当前位置:文档之家› (专题精选)初中数学锐角三角函数的经典测试题及答案

(专题精选)初中数学锐角三角函数的经典测试题及答案

(专题精选)初中数学锐角三角函数的经典测试题及答案
(专题精选)初中数学锐角三角函数的经典测试题及答案

(专题精选)初中数学锐角三角函数的经典测试题及答案

一、选择题

1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( )

A .asinα+asinβ

B .acosα+acosβ

C .atanα+atanβ

D .tan tan a a αβ

+ 【答案】C

【解析】

【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可.

【详解】

在Rt △ABD 和Rt △ABC 中,AB =a ,tanα=

BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ,

∴CD =BC+BD =atanα+atanβ,

故选C .

【点睛】

本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键.

2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

A .78.6米

B .78.7米

C .78.8米

D .78.9米

【答案】C

【解析】

【分析】

如下图,先在Rt △CBF 中求得BF 、CF 的长,再利用Rt △ADG 求AG 的长,进而得到AB 的长度

【详解】

如下图,过点C 作AB 的垂线,交AB 延长线于点F ,延长DE 交AB 延长线于点G

∵BC 的坡度为1:0.75

∴设CF 为xm ,则BF 为0.75xm

∵BC=140m

∴在Rt △BCF 中,()2

220.75140x x +=,解得:x=112

∴CF=112m ,BF=84m

∵DE ⊥CE ,CE ∥AB ,∴DG ⊥AB ,∴△ADG 是直角三角形

∵DE=55m ,CE=FG=36m

∴DG=167m ,BG=120m

设AB=ym

∵∠DAB=40° ∴tan40°=1670.84120

DG AG y ==+ 解得:y=78.8

故选:C

【点睛】

本题是三角函数的考查,注意题干中的坡度指的是斜边与水平面夹角的正弦值.

3.如图,矩形纸片ABCD ,4AB =,3BC =,点P 在BC 边上,将CDP ?沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP OF =,则cos ADF ∠的值为( )

A.11

13

B.

13

15

C.

15

17

D.

17

19

【答案】C

【解析】

【分析】

根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP= OF可得出△OEF≌AOBP(AAS)根据全等三角形的性质可得出0E=OB、EF=BP,设EF=x,则BP=x、DF=4-x、

BF=PC=3-x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.

【详解】

解:∵矩形纸片ABCD,点P在BC边上,将CDP

?沿DP折叠,点C落在点E处,

根据折叠性质,可得:△DCP≌△DEP ,

∴.DC=DE=4, CP= EP,

在△OEF和△OBP中

90

EOF BOP

B E

OP OF

∠=∠

?

?

∠=∠=?

?

?=

?

∴△OEF≌△OBP(AAS)

∴ОE=OB, EF= ВР.

设EF=x,则BP=x,DF= DE-EF=4-X,

又∵ BF=OB+OF=OE+ OP=PE=PC, РС=ВC-BP=3-x,

∴AF=AB-BF=1+x.

在Rt△DAF中,AF2+AD2= DF2,即(1+x) 2+32= (4-x)2

解得: x=

3

5

∴DF=4-x=

17

5

∴cos∠ADF=

15

17

AD

DF

=

故选: C.

【点睛】

本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.

4.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为()

A.2+3B.23C.3+3D.33

【答案】A

【解析】

【分析】

【详解】

设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,BC=3x,

所以BD=BA=2x,即可得CD=3x+2x=(3+2)x,

在Rt△ACD中,tan∠DAC=

(32)

32 CD x

AC

+

==+,

故选A.

5.如图,在矩形ABCD中,BC=2,AE⊥BD,垂足为E,∠BAE=30°,则tan∠DEC的值是()

A.1 B.1

2

C.

3

2

D.

3

3

【答案】C

【解析】

【分析】

先根据题意过点C作CF⊥BD与点F可求得△AEB≌△CFD(AAS),得到AE=CF=1,EF=32

3-3

3

【详解】

过点C作CF⊥BD与点F.

∵∠BAE=30°,

∴∠DBC=30°,

∵BC=2,

∴CF =1,BF =3 , 易证△AEB ≌△CFD (AAS )

∴AE =CF =1,

∵∠BAE =∠DBC =30°,

∴BE =33 AE =33

, ∴EF =BF ﹣BE =3 ﹣

3=233 , 在Rt △CFE 中,

tan ∠DEC =323CF

EF ==, 故选C .

