当前位置:文档之家› 变电站自动化系统时钟同步技术

变电站自动化系统时钟同步技术

IEEE1588精密时钟同步协议测试技术

1引言 以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE正式产品也将于2009年推出。 以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现行的互联网网络时间协议NTP (NetworkTimeProtocol),简单网络时间协议SNTP(SimpleNetwork Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念,可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。 2IEEE1588PTP介绍 IEEE1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准(IEEE1588Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以应用于任何组播网络中。 IEEE1588将整个网络内的时钟分为两种,即普通时钟(OrdinaryClock,OC)和边界时钟(BoundaryClock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP通信端口的时钟是边界时钟,每个PTP端口提供独立的PTP通信。其中,边界时钟通常用在确定性较差的网络设备(如交换机和路由器)上。从通信关系上又可把时钟分为主时钟和从时钟,理论上任何时钟都能实现主时钟和从时钟的功能,但一个PTP通信子网内只能有一个主时钟。整个系统中的最优时钟为最高级时钟GMC(Grandmaster Clock),有着最好的稳定性、精确性、确定性等。根据各节点上时钟的精度和级别以及UTC(通用协调时间)的可追溯性等特性,由最佳主时钟算法(Best Master Clock)来自动选择各子网内的主时钟;在只有一个子网的系统中,主时钟就是最高级时钟GMC。每个系统只有一个GMC,且每个子网内只有一个主时钟,从时钟与主时钟保持同步。图1所示的是一个典型的主时钟、从时钟关系示意。

时间同步系统在线监测可行性研究报告

附件4 甘肃电网智能调度技术支持系统 时间同步系统在线监测 技术改造(设备大修)项目 可行性研究报告模板项目名称: 项目单位: 编制: 审核: 批准: 编制单位: 设计、勘测证书号:

年月日

1.总论 时间同步系统在线监测功能,将时钟、被授时设备构成闭环,使对时状态可监测,且监测结果可上送,从而将时间同步系统纳入自动化监控系统管理。时间同步系统在线监测的数据来源分为两大类:设备状态自检数据和对时状态测量数据。设备状态自检主要是被监测设备自身基于可预见故障设置的策略,快速侦测自身的故障点。对时状态测量则是从被监测设备外部对其自身不可预见的故障产生的结果进行侦测,这两种方法较为完整的保证了时间同步系统监测的性能和可靠性。 1.1设计依据 2013年4月,国调中心专门下发了〔2013〕82号文《国调中心关于加强电力系统时间同步运行管理工作的通知》 1.2主要设计原则 通过在原系统上建立一套通讯技术及软件来实现系统级的时间同步状态在线监测功能。采用低建设成本、低管理成本、低技术风险的手段,解决当前自动化系统时间同步体系处于开环状态,缺乏反馈,无法获知工作状态紧迫现状,使时钟和被对时设备形成闭环监测,减少因对时错误引起的事件顺序记录无效,甚至导致设备死机等运行事故,并在此前提下尽可能的提高监测性能,减少复杂度。

1.3设计水平年 系统模块使用年限10年。 1.4设计范围及建设规模 智能调度技术支持系统(主站)针对时钟同步检测功能修改主要涉及前置应用,前置应用以104 或476 规约与变电站自动化系进行过乒乓原理对时,根据对时结果来检测各变电站时钟对时的准确性,从而保证全网时钟同步的准确性。同时,以告警直传方式接收变电站时间同步监测结果,包含设备状态自检数据和对时状态测量数据。 1.5主要技术经济指标 1.6经济分析 2.项目必要性 2.1工程概况 智能电网调度技术支持系统及各变电站都以天文时钟作为自己的时间源,正常情况下实现了全网时间的一致。 2.2存在主要问题 近期,电力系统时间同步装置在运行中发现的时钟异常跳变、时钟源切换策略不合理及电磁干扰环境下性能下降等问题,反映出电力系统时间同步在运行管理、技术性能、检验检测管理、在线监测手段及相关标准等方面仍需进一步完善和加强。

