当前位置:文档之家› 工程流体力学习题解析杨树人)

工程流体力学习题解析杨树人)

工程流体力学习题解析杨树人)
工程流体力学习题解析杨树人)

工程流体力学

目录

第一章流体的物理性质 (1)

一、学习引导 (1)

二、难点分析 (2)

习题详解 (3)

第二章流体静力学 (5)

一、学习引导 (5)

二、难点分析 (5)

习题详解 (7)

第三章流体运动学 (13)

一、学习引导 (13)

二、难点分析 (13)

习题详解 (16)

第四章流体动力学 (22)

一、学习引导 (22)

习题详解 (24)

第五章量纲分析与相似原理 (34)

一、学习引导 (34)

二、难点分析 (34)

习题详解 (36)

第六章粘性流体动力学基础 (40)

一、学习引导 (40)

二、难点分析 (40)

习题详解 (42)

第七章压力管路孔口和管嘴出流 (50)

一、学习引导 (50)

二、难点分析 (50)

习题详解 (51)

主要参考文献 (59)

第一章流体的物理性质

一、学习引导

1.连续介质假设

流体力学的任务是研究流体的宏观运动规律。在流体力学领域里,一般不考虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。按照这种假设,流体充满一个空间时是不留任何空隙的,即把流体看作是连续介质。

2.液体的相对密度

是指其密度与标准大气压下4℃纯水的密度的比值,用δ表示,即

δ

ρ

3.气体的相对密度

是指气体密度与特定温度和压力下氢气或者空气的密度的比值。

4.压缩性

在温度不变的条件下,流体的体积会随着压力的变化而变化的性质。压缩性的大小用体积压缩系数βp表示,即

1 =

p dV

β

V dp

5.膨胀性

指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。其大小用体积膨胀系数βt表示,即

1 = t dV

β

V dt

6.粘性

流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。

7.牛顿流体和非牛顿流体

符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。

8.动力粘度

牛顿内摩擦定律中的比例系数μ称为流体的动力粘度或粘度,它的大小可以反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。单位为Pa·s,常用单位mPa·s、泊(P)、厘泊(cP),其换算关系:

1厘泊(1cP)=1毫帕斯卡·秒(1mPa.s)

100厘泊(100cP)=1泊(1P)

1000毫帕斯卡·秒(1mPa ·s)=1帕斯卡.秒(1Pa ·s)

9.运动粘度

流体力学中,将动力粘度与密度的比值称为运动粘度,用υ来表示,即

=μυρ

其单位为m 2/s ,常用单位mm 2/s 、斯(St )、厘斯(cSt ),其换算关系: 1m 2/s =1×106mm 2/s =1×104 St=1×106 cSt 1 St=100 cSt 10.质量力

作用在每一个流体质点上,并与作用的流体质量成正比。对于均质流体,质量力也必然与流体的体积成正比。所以质量力又称为体积力。

重力、引力、惯性力、电场力和磁场力都属于质量力。 11.惯性力

(1)惯性系和非惯性系

如果在一个参考系中牛顿定律能够成立,这个参考系称作惯性参考系,牛顿定律不能成立的参考系则是非惯性参考系。 (2)惯性力

在非惯性坐标系中,虚加在物体上的力,其大小等于该物体的质量与非惯性坐标系加速度的乘积,方向与非惯性坐标系加速度方向相反,即

i F ma =-

12.表面力

表面力作用于所研究的流体的表面上,并与作用面的面积成正比。表面力是由与流体相接触的流体或其他物体作用在分界面上的力,属于接触力,如大气压强、摩擦力等。

二、难点分析

1.引入连续介质假设的意义 有了连续介质假设,就可以把一个本来是大量的离散分子或原子的运动问题近似为连续充满整个空间的流体质点的运动问题。而且每个空间点和每个时刻都有确定的物理量,它们都是空间坐标和时间的连续函数,从而可以利用数学分析中连续函数的理论分析流体的流动。 2.牛顿内摩擦定律的应用

(1)符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。常见的牛顿流体包括空气、水、酒精等等;非牛顿流体有聚合物溶液、原油、泥浆、血液等等。

(2)静止流体中,由于流体质点间不存在相对运动,速度梯度为0,因而不

存在粘性切应力。

(3)流体的粘性切应力与压力的关系不大,而取决于速度梯度的大小; (4)牛顿内摩擦定律只适用于层流流动,不适用于紊流流动,紊流流动中除了粘性切应力之外还存在更为复杂的紊流附加应力。 3.流体粘度与压力和温度之间的关系

流体的粘度与压力的关系不大,但与温度有着密切的关系。液体的粘度随着温度的升高而减小,气体的粘度随着温度的升高而增大。 4.流体力学中质量力的表示形式

流体力学中质量力采用单位质量流体所受到的质量力f 来表示,即 0=lim

V m ?→F f

或 =y x z F F F

m m m +

+f i j k =X Y Z ++i j k

其中:X 、Y 、Z 依次为单位质量流体所受到的质量力f 在x 、y 、z 三个坐标方向上的分量。 5.流体力学中表面力的表示形式

流体力学中表面力常用单位面积上的表面力来表示。 =lim

n ΔΔΔA

A →0P

p

这里的p n 代表作用在以n 为法线方向的曲面上的应力。可将p n 分解为法向应力p 和切向应力τ,法向分量就是物理学中的压强,流体力学中称之为压力。 6.粘性应力为0表现在以下几种情况 绝对静止、相对静止和理想流体。

习题详解

【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。

【解】

3340.4530.90610 kg/m 510

m V ρ-=

==?? 3

3

0.906100.9061.010w ρδρ?===?

