感器是垂直悬挂式弹簧,对于相同的重力值,它的弹簧伸长比金属弹簧重力仪中的金属弹簧小。三、仪器工作原理 Scintrex公司CG-5型重力仪采用无静电熔凝石英材料做为传感器,是基于一种垂直悬挂式石英弹簧,弹簧末端的重锤上悬挂一根测量弹簧。当作用在重锤上的重力发生变化时,可以伸缩测量弹簧,使摆杆改变原来的静平衡位置。这样通过测量弹簧的伸缩量来测定重力的变化。重力变化同弹簧的伸缩量成线性关系,从而勘探地表重力场变化的先进仪器。 通过测定地表各点上的重力加速度的值,对地下介质和地质体的分布做出推断。 四、仪器技术参数 传感器类型:无静电熔凝石英 测量范围:8000mGal,不用重置 自动修正:潮汐、仪器倾斜、温度、噪声、地震噪声 尺寸:30cmX21cmX22cm 重量(含电池):8kg 电池容量:2X6Ah(10.78V) 袖珍锂电池 功耗:25°C时4.5W 工作温度:-40~+45°C 环境温度修正:通常0.2microGal/°C 大气压力修正:通常0.15microGal/kPa 磁场修正:通常1microGal/Gauss(微伽/高斯) 五、仪器在教学中的应用 该仪器是我院“地球物理学”专业和“地球探测与信息技术”专业勘探地质构造、

地质雷达探测报告

地质雷达探测报告项目名称: 委托单位: 检测类别:一般委托 二O一四年五月十五日

目录 1. 概述 (1) 2. 探测仪器及主要参数 (1) 3. 探测依据 (1) 4. 测试成果 (1) 附件:雷达探测成果图 (2)

长沙地铁一号线七标黄土岭站~涂家冲站 区间隧道上覆地层(涂家冲加油站附近)病害探测报告 1. 概述 受****************的委托,我单位会同委托单位相关技术人员,于2014年5月15日对委托单位承担的*****地铁一号线*******区间隧道上覆地层(******附近)病害情况进行了雷达探测。 2. 探测仪器及主要参数 仪器:瑞典RAMAC/GPR探地雷达 50MHz天线一对 主要参数: 采样频率:500MHz 样点数:456 迭加次数:自动迭加 时间窗口:800ns 采集方式:剖面法,收发距1米,点触发 采集点距:0.1米 探测范围:DK23+105.2~DK23+075.2 3. 探测依据 略。 4. 测试成果 根据雷达的现场测试数据,采用REFLEXW软件分析得出拟改隧道外侧壁点阵灰度雷达图(附件)。

(1)整个测线范围未见大的空洞病害; (2)左线: DK23+100~DK23+075路面下10m、(靠辅道侧) DK23+080~DK23+105路面下5m深度范围内,地层松散,北侧含水量较大; (3)右线:DK23+100~DK23+080路基层下,有明显的反射界面,可能存在脱空缺陷。 注:实际探测过程中,受过往车辆和护栏干扰较大,结果仅作参考。 以下无正文内容! 二O一四年五月十五日附件:雷达探测成果图

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯pvc 3 173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

相关主题
文本预览
相关文档 最新文档