变电站综合自动化系统及监控自动化系统设计

变电站综合自动化系统及监控自动化系统设计 发表时间:2019-05-17T10:43:37.817Z 来源:《电力设备》2018年第32期作者:刘浩李杰庆 [导读] 摘要:变电站自动化监控系统在变电站中的运用,能够有效提升变电站运行的安全性、有效性,对整个电力系统运行都具有重要的作用。 (国网山西省电力公司检修分公司山西太原 030032) 摘要:变电站自动化监控系统在变电站中的运用,能够有效提升变电站运行的安全性、有效性,对整个电力系统运行都具有重要的作用。本文首先对变电站自动化监控系统进行简单的介绍,然后从软件工程开发、软件构成以及软件结构设计等几个方面入手,对变电站自动化监控系统进行简要设计。 关键词:变电站;自动化监控系统设计 变电站综合自动化技术是利用先进的计算机技术、现代电子技术、通信技术,对变电站内的二次设备的功能进行重新组合、优化设计,对变电站全部设备的运行情况执行监视、测量、控制和协调的一种综合性的自动化系统。通过变电站综合自动化系统内各设备间相互交换信息,数据共享,完成变电站运行监视和控制任务。变电站综合自动化替代了变电站常规二次设备,简化了变电站二次接线。 现有的变电站有三种形式:第一种是传统的变电站;第二种是部分实现微机管理、具有一定自动化水平的变电站;第三种是全面微机化的综合自动化变电站。 1 系统构成 分层分布式变电站综合自动化系统从整体上分为三层:变电站层、通讯层、间隔层。 1)变电站层。变电站层主要由后台监控系统、远动主站、继电保护工程师站组成。①后台监控系统。后台监控系统由一台或多台高档PC机和后台监控软件组成。为了保证系统的可靠性和开放性,采用先进成熟的SCADA软件平台,可在LINUX和WIN―DOWS上运行。直接通过以太网与间隔层的测量和保护设备进行通讯。②远动主站。远动主站采用高性能工业控制计算机,直接连接在以太网上同间隔层的测量和保护设备直接通讯。收集全站测控设备、保护装置数据,经规约转换后以约定的规约向调度发送,同时接收调度的遥控、遥调命令向变电站转发。③继电保护工程师站。继电保护工程师站采用高性能工业控制计算机,直接连接在以太网上同间隔层的测量和保护设备直接通讯,与变电站的各种继电保护、安全自动装置及故障录波器一起实现变电站的继电保护及故障录波器信息处理系统。 2)通信层。站内通讯由光纤以太网以及与其他智能设备的接口组成。 3)间隔层。间隔层采用面向对象设计,按间隔单元实现测量、记录、监视、控制功能的微机保护及测控装置。装置要求采用32位高性能DSP浮点信号处理器、16位AD转换器、大规模可编程逻辑芯片CPLD、多层印制电路板和表面贴装技术;采用在线编程技术,可随时进行软件升级;采用大屏幕彩色液晶显示器,真正使桌面操作图形化,生动形象、操作方便。 2 变电站自动化监控软件开发 现阶段,程序设计方法多种多样,但以模块化程序设计与面向对象的程序设计为主,将两者有效地结合起来,形成一套完整的变电站自动化监控系统开发模式。变电站自动化监控系统一般使用后台软件,结合模块化和面向对象的程序设计方式,基本上确定了后台软件应有的功能,由这些基本功能构成系统的主要特征。采用模块化程序设计的方式,将后台软件分为若干个子系统,包括数据库管理系统、报表系统、通讯系统、主控程序等等,每一个子系统由简单的数据关系构成,容易建立模型。因此,在具体的软件开发设计中,一般采用分层分析设计以及线程技术方法。 2.1 分层分析设计方法 根据变电站业务处理、控制流图以及数据流图等,明确后台监控软件的主要层次,即数据处理层、通信层、应用层、数据存储层等,利用分层分析设计方法,逐层进行分析与设计,对层与层之间的接口进行明确规定,降低开发的难度,提高数据接口的兼容性以及移植性。 2.2 线程技术方法 以线程技术为主的变电站监控主站,能够利用不同的线程完成不同的任务,合理区分线程的优先级别,就能够完成实时性不同的任务,提高了变电站监控系统中数据处理效率,保证各项紧急任务发生后系统的响应速度。 3 变电站自动化监控软件的构成 变电站自动化监控软件的构成分为三个部分,即底层数据服务器、中间层数据库以及高层应用程序。 3.1 底层数据服务器 该层具有数据处理以及通讯两种功能,能够接收到RTU采集的实时数据信息,包括变电站运行的状态量、模拟量以及时间顺序等等,同时还能够向高层程序层的RTU发送控制命令,并显示源码数据。对原始的数据进行有效的处理,形成实时数据,并及时传输到中间层数据库中,提供给应用软件使用,确保信息的实时性。 3.2 中间层数据库 中间层数据库主要是面向应用程序,具有系统功能分析,是整个数据信息结构的核心,能够为高层应用功能模块提供各种有用的数据信息。根据系统性能的不同,将数据库分为实时数据库、参数数据库、历史数据库以及辅助数据库几类。 3.3 高层应用程序 高层应用程序具有多个功能,包括监视功能、遥控遥调功能、数据采样计算处理功能、打印功能、接线图编辑显示功能、报表功能、参数管理功能、人机接口功能以及系统安全维护功能。该层的应用程序,能够将变电站运行的实时数据信息进行处理,并对数据库信息进行监测,发现异常情况就会发出警报,并做好备份工作。对相关的数据信息、报表等还能够进行打印,为系统设置、维护等提供配套的参数管理,根据用户操作内容的不同,设置有效的权限管理。 4 变电站自动化监控系统软件结构设计 在变电站自动化监控系统后台软件设计过程中,考虑到数据功能的组合与分散,系统通讯以及数据处理功能都是为高层应用程序提供有效的数据,如果将两者分开,必会影响数据处理的时间,也会增多数据传递时间,将处理过程复杂化。所以,一般需要将通讯与数据处理功能进行组合,形成一个独立的功能模块,我们称之为数据服务器,两者的组合能够节约数据处理时间,提高系统整体的效率。同时,