【点睛】

此题考查了含30°的直角三角形,三角形全等的性质,解题关键是证明所进行的全等

6.如图所示,在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,作CD 的中垂线与CD 交于点E ,与BC 交于点F .若CF =x ,tanA =y ,则x 与y 之间满足( )

A .2244x y +=

B .2244x y -=

C .2288x y -=

D .2288x y

+= 【答案】A

【解析】

【分析】

由直角三角形斜边上的中线性质得出CD =

12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE

=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y

=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得

出答案.

【详解】

解:如图所示:

∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,

∴CD =12AB =AD =4, ∴∠A =∠ACD ,

∵EF 垂直平分CD , ∴CE =12

CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE

=tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,

∴∠ACD =∠FCE ,

∴△CEG ∽△FEC ,

∴GE CE =CE FE

, ∴y =2FE

, ∴y 2=

24FE , ∴24y

=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4,

∴24y

=x 2﹣4, ∴24y

+4=x 2, 故选:A .

【点睛】

本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.

7.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则⊙O 的半径为( )

A .3

B .23

C .32

D .233

【答案】A

【解析】

连接OC ,

∵OA=OC ,∠A=30°,

∴∠OCA=∠A=30°,

∴∠COB=∠A+∠ACO=60°,

∵PC 是⊙O 切线,

∴∠PCO=90°,∠P=30°,

∵PC=3,

∴OC=PC ?tan30°=3,

故选A

8.如图,ABC ?是一张顶角是120?的三角形纸片,,6AB AC BC ==现将ABC ?折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )

A .1

B .2

C 2

D 3【答案】A

【解析】

【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可.

【详解】

解:作AH ⊥BC 于H ,

∵AB=AC ,AH ⊥BC ,

BH=12BC=3, ∵∠BAC=120°,AB=AC ,

∴∠B=30°,

∴AB=30BH cos ?=23, 由翻折变换的性质可知,DB=DA=3,

∴DE=BD ?tan30°=1,

故选:A . 【点睛】

此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

9.如图,某地修建高速公路,要从A 地向B 地修一条隧道(点A ,B 在同一水平面上).为了测量A ,B 两地之间的距离,一架直升飞机从A 地起飞,垂直上升1000米到达C 处,在C 处观察B 地的俯角为α,则AB 两地之间的距离约为( )

A .1000sin α米

B .1000tan α米

C .1000tan α米

D .1000sin α

米 【答案】C

【解析】

【分析】 在Rt △ABC 中,∠CAB=90°,∠B=α,AC=1000米,根据tan AC AB

α=

,即可解决问题. 【详解】 解:在Rt ABC ?中,∵90CAB ∠=o ,B α∠=,1000AC =米,

∴tan AC AB

α=,

1000

tan tan

AC

AB

αα

==米.

故选:C.

【点睛】

本题考查解直角三角形的应用-仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.

10.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sin∠E的值为()

A.1

2

B.

2

C.

3

2

D.

3

3

【答案】A

【解析】

【分析】

首先连接OC,由CE是⊙O切线,可证得OC⊥CE,又由圆周角定理,求得∠BOC的度数,继而求得∠E的度数,然后由特殊角的三角函数值,求得答案.

【详解】

如图,连接OC,

∵CE是⊙O的切线,

∴∠OCE=90°,

∵OA=OC,

∴∠OCA=∠A=30°,

∴∠COE=∠A+∠OCA=60°,

∴∠E=180°-90°-60°=30°,

∴sinE=sin30°=1 2 .

故选A.

11.如图,在Rt△ABC内有边长分别为a,b,c的三个正方形.则a、b、c满足的关系式是()

A .b=a+c

B .b=ac

C .b 2=a 2+c 2

D .b=2a=2c

【答案】A

【解析】

【分析】 利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c

-=-,化简得b =a +c ,故选A. 【详解】

请在此输入详解!

12.如图,ABC V 中,90ACB ∠=?,O 为AB 中点,且4AB =,CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,则OD 的最小值为( ).

A .1

B .22

C 21

D .222

【答案】D

【解析】

【分析】 根据三角形角平分线的交点是三角形的内心,得到DO 最小时,DO 为三角形ABC 内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.

【详解】

解:Q CD ,AD 分别平分ACB ∠和CAB ∠,交于D 点,

D ∴为ABC ?的内心,

OD ∴最小时,OD 为ABC ?的内切圆的半径,

,DO AB ∴⊥

过D 作,,DE AC DF BC ⊥⊥ 垂足分别为,,E F

,DE DF DO ∴==

∴ 四边形DFCE 为正方形,

O Q 为AB 的中点,4,AB =

2,AO BO ∴==

由切线长定理得:2,2,,AO AE BO BF CE CF r ======

sin 4522,AC BC AB ∴==??=

222,CE AC AE ∴=-=-

Q 四边形DFCE 为正方形,

,CE DE ∴=

222,OD CE ∴==-

故选D .