浅析智能变电站高精度时钟同步方法 杨富栋

浅析智能变电站高精度时钟同步方法杨富栋 发表时间:2018-03-14T10:29:13.807Z 来源:《电力设备》2017年第29期作者:杨富栋[导读] 摘要:近年来,IEC61850的标准得到进一步完善,关于智能变电站的同步时钟精度与稳定性能带来了更高的要求。 (国网烟台供电公司山东烟台 264000) 摘要:近年来,IEC61850的标准得到进一步完善,关于智能变电站的同步时钟精度与稳定性能带来了更高的要求。为符合智能变电站更大的对时精准度需要与适应智能变电站的时钟同步系统本身的特征,本文综合了智能变电站对时钟同步的实际需要与参照的IEC61850相关标准,探讨了智能变电站的卫星时钟同步的几种方法。为进一步研究智能变电站与电网时间统一技术打下了基础。 关键词:智能变电站;IEEE1588; DPSM;随着我国社会经济的发展,人们对智能变电站的建设也得到了进一步地发展。其中高精度的时钟同步方法得到了相关研究人员的关注与重视。应当具备下以的原则:建设统一的同步对时的系统,时钟的同步网一定要符合智能变电站关于时精度的要求,时钟同步系统要有效地应用网络同步技术,支持NTP/SNTP, IEEE1588等同步技术等。本文针对智能变电站精度时钟的同步方法进行较为详细地阐述。 一、关于智能变电站的构成以及特征第一,从智能电网的构成上分析,智能变电站是智能电网的发电、输电、变电、配电、用电和调度等几个环节衔接的重要平台,作为智能电网变换电压、接受以及分配电能、调节电压与控制电力方向的主要电力设施。它既是智能电网安全运行的关键,又是信息流、电力流以及业务流的交汇点,对于建设优化的智能电网有着极大的意义。第二,智能变电站其结构大体划分三个层面:战控层、间隔层与过程层。第三,智能变电站的设计与建设一定要符合我国当前智能电网信息化、数字化等发展要求,以提升变电站的自动化程度。 二、智能变电站的时钟同步方法的重要性与精度要求第一,重要性分析:IEC61850的指标在不断地更新与完善,智能变电站关于同步时钟的精准度与稳定性能也有了更高的要求。建设适宜的智能变电站的精确网络时钟同步系统可以提升变电站设备的时间同步精度、集成程度、运行安全性,减少系统的成本,提升工作效率,且可以保障变电站的安全可靠等相关性能。能明显降低因系统时钟的不同步产生的很大损失,为推动中国智能电网的建设有着重大作用。第二,时钟同步精度要求。智能变电站测量、控制和保护等自动化设备对时间同步精度的要求各不相同,例如同步向量测量、故障定位、IED同步采样要求对时精度为微妙级;而故障录波、时间顺序记录、变电站之间的同步实验要求对时精度为毫秒级。 三、智能变电站时钟同步的几种方法(一)GPS卫星时钟的同步方法当前变电站广泛采样GPS授时系统为站中的网络时钟来源,其可靠性与自主性无法获得保障。所以,本文构建了智能变电站卫星时钟同步统一系统模型这个模型里各个智能变电站作为一个时间的节点,各个节点有其独立的卫星同步的时钟源,担负着本节点中全部电力设备的时间同步,且经过通信网和其它厂站端或上级的调度机构互相监测时间的同步性,若某个时间节点时间的同步时钟失效以后,则借助通信网里的同步时间信息保持同步。智能变电站的卫星同步时钟能够同时接受GPS卫星时钟与北斗卫星时钟为站中的时间基准源;依据卫星时钟无累计的误差与晶振时钟无随机误差的特征,应用GPS卫星时钟、北斗卫星时钟以及晶振时钟比较法进行分析,产生了高精度的同步时钟源。可以提升了智能变电站同步时钟源的精度与可靠性能。(二)SNTP+IEEE1588的网络时钟同步方法依据智能变电站中的站控层、间隔层以及过程层关于时钟同步精度与功能的标准,应用分层同步的方式,在站级总线网络应用SNTP 的协议对时,在过程层的总线网应用IEEE1588协议对时,这一方法应用了北斗/GPS时钟组成的双模授时系统和晶振时钟融合而成的高精度同步时钟为站中时间同步网络的时钟源。卫星时钟和世界标准时间保持高度的同步,为变电站带来稳定且精确的时间指标。站中时钟同步网应用对独立总线的网络结构设计方案,两层子网分别进行时间同步。因站级总线网络对时精度要求不高,因此在站级网络里能够接入专门的SNTP服务器来同步站级网络上的各种设备。过程层要求同步精度达到亚微秒级,所以采用IEEE 15 8 8协议来实现过程总线的网络同步,在过程总线网络中接入专门的IEEE 15 8 8主时钟(Master Clock)和支持边界时钟(Boundary Clock)的交换机。边界时钟先与主时钟进行时间同步,然后自己扮演主时钟去同步过程层的设备。为提升时钟同步网络的可靠性,又给出了SNTP+IEEE 1588变电站时钟同步网络的冗余方法构成图。系统接入两套北斗/GPS和晶振时钟融合授时系统。另外,配置两套SNTP服务器和IEEE1588主时钟互为备用,时钟同步网络采用双总线冗余方式。备用时钟同步网络在线监测工作时钟同步网络,当工作网络出现故障时,自动进行冗余切换。(三)IEEE 1588网络时钟同步方法应用单一的IEEE 1588网络时钟协议为全站网络时钟的同步方式。由北斗/GPS时钟构成的双模授时系统和晶振时钟融合生为高精度同步时钟为IEEE1588时钟同步网的时钟源。这一时钟源为系统的跟时钟节点安装于服务器里。卫星时钟与世界标准时间保持高度地同步,为变电站带来稳定且精确的时间标准。站中的时钟同步网应用全站总线的网络构成同步方法,全站接入很多边界时钟同步于IEEE1588主时钟,与此同时又对从时钟独立来授时,进而达到整个智能变电站的时间同步。在时钟源的工作异常或者站中某个节点时钟失步时,其各个节点能够实现互备授时,就是旁路节点能够作为主时钟向时钟失步节点发送全新的同步信号源。另外,为提升智能电网的时间同步的精度度,站外应用了电力通信SDH恺装电缆达到和调度中心以及相近变电站间的时间同步。经过在站间网络时钟同步线路中安设的透明时钟,一定程度上降低了因长距离的传输带来的网络延迟。提升了广域同步网的授时精准度,进而达到了整个智能电网的时间同步。结束语: IEEE1588的时钟同步方法应用的是全站唯一的总线网构成,这种方法与IEC61850的标准时间同步模型是一致的。IEEE1588应用最佳主时钟的算法,自动对最佳时钟的节点作出选择,达到每个节点之间的互备授时。这种方法既提升了智能变电站的时钟同步网的准确率与安全性能,又符合了广域网的时钟同步精度的相关标准。然而它的协议正在研究与健全过程中,其技术以及经济方面尚未成熟,故这种方法的成本很高。因此,现阶段智能变电站能够将SNTP+IEEE1588时钟同步当作一种过渡的方法。在其时钟的同步协议得到不断地进步之下,IEEE1588时钟同步方法一定会成为智能变电站时钟同步系统的主体方法。参考文献:

XP系统时间同步解决方案

XP系统时间同步不成功_Windows time服务无法启动解决 同步时间的服务器是:210.72.145.44 xp自带的时间同步服务器老是会连不上,而且时间还会差一秒。 这里就教大家换成中科院国家授时中心的服务器,同步就方便多了。 1.双击右下角的时间。 2.把服务器改成210.72.145.44 3.按同步就可以了,一般不会出错。即使是高峰时期,三次之内闭成功,比美国的服务器好多了。 另外系统默认的时间同步间隔只是7天,我们无法自由选择,使得这个功能在灵活性方面大打折扣。其实,我们也可以通过修改注册表来手动修改它的自动同步间隔。 1. 在“开始”菜单→“运行”项下输入“Regedit”进入注册表编辑器 2. 展开[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\W32Time\TimeProviders\Nt pClient ] 分支,并双击SpecialPollInterval 键值,将对话框中的“基数栏”选择到“十进制”上 3. 而这时在对话框中显示的数字正是自动对时的间隔(以秒为单位),比如默认的604800就是由7(天)×24(时)×60(分)×60(秒)计算来的,看明白了吧,如果您想让XP以多长时间自动对时,只要按这个公式算出具体的秒数,再填进去就好了。比如我填了3天,就是259200。 Windows time服务用于和Internet同步系统时间,如果时间无法同步有可能是服务没有随系统启动,可以在运行处输入"services.msc"打开服务控制台,找到"windows time"服务设置为自动并启动即可。 如果启动该服务时提示: 错误1058:无法启动服务,原因可能是已被禁用与其相关联的设备没有启动。 原因是windows time服务失效。 修复: 1.运行cmd 进入命令行,然后键入 w32tm /register 正确的响应为:W32Time 成功注册。 如果提示w32tm命令不内部或外部命令……,是因为系统盘下的system32目录不存在w32tm.exe和w32time.dll这两个文件,到网上下载一个或者到其他电脑复制过来放下这个目录下再运行 2.如果上一步正确,在cmd命令行或运行里用net start "windows time" 或net start w32time 启动服务。 如果无法启动Windows Time服务,同时提示:系统提示“错误1083:配置成在该可执行

全厂网络时钟同步方案

全厂网络时钟同步方案 陈银桃,陆卫军,张清,章维 浙江中控技术股份有限公司,浙江杭州,310053 摘要:当前工控领域石化项目如乙烯、炼油日益趋向大型化、一体化和智能化。一个大型石化项目往往集成多套独立系统如DCS、SIS、CCS等,同时要求所有系统使用同一套网络时钟同步系统。本文提供了几种全厂网络时间同步方案,并分析了每个方案的优缺点和适用场合。 关键词:全厂网络时钟同步,SNTP,二级网络时钟同步方案,Private VLAN,ACL,路由,NAT Ways to Implement The Network Time Synchronization In The Plant Chen Yintao Zhejiang SUPCON Co., Ltd., Hangzhou, Zhejiang, 310053 Abstract:The petrochemical projects in the industrial control area run to large, integrative and intelligentized.A large petrochemical project always need to be integrated with many systems like DCS, SIS, CCS and so on .The network of these systems must be independent,while they should use the same network time synchronizer to achieve time synchronization.This article propose several implements of the network time synchronization in the whole plant. Keywords:Network Time Synchronization, NTP, Private VLAN, ACL, Route, NAT. 引言 随着国民经济发展,工控领域也随之蓬勃发展,石化项目如乙烯、炼油等日益趋向大型化、一体化和智能化。大型化体现在项目规模的剧增,典型项目如百万吨乙烯、千万吨炼油。一体化体现在一个大型石化项目往往集成多套系统如DCS、SIS、CCS,这些系统在功能、网络上分别独立,但需要实现全厂统一的时钟同步,以保持全厂所有系统的时钟同步。 普通的网络时钟同步服务器提供的网口较少,一般都在4个以下,同时可支持1-4个网络的系统时钟同步。当需要同步的子系统较多时,则需要配置可同时支持二三十个网络的特殊网络时钟同步服务器。但是在企业建设初期,往往很难准确预计将来的网络发展规模,这就需要事先规划设计

最新轨道交通时钟系统解决方案复习过程

轨道交通时钟系统解决方案 轨道交通时钟系统解决方案 地铁通信系统一般包括: 时钟系统是轨道交通重要的组成部分之一,而其在地铁站的主要作用是为上班族、来往的游客工作人员提供准确的时间信息,同时时

钟系统要为其他监控系统、控制系统等弱电子系统提供统一的时钟信号,使各系统的定时集中同步,在整个地铁系统中使用相同的定时标准。站厅及站台位置的时钟可以为旅客提供准确的时间信息;各车站办公室内及其它停车场内的时钟可以为工作人员提供准确的时间信息;向其它地铁通信子系统提供的时钟信息为地铁运行提供了标准的时间,保证了轻轨系统运行的准时,安全。 时钟子系统能够向地铁全部通信子系统提供准确的时钟信号。时钟信号以卫星自动定位系统所发的格林威治标准世界时间为准辅以铷原子钟或石英钟。时钟系统的控制中心向各分站或车场二级母钟发送时钟信号,再由二级母钟向其对应的子钟发送时钟信号;同时每站的各路时钟信号均需上传至时钟系统的监控中心,使之可以完成对全路各站所有时钟工作状态的监测和控制,并可在相应的管理客户机上完成各种需要的管理及配置功能。

设计区域:换乘大厅、进出口、监控室、控制室控制中心调度大厅和各车站的站厅、站台、车站控制室、公安安全室、票务室、变电所控制室及其它与行车有关的处所,并在车辆段/停车场信号楼运转室、值班员室、停车列检库、联合检修库等有关地点设置子钟。

相关产品 第一章教育和教育学 1 教育的发展 一、教育的概念 考点:教育是培养人的一种社会活动,是传承社会文化、传递生产经验的和社会生活经验的基本途径。 考点广义:凡是增进人们的知识和技能,影响人们思想观念的活动,都具有教育作用。 狭义:主要指学校教育。 学校教育是教育者根据一定的教育要求,有目的、有计划、有组织的通过学校的教育工作,对受教育者的身心施加影响,促使他

时钟同步技术在变电站中的应用讨论

时钟同步技术在变电站中的应用讨论 发表时间:2017-08-04T11:11:24.363Z 来源:《电力设备》2017年第11期作者:高金索[导读] 摘要:我国电力科技伴随着科技发展而有了很大的进步,变电站在电力系统中有着重要的地位,变电站的运行状况与电力系统有着紧密的联系,所以,完善变电站方面的管理极为重要。 (国网江苏省电力公司宿迁供电公司 223800) 摘要:我国电力科技伴随着科技发展而有了很大的进步,变电站在电力系统中有着重要的地位,变电站的运行状况与电力系统有着紧密的联系,所以,完善变电站方面的管理极为重要。近些年来,变电站在自动化领域越来越先进,在变电站自动化的进程中对各方面在时间上的要求也越加精准,时钟同步技术对时间上的精准程度能够满足这一要求,所以,时钟同步技术引用进变电站自动化中有着至关重要的作用。 关键词:变电站;变电站自动化;时钟同步技术 电力技术发展至今,其自动化进程已经得以长足的发展,电力系统的各项设置在时钟基准方面的需求越来越重要,时钟同步技术能够全时段对精准的时间信息输出给用户,时钟同步技术再准确度上有着较高的成效,时钟同步技术融嵌入变电站技术上,能够保证变电站之间保持时间的一致性和准确性,对变电站保持正常良好的状态下运行。 1 时钟同步技术上的优势 现实中变电站所运用的各种系统以及所采用的各项装置是来源于不同的公司或厂家,因此在时钟上的设计上会出现不同程度上的差异,所以在对时上会出现一定程度上的误差现象,以至于出现在同一时刻的基点上变电站的各系统输出的数据不能进行合理的分析和对比,这对于事后故障分析排除工作带来很大的不便。变电站对时钟同步技术上的采用有着不可忽略的优势,它能确保变电站出现故障后各个系统输出的数据在相同的时间基点上。时钟同步信号在提供精准的时间上协同变电站自动化设备正常良好的运行,当系统发生异常状况时,可以有力保证事件顺序记录上在时间上的精准度,从而使得对故障的判断上更具有时效性和准确性,有效的保障了电力系统处于良好的运行状态中。 2 时钟同步系统的简单论述及原理 2.1时钟同步系统的简单论述 时钟同步系统经过接受卫星信号,再利用CPU中央处理环节对卫星信号进行科学规范化的转换,转换成电力系统所需求的时间信息,然后给予时间信息反馈出来。 2.2时钟同步系统原理 时钟同步系统主要有三种对时方式构成,首先是串行同步输出对时方式,它是将时间信息以串行数据流的形式进行反馈出来的,该种形式的对时方式相较于复杂,在收到时间信息后加以出路,转化过程中所需时间上相对较长,该情况下会造成时间对时上一定程度上的影响,所以,串行同步数据反馈形式对时主要功能在于时间标记上的添加。其次是脉冲同步输出对时,该技术是通过时间同步,在特定的时间上提供出一个精确的脉冲,当接受设施感应到脉冲反馈的信号后,设备将进行自动方式对时,从而实现避免各个系统上的误差现象的出现,由于脉冲同步输出的形式是不能对时间进行直接反馈,一旦提供时间的源头出现错误,得到时间信息的设备便会以错误的进行。然后是IRIG—B码输出对时方式是以二进码十进位方式对时间上的反馈,每次时间反馈有上百个脉冲,所提供的时间信号是秒、分、时等,IRIG—B码输出对时的方式是相较于其他方式具有准确度高,更为标准化的优势。 3 时钟同步技术嵌入变电站电力系统中 3.1 时钟同步技术的运用 时钟同步系统在近些年的发展中拥有编码对时、硬对时、网络NTP技术上的支持,时钟同步系统能够很好的与变电站的多数设备进行完美的组合。时钟对时接口有RS232串口输出、RS485串口输出、秒脉冲1PPS输出等不同输出方式的情况。为维护变电站电自动化系统能够精准有效的运行,有大部分的装置需要嵌入时钟同步系统中进行对时,增加了装置的接口类型也不统一,所以,在现实工作中,通常会结合利用多样式对时端口方式。以下对11万伏变电站改造为题,探究与剖析时钟同步技术的运用。将时钟同步系统屏在变电站高压室和保护室进行科学组合,然后装备上拥有接收功能、卫星信号处理功能以及反馈标准同步时间信号等功能一个标准化的同步主时钟。一旦主时钟接接收到时间同步系统反馈出的基准信号时,设备将依据基准信号完成对时工作,当主时钟未能获取到时间同步系统反馈出的基准信号后,将自行走时,并以标准化的形式走时,时间基准进入正常状态下,主时钟便会自觉进行对时。该变电站改造为以互联网为组网的形式,一些设置只有RS232接口和RS485接口,而新安装的主变线路控制装置等相关的装置都是IRIC—B接口。在变电站革新上,采用IRIG —B码反馈信息对时,选用RVVP两芯屏蔽通讯电缆,其中加用1表示,减用2表示,按次序将各设备连接上时钟同步系统的IRIG—B输出端口;因为部分陈旧设备没有IRIC—B端口,仅有RS232接口,所以,将这些设备与时钟同步系统的RS232端口相连接;11万伏变电站故障录波器没有IRIG—B码,依次将秒脉冲和分脉冲链接空接点,最终完成硬接点对时。 3.2时钟同步系统工作中的注意事项 为保证时钟同步系统可以稳定良好的运作,确保时钟同步系统的功的性能都满足相关要求,一定做到时钟同步系统上日常保养与维护工作。员工要制定科学的检测维修计划,按计划周期性的对时钟同步系统进行检测,在进行周期性的检测时,第一要查勘显示屏幕上的天线信号,第二将显示屏幕中锁定的卫星数目进行查看,检测完毕一切正常的情况下,用显示屏幕上的时间与每个装置显示的时间进行时间校对,进而保证进行对时系统的每个设备能够安全良好的运行。时钟同步系统按计划定期监测,确保系统在运行中保持良性工作状态。时钟同步系统在工作中还应该对屏中嵌入监视设备,然后对时钟同步系统的进行实时的监视,发现系统出现异常状况,及时发出故障报警信号,让维修人员对故障进行快速抢修,以此确保时钟同步系统安全运作。 4 结语 时钟同步系统将变电站的自动化系统的设备可以拥有一致标准的时间,保障了变电站在工作中的安全性,所以,电力企业应从自身的情况出发,对时钟同步系统进行科学的利用,从而确保变电站能够正常工作。 参考文献 [1]郭威.GPS时钟同步技术在变电站电力自动化中的应用[J].黑龙江科技信息,2014,(8).