【点睛】

本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键.

13.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ?与ADM ?关于AM 所在直线对称,将ADM ?按顺时针方向绕点A 旋转90°得到ABF ?,连接EF ,则cos EFC ∠的值是 ( )

A 171365

B 61365

C 71525

D .617

【答案】A

【解析】

【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明

AEH EMG V :V ,则有13

EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求

,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF

∠=

即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则

90AHG MGE ∠=∠=?,

∵四边形ABCD 是正方形,

∴3,90AD AB ABC C D ==∠=∠=∠=? ,

∴四边形AHGD,BHEN,ENCG 都是矩形.

由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=?====,

90AEH MEG EMG MEG ∴∠+∠=∠+∠=? ,

AEH EMG ∴∠=∠,

AEH EMG ∴V :V ,

13

EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+

在Rt AEH V 中,

222AH EH AE +=Q ,

222(1)(3)3x x ∴++= , 解得45

x =或1x =-(舍去), 125EH BN ∴==,65

CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=

. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,

17cos 1365

FN EFC EF ∴∠=

=. 故选:A .

【点睛】

本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.

14.已知圆锥的底面半径为5cm ,侧面积为60πcm 2,设圆锥的母线与高的夹角为θ,则sinθ的值为( )

A .313

B .513

C .512

D .1213

【答案】C

【解析】

【分析】

先求出圆锥底面周长可得到圆锥侧面展开图扇形的弧长,再利用扇形面积公式12S lr =可求出母线的长,最后利用三角函数即可求出答案.

【详解】

解:∵圆锥底面周长为2510ππ?=,

且圆锥的侧面积为60π,

∴圆锥的母线长为

2601210ππ?=, ∴sin θ=

512. 故选C.

【点睛】

本题考查了圆锥和三角函数的相关知识.利用所学知识求出圆锥母线的长是解题的关键.

15.在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度CD .如图,嘉淇与假山的水平距离BD 为6m ,他的眼睛距地面的高度为1.6m ,嘉淇的视线经过量角器零刻度线OA 和假山的最高点C ,此时,铅垂线OE 经过量角器的60?刻度线,则假山的高度CD 为( )

A .()23 1.6m +

B .()22 1.6m +

C .()43 1.6m +

D .23m

【答案】A

【解析】

【分析】 根据已知得出AK=BD=6m ,再利用tan30°=

6

CK CK AK =,进而得出CD 的长. 【详解】

解:如图,过点A 作AK ⊥CD 于点K

∵BD=6米,李明的眼睛高AB=1.6米,∠AOE=60°,

∴DB=AK ,AB=KD=1.6米,∠CAK=30°,

∴tan30°=6

CK CK AK =, 解得:CK=23

即CD=CK+DK=23+1.6=(23+1.6)m .

故选:A .

【点睛】

本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.

16.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12

x 刻画,下列结论错误的是( )

A .斜坡的坡度为1: 2

B .小球距O 点水平距离超过4米呈下降趋势

C .小球落地点距O 点水平距离为7米

D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m

【答案】D

【解析】

【分析】

求出抛物线与直线的交点,判断A、C;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出当7.5

y=时,x的值,判定D.

【详解】

解:

2

1

4

2

1

2

y x

x

y x

?

=-+

??

?

?=

??

解得,1

1

x

y

=

?

?

=

?

2

2

7

7

2

x

y

=

?

?

?

=

??

7

2

∶7=1∶2,∴A正确;

小球落地点距O点水平距离为7米,C正确;

2

1

4

2

y x x

=-

2

1

(4)8

2

x

=--+,

则抛物线的对称轴为4

x=,

∴当4

x>时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,

当7.5

y=时,2

1

7.54

2

x x

=-,

整理得28150

x x

-+=,

解得,13

x=,

2

5

x=,

∴当小球抛出高度达到7.5m时,小球水平距O点水平距离为3m或5m,D错误,符合题意;

故选:D

【点睛】

本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.

17.如图,△ABC的顶点是正方形网格的格点,则cos A=()

A.1

2

B.

2

2

C.

3

2

D.

5

5

【答案】B

【解析】

【分析】

构造全等三角形,证明△ABD是等腰直角三角形,进行作答.【详解】

过A作AE⊥BE,连接BD,过D作DF⊥BF于F.

∵AE=BF,∠AEB=∠DFB,BE=DF,

∴△AEB≌△BFD,

∴AB=DB.∠ABD=90°,

∴△ABD是等腰直角三角形,

∴cos∠DAB=

2 2

.

答案选B.