电力系统时钟同步综合解决系统(1)

一、建设时钟同步系统的重要性 随着电厂、变电站自动化水平的提高,电力系统对时钟统一对时的要求愈来愈迫切,有了统一精确的时间,既可实现全厂(站)各系统在GPS 时间基准下 的运行监控和事故后的故障分析,也可以通过各开关动作、调整的先后顺序及准 确时间来分析事故的原因及过程。统一精确的时间是保证电力系统安全运行,提 高运行水平的一个重要措施。 二、时钟同步系统的优越性 电厂(站)的时钟同步是一件十分重要的基础工作,现在电厂(站)大多采用不同厂家的计算机监控系统、DCS 分布式控制系统、自动化及线路微机保护装置、故障录波装置、电能量计费系统、电液调速系统DEH 、SCADA 系统及各种输煤PLC 、除灰PLC 、化水PLC 、脱硫PLC 等,以前的时间同步大多是各设备提供商采用各自独立的时钟,而各时钟因产品质量的差异,在对时精度上都有一定的偏差,从而使全厂各系统不能在统一时间基准的基础上进行数据分析与比较,给事后正确的故障分析判断带来很大隐患。 如今,人们已经充分意识到时间统一的重要性。但是,统一时钟并不是单纯地并用GPS 时钟设备。目前,人们普遍采用一台小型GPS 接收机,提供多个RS232端口,用串口电缆逐一连接到各个计算机,实现时间同步。但事实上,这种同步方式的缺点是,使用的电缆长度不能过长;服务器的反应速度、客户机的延迟都直接影响对时精度。而且各电厂(站)往往有不同的装置需要接收时钟同步信号,其接口类型繁多,如RS-232/422/485串行口、脉冲、IRIG-B 码、DCF77格式接口 等;装置的数量也不等,所以在实际应用中常感到GPS 装置的某些类型接口数量不够或缺少某种类型的接口,其结果就是电厂中有些装置不能实现时钟同步,或者需要再增加一台甚至数台GPS 装置,而这往往受到资金不足或没有安装位置等限制。若各系统实施统一GPS 时钟同步方案,就可实现全厂(站)各系统在统一GPS 时间基准下的运行监控和事故后的故障分析,大大提高了电厂(站)系统的安全稳定性。因此采用GPS 时钟同步系统比采用传统的GPS 同步设备有着明显的优势,也是技术发展的必然趋势。 第二部分 对时方式和NTP 协议简介 一、对时方式 目前,国内的同步时间主要以GPS 时间信号作为主时钟的外部时间基准信 号。现在各时钟厂家大多提供硬对时、软对时、编码对时三种方式,我公司的时 间同步产品除了提供以上三种对时方式外,还可提供先进的NTP 网络对时方式, 大大提高了产品的技术含量及系统的完整性。以下是各对时方式的介绍: 1、硬对时(脉冲节点) 主要有秒脉冲信号(lpps ,即每秒 1 个脉冲)和分脉冲信号门(1ppm ,即每分1个脉冲)。秒脉冲是利用GPS 所输出的lpps 方式进行时间同步校准,获得与 UTC 同步的时间准确度较高,上升沿的时间准确度不大于lus 。分脉冲是利用GPS 所输出的lppm 方式进行时间同步校准,获得与UTC 同步的时间准确度较高,上升沿的时间准确度不大于3us ,这是国内外保护常用的对时方式。另外通过差分芯片将lpps 转换成差分电平输出,以总线的形式与多个装置同时对时,同时增加了对时距离,由 lpps 几十米的距离提高到差分信号1km 左右。 用途:对国产故障录波器、微机保护、雷电定位系统、行波测距系统对时。 故障录波装置分别由不同的厂家生产;保护装置国内以南自股份、南瑞、许继、阿继及四方公司的产品为主。 2、软对时(串口报文) 串口校时的时间报文包括年、月、日、时、分、秒,也可包含用户指定的其他特殊内容,例如接收 GPS 卫星数、告警信号等,报文信息格式为ASCll 码或BCD 码或十六进制码。如果选择合适的传输波特率,其精确度可以达到毫秒级。串口校时往往受距离限制,RS-232口传输距离为30 m , RS-422口传输距离为 150 m ,加长后会造成时间延时。 用途:对电能量记费系统、输煤PLC 、除灰PLC 、化水PLC 、脱硫PLC 、自动化装 置、控制室时钟对时。 3、编码对时 编码时间信号有多种,国内常用的有 IRIG (Inter -range Instrumentatlon group )和DCF77(Deutsche ,long wave signal ,Frankfurt ,77.5 kHZ )两种。IRIG 串行时间码共有6种格式,即A ,B ,D ,E ,