【点睛】

本题考查了不规则图形求余弦函数的方法,熟练掌握不规则图形求余弦函数的方法是本题解题关键.

18.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()

A.2 B3C2D.1 2

【答案】B

【解析】

【分析】

连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】

连接OA,

∵∠ABC=30°,

∴∠AOC=60°,

∵PA是圆的切线,∴∠PAO=90°,

∵tan∠AOC =PA OA

,

∴PA= tan60°×1=3.

故选B.

【点睛】

本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.

19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()

A.2 B.4 C.3D.3

【答案】C

【解析】

【分析】

点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】

解:设AB=a,∠C=30°,则AC=2a,BC3a,

设P、Q同时到达的时间为T,

则点P的速度为3a

T

,点Q的速度为

3a

T

,故点P、Q的速度比为33

故设点P 、Q 的速度分别为:3v 、3v , 由图2知,当x =2时,y =63,此时点P 到达点A 的位置,即AB =2×3v =6v , BQ =2×3v =23v ,

y =12?AB ×BQ =12

?6v ×23v =63,解得:v =1, 故点P 、Q 的速度分别为:3,3,AB =6v =6=a ,

则AC =12,BC =63,

如图当点P 在AC 的中点时,PC =6,

此时点P 运动的距离为AB +AP =12,需要的时间为12÷3=4,

则BQ =3x =43,CQ =BC ﹣BQ =63﹣43=23,

过点P 作PH ⊥BC 于点H ,

PC =6,则PH =PC sin C =6×12

=3,同理CH =33,则HQ =CH ﹣CQ =33﹣23=3,

PQ =22PH HQ +=39+=23,

故选:C .

【点睛】

本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.

20.如图,一张直角三角形纸片BEC 的斜边放在矩形ABCD 的BC 边上,恰好完全重合,边BE ,CE 分别交AD 于点F ,G ,已知8BC =,::4:3:1AF FG GD =,则CD 的长为()

A .1

B 2

C 3

D .2

【答案】C

【解析】

【分析】

由ABCD是矩形,得到AD=BC=8,且矩形的四个角是直角,根据

::4:3:1

AF FG GD=,可以求出DG的长度,再根据余角的性质算出∠DCE的大小,根据三角函数即可算出DC的长度.

【详解】

解:∵四边形ABCD是矩形,

∴AD=BC=8,∠DCB=90?,

又∵::4:3:1

AF FG GD=

11

1 4318

GD AD AD

===

++

,

∵∠ECB=60°,

∴∠DCE=906030

?-?=?,

又∵

1 tan30

GD

CD CD

?===,

∴CD=

故答案为C.

【点睛】

本题主要考查矩形、特殊直角三角形、余角的性质,运用线段的比例长算出其中各段的长度是解本题的关键,特殊角的三角函数也是重要知识点,应掌握.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

初中数学锐角三角函数的难题汇编含答案

初中数学锐角三角函数的难题汇编含答案 一、选择题 1.如图,点O 为△ABC 边 AC 的中点,连接BO 并延长到点D,连接AD 、CD ,若BD=12,AC=8,∠AOD =120°,则四边形ABCD 的面积为( ) A .23 B .22 C .10 D .243 【答案】D 【解析】 【分析】 分别过点A 、C 作BD 的垂线,垂足分别为M 、N ,通过题意可求出AM 、CN 的长度,可计算三角形ABD 和三角形CBD 的面积,相加即为四边形ABCD 的面积. 【详解】 解:分别过点A 、C 作BD 的垂线,垂足分别为M 、N , ∵点O 为△ABC 边 AC 的中点,AC=8, ∴AO=CO=4, ∵∠AOD =120°, ∴∠AOB=60°,∠COD=60°, ∴342 AM AM sin AOB AO ===∠, 342 CN CN sin COD CO ===∠, ∴AM=23CN=3 ∴12231232ABD BD AM S ?===g △ 12231232BD CN S ?===g △BCD , ∴=123123243ABD BCD ABCD S S S +==△△四边形 故选:D. 【点睛】

本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】 在Rt △BDE 中,cosD= DE BD , ∴DE=BD ?cosD=500cos55°. 故选B . 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.如图,在ABC ?中,4AC =,60ABC ∠=?,45C ∠=?,AD BC ⊥,垂足为D ,ABC ∠的平分线交AD 于点E ,则AE 的长为( ) A .22 B .223 C .23 D .322 【答案】C 【解析】 【分析】 在Rt △ADC 中,利用等腰直角三角形的性质可求出AD 的长度,在Rt △ADB 中,由AD 的长度及∠ABD 的度数可求出BD 的长度,在Rt △EBD 中,由BD 的长度及∠EBD 的度数可求出DE 的长度,再利用AE=AD?D E 即可求出AE 的长度. 【详解】 ∵AD ⊥BC ∴∠ADC=∠ADB=90?

经典初中数学题大全

一、填空题: 1.一个正数a的平方根,用符号“________”表示,其中a叫做________,根指数是________. 2.平方根等于它本身的数是________,算术平方根等于它本身的数是________.3.________的平方根有两个,________的平方根只有一个,并且________没有平方根. 4.0.25的算术平方根是________. 5.9的算术平方根是________,的算术平方根是________. 6.36的平方根是________,若,则x=________. 7.的平方根是________,的平方根是________,的算术平方根是________.8.81的平方根是________,算术平方根是________,算术平方根的相反数是 ________,平方根的倒数是________,平方根的绝对值是________.9.,则x=________. 10.当 a________时,有意义. 二、判断并加以说明. 1.3 的平方是9;() 2.1的平方根是1;() 3.0的平方根是0;() 4.无理数就是带根号的数;() 5.的平方根是;() 6.是25的一个平方根;() 7.正数的平方根比它的平方小;() 8.除零外,任何数都有两个平方根;() 9.的平方根是;() 10.没有平方根;()

11.零是最小的实数;() 12.23是的算术平方根.() 三、选择题: 1.下列说法正确的是(). A.的算术平方根是 B.的平方根是 C.的算术平方根是 D.的平方根是 2.在四个数0,,2,中,有平方根的是(). A.0与 B.0,与 C.0与 D.0,2与 3.若,则x为(). A.1 B. C. D. 4.的平方根是(). A.3 B. C.9 D. 5.的算术平方根是(). A.16 B. C.4 D. 6.如果有意义,则x的取值范围是(). A.x≥0 B.x>0 C.x> D.x≥ 7.如果一个自然数的平方根是(a≥0),则下一个自然数的平方根为().A. B. C. D. 8.下列叙述正确的是(). A.是7的一个平方根 B.11的平方根是 C.如果x有算术平方根,则x>0 D. 9.计算的平方根,下列表达式正确的是(). A. B. C. D.

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

(完整)初中锐角三角函数教案

锐角三角函数 中考主要考查点: 1. 锐角三角函数定义;特殊角的三角函数值; 2. 解直角三角形;解直角三角形的应用; 3. 直角三角形的边角关系的应用 ? 知识点1. 直角三角形中边与角的关系 中,∠C=90° (1)边的关系: (2)角的关系: (3)边与角的关系: sinA = cosA= tanA= cotA= sinA =cosB = a c , cosA =sinB = b c ,tanA ==a b , tanB =b a , cotA=b a ? 知识点2. 特殊角的三角函数值 特殊角30°,45°,60°的三角函数值列表如下: α sinα cosα tanα 30° 1 2 33 45° 22 22 1 60° 1 2 斜边 的对边 A ∠斜边 的邻边A ∠邻边的对边A ∠ 对边的邻边A ∠2 3 233

? 知识点3. 三角函数的增减性 已知∠A 为锐角,sinA 随着角度的增大而 增大 ,tanA 随着角度的增大而 增大 , cosA 随着角度的增大而 减小 。 例1. 已知∠A 为锐角,且cosA≤ 2 1 ,那么( ) (A ) 0°<A≤60°(B )60°≤A <90°(C )0°<A≤30°(D )30°≤A <90° ? 知识点4. 同角三角函数与互为余角的三角函数之间的关系。 1. 同角三角函数的关系 1cos sin 22=+A A A A A cos sin tan = 1cot tan =?A A 2. 互为余角的三角函数之间的关系90=+B A B A B A sin cos cos sin == ?=47cos 43sin ο 1tan tan =?B A ? 知识点5. 直角三角形的解法 直角三角形中各元素间的关系是解直角三角形的依据,因此,解直角三角形的关键是 正确选择直角三角形的边角关系式,使两个已知元素(其中至少有一个元素是边). 重要类型: 1.已知一边一角求其它。 2.已知两边求其它。 例2. 在中,∠C=90°,,∠A -∠B=30°,试求的值。 A C B