跨时钟域信同步方法种

跨时钟域信号同步方法6种 ASIC中心 1 引言 基于FPGA的数字系统设计中大都推荐采用同步时序的设计,也就是单时钟系统。但是实际的工程中,纯粹单时钟系统设计的情况很少,特别是设计模块与外围芯片的通信中,跨时钟域的情况经常不可避免。如果对跨时钟域带来的亚稳态、采样丢失、潜在逻辑错误等等一系列问题处理不当,将导致系统无法运行。本文总结出了几种同步策略来解决跨时钟域问题。 2 异步设计中的亚稳态 触发器是FPGA设计中最常用的基本器件。触发器工作过程中存在数据的建立(setup)和保持(hold)时间。对于使用上升沿触发的触发器来说,建立时间就是在时钟上升沿到来之前,触发器数据端数据保持稳定的最小时间。而保持时间是时钟上升沿到来之后,触发器数据端数据还应该继续保持稳定的最小时间。我们把这段时间成为setup-hold时间(如图1所示)。在这个时间参数内,输入信号在时钟的上升沿是不允许发生变化的。如果输入信号在这段时间内发生了变化,输出结果将是不可知的,即亚稳态 (Metastability) 图1 一个信号在过渡到另一个时钟域时,如果仅仅用一个触发器将其锁存,那么采样的结果将可能是亚稳态。这也就是信号在跨时钟域时应该注意的问题。如图2所示。 信号dat经过一个锁存器的输出数据为a_dat。用时钟b_clk进行采样的时候,如果a_dat正好在b_clk的setup-hold时间内发生变化,此时b_ dat就既不是逻辑"1",也不是逻辑"0",而是处于中间状态。经过一段时间之后,有可能回升到高电平,也有可能降低到低电平。输出信号处于中间状态到恢复为逻辑"1"或逻辑"0"的这段时间,我们

变电站自动化系统作业指导书

变电站监控系统作业指导书 编码:BDECSY-09 二○○九年八月

批准:日期:技术审核:日期:安监审核:日期:项目部审核:日期:编写:日期:

目录 1.工程概况及适用范围 (1) 2.编写依据 (1) 3.作业流程 (2) 3.1作业(工序)流程图 (2) 4.作业准备 (2) 4.1人员配备 (2) 4.2工器具及仪器仪表配置 (2) 5 作业方法 (3) 5.1开始 (3) 5.2通电前检查: (3) 5.3绝缘检查 (3) 5.4通电检查 (3) 5.5单机校验 (3) 5.6后台联调: (4) 5.7远动联调: (4) 5.8微机五防系统调试 (4) 5.9GPS系统调试 (5) 5.10电流电压回路检查: (5) 6.键、环控制措施 (5) 7 质量控制措施及检验标准 (6)