初中数学经典易错题集锦及答案

初中数学经典易错题集锦及答案、选择题 1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是------------------ ( ) A、互为相反数 B、绝对值相等 C、是符号不同的数 D、都是负数 2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是-------------- ( ) A、2a B、2b C、2a-2b D、2a+b b 3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度--------------- ( A、2千米/小时 B、3千米/小时 C、6千米/小时 D、不能确定 4、方程2x+3y=20的正整数解有------------------------------------- ( ) A、1个 B、3个 C、4个 D、无数个 5、下列说法错误的是------------------------------------------- ( ) A.两点确定一条直线B、线段是直线的一部分 C、一条直线是一个平角 D、把线段向两边延长即是直线 2 2 6?函数y=(m -1)x -(3m-1)x+2的图象与x轴的交点情况是 ----------------------- ----( ) A.当m丰3时,有一个交点B、m =二1时,有两个交 C、当m = 1时,有一个交点 D、不论m为何值,均无交点 7?如果两圆的半径分别为R和r ( R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是---------- ( ) A、内切 B、外切 C、内切或外切 D、不能确定 8、在数轴上表示有理数a、b、c的小点分别是A、B、C且b ----- a----------- ABC C B A CAB B A C A B CD 9、有理数中,绝对值最小的数是-------------------------------------- ( ) A、-1 B、1 C、0 D、不存在 1 10、2的倒数的相反数是 ------------------------------------------ ( ) 1 1 A、-2 B、2 C、- 2 D、2 11、若|x|=x,则-X - 1定是------------------------------------- ( ) A、正数 B、非负数 C、负数 D、非正数 12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为------------ ( ) A、互为相反数 B、互为倒数 C、互为相反数且不为0 D、有一个为0 13、长方形的周长为x,宽为2,则这个长方形的面积为---------------------------- ( ) A、2x B、2(x-2) C、x-4 D、2 ? (x-2)/2 14、“比x的相反数大3的数”可表示为--------- ------------------------ ( ) A、-X-3 B、-(x+3) C、3-x D、x+3 15、如果0

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

初中数学锐角三角函数定义大全

初中数学:锐角三角函数定义大全 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin)等于对边比斜边;sinA=a/c 余弦(cos)等于邻边比斜边;cosA=b/c 正切(tan)等于对边比邻边;tanA=a/b 余切(cot)等于邻边比对边;cotA=b/a 正割(sec)等于斜边比邻边;secA=c/b 余割(csc)等于斜边比对边。cscA=c/a 互余角的三角函数间的关系 sin(90°-α)=cosα,cos(90°-α)=sinα, tan(90°-α)=cotα,cot(90°-α)=tanα. 平方关系:

sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) 积的关系: sinα=tanα·cosα cosα=cotα·sinα tanα=sinα·secα cotα=cosα·cscα secα=tanα·cscα cscα=secα·cotα 倒数关系: tanα·cotα=1

sinα·cscα=1 cosα·secα=1 特殊的三角函数值 0°30°45°60°90° 01/2√2/2√3/21←sinA 1√3/2√2/21/20←cosA 0√3/31√3None←tanA None√31√3/30←cotA 诱导公式 sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotα

sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

初中数学圆形经典习题

第二十四章圆经典训练题 24.1 圆 一、选择题. 1.如图1,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,?错误的是( ). A .CE=DE B . BC BD = C .∠BAC=∠BAD D .AC>AD C (1) (2) (3) 2.如图2,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A .4 B .6 C .7 D .8 3.如图3,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,?则下列结论中不正确的是( ) A .A B ⊥CD B .∠AOB=4∠ACD C . A D BD = D .PO=PD 二、填空题 1.如图4,AB 为⊙O 直径,E 是 BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____. B A 2.P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;?最长弦长为_______. 3.如图5,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,如果OE=OF ,那么_______________(只需写一个正确的结论) 三、综合提高题 1.如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.

24.1 圆(第2课时) 一、选择题. 1.如果两个圆心角相等,那么( ) A .这两个圆心角所对的弦相等; B .这两个圆心角所对的弧相等 C .这两个圆心角所对的弦的弦心距相等; D .以上说法都不对 2.在同圆中,圆心角∠AOB=2∠COD ,则两条弧AB 与CD 关系是( ) A . A B =2 CD B . AB > CD C . AB <2 CD D .不能确定 3.如图5,⊙O 中,如果 AB =2 AC ,那么( ) . A .AB=AC B .AB=AC C .AB<2AC D .AB>2AC A B A 二、填空题 1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的__________________. 2.一条弦长恰好为半径长,则此弦所对的弧是半圆的__________________. 3.如图6,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 三、解答题 1.如图,在⊙O 中,C 、D 是直径AB 上两点,且AC=BD ,MC ⊥AB ,ND ⊥AB ,M 、N ?在⊙O 上. (1)求证: AM = BN ;(2)若C 、D 分别为OA 、OB 中点,则 AM MN NB ==成立吗? B A

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

初三数学锐角三角函数通用版

初三数学锐角三角函数通用版 【本讲主要内容】 锐角三角函数 包括:正弦、余弦、正切。 【知识掌握】 【知识点精析】 1. 在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA 。 即 c a A A sin == 斜边的对边∠;把∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即c b A A cos =∠=斜边的邻边;把∠A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即 b a A A A t an =∠∠=的邻边的对边。 2. 锐角A 的正弦、余弦、正切都叫做∠A 的锐角三角函数。 3. 特殊角的三角函数值: 30° 45° 60° sin α 1 2 22 32 cos α 32 22 12 tan α 33 1 3 4. 记忆方法: 【解题方法指导】 例1. (2000年成都市)如图,在△ABC 中,∠C =90°,∠ABC =60°,D 是AC 的中点,那么tan ∠DBC 的值是________。 锐 角 α 三 角 函 数

分析:在Rt △ABC 中,由∠ABC =60°,可知3BC AC 60tan == ,即AC =3BC ,又CD = 1 2 AC ,tan ∠DBC 可求。 解:在△ABC 中, ∵∠C =90°,∠ABC =60°, ∴tan ∠ABC =tan60°=3BC AC =, ∴AC =3BC 。 又D 是AC 中点, ∴DC = 12AC =32 BC 。 ∴2 3 BC BC 23 BC DC DBC tan = ==∠。 评析:在解题中紧紧扣住tan α的定义。 例2. (2001年四川)在Rt △ABC 中 ,CD 是斜边AB 上的高,已知3 2 ACD sin = ∠,那么=AB BC ______。 分析:由Rt △ABC 中CD ⊥AB 于D ,可得∠ACD =∠B ,由sin ∠ACD = 2 3 ,那么sinB =23,设AC =2,AB =3,则BC =32522-=,则AB BC 可求。 解:∵∠ACB =90°,CD ⊥AB 于D , ∴∠ACD =∠B 。 又sin ∠ACD =sinB = 23 , 可设AC =2,AB =3, ∴BC =32522-=。

初中—数学经典题目

每日一题 初二数学 1.如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=AE,AC=AD,点M是DE的中点,直线AM交直线BC于点N.将△ADE绕点A旋转,在旋转的过程中,请探究∠ANB与∠BAE的数量关系,并加以证明. 前沿,拓展:若题目中点M是DE的中点这一条件改成∠ANB+∠BAE=180°,求证:点M是DE的中点

初三数学 1..在Rt△ABC中,∠A=90°,D、E分别为AB、AC上的点. (1)如图1,CE=AB,BD=AE,过点C作CF∥EB,且CF=EB,连接DF交EB于点G,连接BF,请你直接写出的值; (2)如图2,CE=kAB,BD=kAE,求k的值。

初一数学 1.已知A=3a2-4ab,B=a2+2ab. (1)求A-2B; (2)若|3a+1|+(2-3b)2=0,求A-2B的值.

每日一题 初二数学 2.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G, (1)求证:CF=BG; (2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF; 3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=,BG=6,求AC的长.

初三数学 2.如图,BC为⊙O的直径,点A为⊙O上的点,以BC、AB为边作?ABCD,⊙O交于AD与点E,连接BE,点P是过点B的⊙O的切线上的一点.连结PE,且满足∠PEA=∠ABE. (1)求证:PB=PE;(2)若sin∠P=,求AB的值。

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

初三数学锐角三角函数含答案

锐角三角函数 中考要求 重难点 1.掌握锐角三角函数的概念,会熟练运用特殊三角函数值; 2.知道锐角三角函数的取值范围以及变化规律; 3.同角三角函数、互余角三角函数之间的关系; 4.将实际问题转化为数学问题,建立数学模型. 课前预习 “正弦”的由来 公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献.尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了.三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表. 托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的.印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是“全弦表”,而是“正弦表”了.印度人称连结弧(AB)的两端的弦(AB)为“吉瓦”,是弓弦的意思;称AB的一半(AC) 为“阿尔哈吉瓦”.后来“吉瓦”这个词译成阿拉伯文时被误解为“弯曲”、“凹处”,阿拉伯语是“dschaib”.十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了“sinus”.三角学输入我国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学.在《大测》中,首先将sinus译为“正半弦”,简称“正弦”,这就成了正弦一词的由来.