1. 工程概况及适用范围 本作业指导书适用变电工程监控系统调试。

3. 作业流程 3.1 作业(工序)流程图

5作业方法 5.1开始 5.1.1检查屏柜安装完毕,符合试验条件。 5.1.2检查工作票完善,工作安全措施完善,二次措施单编写内因符合作业安全标准。 5.1.3试验人员符合要求,熟悉相关资料和技术要求。 5.2通电前检查: 5.2.1核对各屏柜配置的连片、压板、端子号、回路标注等,必须符合图纸要求。 5.2.2核对保护装置的硬件配置、标注及接线等,必须符合图纸要求。 5.2.3保护装置各插件上的元器件的外观质量、焊接质量应良好,所有芯片应插紧,型号正确, 芯片放置位置正确。 5.2.4检查保护装置的背板接线有无断线、短路和焊接不良等现象,并检查背板上抗干扰元件 的焊接、连线和元器件外观是否良好。 5.2.5检查试验设备是否符合要求,试验设备是否完好。 5,2,6检查回路接线是否正确。 5.2.7检查保护装置电压是否与实际接入电压相符。 5.2.8检查保护装置所配模块与实际配置的PT、CT相符合。 5.2.9保护屏接地是否符合要求。 5.3绝缘检查 5.3.1分组回路绝缘检查:将装置CPU插件拔出,在屏柜端子排处分别短接交流电压回路,交流 电流回路、操作回路、信号回路端子;用1000V兆欧表轮流测量以上各组短接端子间及各 组对地绝缘。其阻值应大于10MΩ。 5.3.2整组回路绝缘检查:将各分组回路短接,用1000V兆欧表测量整组回路对地绝缘。其阻值 应大于1MΩ。 5.4通电检查 5.4.1核对屏柜元件配置是否与设计图纸和技术规范相符。 5.4.2检查保护装置版本信息经厂家确认满足设计要求。 5.4.3按键检查:检查装置各按键,操作正常。 5.4.4装置自检正确,无异常报警信号。 5.4.5打印机与保护装置的联机试验:进行本项试验之前,打印机应进行通电自检。 5.5单机校验 5.5.1零漂检查 进行零漂检查时,应对电压端子短接,电流回路断开防止感应引起误差,应在装置上电 10min以后,零漂值要求在一段时间(几分钟)内保持在规定范围内;电流回路零漂在 -0.05~+0.05A范围内(额定值为5A),电压回路在0.05V以内。 5.5.2通道采样及线性度检查 在各模拟量通道分别按规范加量,装置采样应正确,同时加入三相对称电流、三相对称 电压,查看装置采样,检查电流、电压相角正常。功率显示正确。 5.5.3 时钟的整定与核对检查:调整时间,装置正常,GPS对时已完善,核对各装置时间显示一 致,并与后台计算机显示相符。 5.5.4装置自检正确,无异常报警信号。 5.5.5遥信输入检查:短接开关量输入正电源和各开关量输入端子,对照图纸和说明书,核对开 关量名称,装置显示屏显示各开关量名称与实际一致。 5.5.6遥控、遥调接点检查:在监控装置模拟遥控、遥调信号,用万用表测量各输出接点正确。 5.5.7监控系统同期功能检查:分别按检同期、检无压和不检方式进行模拟调试,在检同期方式 下输入母线电压和线路电压,分别改变两电压间的相角、幅值、频率使之不能满足同期条

智能变电站IEEE1588时钟同步冗余技术研究

第43卷第20期电力系统保护与控制 Vol.43 No.20 2015年10月16日 Power System Protection and Control Oct. 16, 2015 智能变电站IEEE1588时钟同步冗余技术研究 李俊刚1,2,刘 星2,张爱民1,张 杭1,耿英三1,魏 勇 2 (1.西安交通大学电气工程学院,陕西 西安 710049;2.许继电气,河南 许昌 461000) 摘要:针对智能变电站时钟同步系统现状,提出了基于IEEE1588的时钟同步系统冗余方案。在分析IEEE1588的实现原理及其特点的基础上,提出了单钟方案、双钟互备方案和双钟双扩展方案。重点对双钟互备方案进行了阐述,并详细分析了时钟冗余切换原理和过程。同时,进一步对双钟互备方案在变电站单网和双网模式下,不同网络方案对时钟冗余造成的影响进行了研究。 关键词:IEEE1588;变电站;时钟冗余;网络方案 Research on redundant technology of IEEE1588 clock synchronization system in smart substation LI Jungang1, 2, LIU Xing2, ZHANG Aimin1, ZHANG Hang1, GENG Yingsan1, WEI Yong2 (1. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; 2. XJ Electric Corporation Limited, Xuchang 461000, China) Abstract: Aiming at the present situation of smart substation clock synchronization system, this paper proposes the redundancy scheme of clock synchronization system based on IEEE1588. By analyzing the realization principle and characteristics of IEEE1588, a single clock scheme, double clock backup scheme and dual clock double extension scheme are proposed. The double clock backup scheme is emphasized, and the clock redundancy switching principle and process are detailed. At the same time, the double clock backup scheme in substation single network and dual network mode, and the effects of different network schemes on clock redundancy are studied. Key words: IEEE 1588; substation; clock redundancy; network scheme 中图分类号:TM764 文章编号:1674-3415(2015)20-0097-05 0 引言 智能变电站设计和建设过程中,可靠性方面的要求极为重要。冗余配置作为提高可靠性的主要措施之一,在变电站中得到广泛应用,诸如:保护装置冗余和通信网络冗余。然而时钟系统作为变电站控制系统的决策前提,其重要性不言而喻。但是,时钟系统的冗余设计一直停留在较浅的层面,对时钟信号的传输以及处理过程中的冗余研究,很少有文献加以研究。 目前,智能变电站时钟同步系统采用多种方式实现,如NTP、IRIG-B、GPS等。IEEE1588时钟同步与这些方式相比,其不仅能以标准的方式实现亚微妙的时钟同步,还能实现不同系统的兼容和互操作[1-7]。这些特质适合很多电力业务的拓展,能很好地满足电力系统的需求。因此,基于IEEE1588的时钟同步方式在智能变电站中具有较好的应用前景[8-11],而如何做好智能变电站IEEE1588时钟同步系统的冗余亟待研究。 1 IEEE1588时钟冗余系统 智能变电站中IEEE1588时钟同步系统冗余设计中,其方案大致有三种:单钟方案、双钟互备方案、双钟双扩展方案。虽然,其时钟同步系统有多种冗余方式,但是从设计难度和可靠性程度而言,如图1所示,最适合智能变电站需求的即为双钟互备方案。 在时钟冗余系统中,存在一个主时钟和备用时钟。当主时钟与外部同步源(如GPS)同步时,主时钟输出PTP时间同步信息,而备用时钟不输出PTP 时间同步信息。当主时钟与外部同步源(如GPS)失去同步时,不再输出PTP时间同步信息,由备用时钟输出PTP时间同步信息给自动化设备进行校时。一旦主时钟装置与外部同步源(如GPS)恢复同步

相关主题
文本预览
相关文档 最新文档