例题精讲 模块一 三角函数基础 一、锐角三角函数的定义 如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边. (1)正弦:Rt ABC ?中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin a A c =. (2)余弦:Rt ABC ?中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ?中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b =. 注意: ① 正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、 cos 与A 、tan 与A 的乘积. ③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值. 二、特殊角三角函数 这些特殊角的三角函 数值一定要牢牢记住! 三、锐角三角函数的取值范围 在Rt ABC ?中,90C ∠=?,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan a A b =,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 a A

初中数学经典试题及答案

初中数学经典试题 、选择题: 1、图(二)中有四条互相不平行的直线L1、L 2、L 3、L4所截出的七个角。关于这七个角的度数关系,下列何者正确?() A.2=4+7 B.3=1+6 C.1+4+6=180 D.2+3+5=360 答案: C. 2、在平行四边形ABCD中,AB=6,AD=8,∠ B 是锐角,将△ ACD沿对角线AC折叠,点D 落在△ ABC所在平面内的点 E 处。如果AE过BC的中点,则平行四边形ABCD的面积等于( )A 、48 B 、10 6C 、12 7D 、24 2 答案: C. 3、如图,⊙ O中弦AB、CD相交于点F,AB=10,AF=2。若CF∶DF=1∶4,则CF 的长等于() A 、2 B 、 2 C 、3 D 、 2 2 答案: B. 4、如图:△ ABP与△ CDP是两个全等的等边三角形,且PA⊥PD。有下列四个结论:①∠ PBC =150;② AD∥BC;③直线PC与AB垂直;④四边形ABCD是轴对称图形。其中正确结论的个数为()

23 11 A 、1 B 、 2 C 、 3 D 、 4 答案: D. 5、如图,在等腰 Rt △ABC 中,∠ C=90o , AC=8,F 是 AB 边上的 中点,点 D 、E 分别在 AC 、BC 边上运动,且保持 AD=CE ,连接 DE 、 DF 、EF 。在此运动变化的过程中,下列结论: ① △ DFE 是等腰直角三角形; ② 四边形 CDFE 不可能为正方形; ③ DE 长度的最小值为 4; ④ 四边形 CDFE 的面积保持不变;⑤△ CDE 面积的最大值为 8 。 其中正确的结论是( ) A .①②③ B .①④⑤ C .①③④ D .③④⑤ 答案: B. 二、填空题: 6、已知 0 x 1. (1) 若 x 2y 6,则 y 的最小值是 (2). 若 x 2 y 2 3 , xy 1,则 x y = . 答案:(1)-3 ;(2)-1. 7、用 m 根火柴可以拼成如图 1 所示的 x 个正方形,还可以拼成如图 2 所示的 2y 个正方形, 那么用含 x 的代数式表示 y ,得 y = ____________ . 答 案: 31 y = x - 55 2 2 1 8、已知 m 2- 5m -1= 0,则 2m 2- 5m + 2= . m 答案: 28. 9、 ____________________ 范围内的有理数经过四舍五入得到的近 似数 答案:大于或等于且小于 . 10、如图:正方形 ABCD 中,过点 D 作 DP 交 AC 于点 M 、 交 AB 于点 N ,交 CB 的延长线于点 P ,若 MN = 1,PN = 3, 则 DM 的长为 . 11、在平面直角坐标系 xOy 中,直线 y x 3 与两坐标轴围成一个△ AOB 。现将背面完全 图1

锐角三角函数的题型及解题技巧

锐角三角函数的题型及解题技巧 锐角三角函数是三角函数的基础,它应用广泛,解题技巧性强,下面归纳出锐角三角函数的常见题型,并结合例题介绍一些解题技巧。 一、 化简或求值 例1 (1)已知tan 2cot 1αα-=,且α是锐角,的值。 (2)化简()()22 sin cos cos sin a b a b αααα++-。 分析 (1)由已知可以求出tan α1tan cot αα=?;(2)先把平方展开,再利用22sin cos 1αα+=化简。 解 (1)由tan 2cot 1αα-=得2tan 2tan αα-=,解关于tan α的方程得 tan 2α=或tan 1α=-。又α是锐角,∴tan 2α== tan cot αα-。由tan 2α=, 得1cot 2α==tan cot αα-=13222 -=。 (2)()()22sin cos cos sin a b a b αααα++-= 2222sin 2sin cos cos a ab b αααα+??++2222cos 2cos sin sin a ab b αααα-??+=()()222222sin cos sin cos a b αααα+++=22a b +。 说明 在化简或求值问题中,经常用到“1”的代换,即22sin cos 1αα+=,tan cot 1αα?=等。 二、已知三角函数值,求角 例2 在△ABC 中,若2 cos sin 02A B ?-+= ??(),A B ∠∠均为锐角,求C ∠的度数。 分析 几个非负数的和为0,则这几个数均为0。由此可得cos A 和sin B 的值,进而求出,A B ∠∠的值,然后就可求出C ∠的值。

相关主题
文本预览
相关文档 最新文档