【1-2】 体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到

4.9×105Pa 时,体积减少1升。求水的压缩系数和弹性系数。

【解】由压缩系数公式

105

10.001 5.110 1/Pa 5(4.91098000)

p dV V dP β-=-==???- 911

1.9610 Pa 5.1

p

E β=

=

=? 【1-3】温度为20℃,流量为60 m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少?

【解】根据膨胀系数

1t dV

V dt

β=

211t Q Q dt Q β=+

3600.00055(8020)6061.98 m /h =??-+=

【1-4】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa·s ,求作用在平板单位面积上的阻力。

【解】根据牛顿内摩擦定律

=du dy τμ

21

=0.980798.07N/m 0.01

τ?

= 【1-5】已知半径为R 圆管中的流速分布为

2

2=(1)r u c R

-

式中c 为常数。试求管中的切应力τ与r 的关系。

【解】根据牛顿内摩擦定律

=du dy

τμ

2222=[(1)]d r r c c dr R R

τμμ-=-

习题1-5图

习题1-4图

第二章流体静力学

一、学习引导

1.相对静止

流体整体对地球有相对运动,但流体质点之间没有相对运动即所谓相对静止。

2.静压力

在静止流体中,流体单位面积上所受到的垂直于该表面的力,即物理学中的压强,称为流体静压力,简称压力,用p表示,单位Pa。

3.等压面

在充满平衡流体的空间里,静压力相等的各点所组成的面称为等压面。

4.压力中心

总压力的作用点称为压力中心。

5.压力体

是由受力曲面、液体的自由表面(或其延长面)以及两者间的铅垂面所围成的封闭体积。

6.实压力体

如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示;

7.虚压力体

如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示。

二、难点分析

1.静压力常用单位及其之间的换算关系

常用的压力单位有:帕(Pa)、巴(bar)、标准大气压(atm)、毫米汞柱(mmHg)、米水柱(mH2O),其换算关系为:1bar=1×105 Pa;1atm=1.01325×105 Pa;1atm=760 mmHg;1atm=10.34 mH2O;1mmHg=133.28Pa;1mH2O=9800Pa。由此可见静压力的单位非常小,所以在工程实际中常用的单位是kPa(103Pa)或MPa(106Pa)。

2.静压力的性质

(1)静压力沿着作用面的内法线方向,即垂直地指向作用面;

(2)静止流体中任何一点上各个方向的静压力大小相等,与作用方向无关;

(3)等压面与质量力垂直。

3.流体平衡微分方程的矢量形式及物理意义

1=

p ρ

?f 该方程的物理意义:当流体处于平衡状态时,作用在单位质量流体上的质量力与压力的合力相平衡。

其中:?称为哈密顿算子,i j k x y z ???

?=+

+???,它本身为一个矢量,同时对其右边的量具有求导的作用。

4.静力学基本方程式的适用条件及其意义。

1212=p p z z ρg ρg ++

(1)其适用条件是:重力作用下静止的均质流体。

(2)几何意义:z 称为位置水头,p /ρg 称为压力水头,而z +p /ρg 称为测压管

水头。因此,静力学基本方程的几何意义是:静止流体中测压管水头为常数。

(3)物理意义:z 称为比位能,p /ρg 代表单位重力流体所具有的压力势能,简称比压能。比位能与比压能之和叫做静止流体的比势能或总比能。因此,流体静力学基本方程的物理意义是:静止流体中总比能为常数。

5.流体静压力的表示方法 绝对压力:=ab a p p +gh ρ;

相对压力:M ab a p =p p gh -ρ=(当p ab >p a 时,p M 称为表压); 真空压力:v a ab M p p p p -==-(当p ab <p a 时)。

6.等加速水平运动容器和等角速旋转容器中流体自由液面方程的应用(见习题详解) 0s ax +gz =

22

s 02

ωr gz -=

7.画压力体的步骤

(1)将受力曲面根据具体情况分成若干段; (2)找出各段的等效自由液面;

(3)画出每一段的压力体并确定虚实;

(4)根据虚实相抵的原则将各段的压力体合成,得到最终的压力体。

习题详解

【2-1】容器中装有水和空气,求A 、B 、C 和D 各点的表压力?

【解】

3434222

3232()

()()(2)

MA MB MA MC MB MD MC p g h h p p g h h h gh p p gh p p g h h g h h ρρρρρρ=+=-++=-==-=-+=-+

【2-2】如图所示的U 形管中装有水银与水,试求:

(1)A 、C 两点的绝对压力及表压力各为多少? (2)求A 、B 两点的高度差h ? 【解】

(1) ()w 0.3a b A a

p p g ρ=+? w 0.3MA p g ρ=?

()w H 0.30.1ab C a p p g g ρρ=+?+? w H 0.30.1MC p g g ρρ=?+?

(2)选取U 形管中水银的最低液面为等压面,则

w H 0.3g gh ρρ?= 得 w

H 0.3

22 cm h ρρ?==

【2-3】 在一密闭容器内装有水及油,密度分别为ρw 及ρo ,油层高度为h 1,容器底部装有水银液柱压力计,读数为R ,水银面与液面的高度差为h 2,试导出容器上方空间的压力p 与读数R 的关系式。

【解】选取压力计中水银最低液面为等压面,则

1w 21()o H p gh g h R h gR ρρρ+++-=

1w 21()H o p gR gh g h R h ρρρ=--+-

【2-4】 油罐内装有相对密度为0.7的汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为1.26的甘油,一端接通油罐顶部空间,一端接压气管。同时,压力管的另一支引入油罐底以上的0.4m 处,压气后,当液面有气逸出时,

题2-1图

题2-2图

B

根据U 形管内油面高度差△h =0.7m 来计算油罐内的油深H = ?

【解】选取U 形管中甘油最低液面为等压面,由气体各点压力相等,可知油罐底以上0.4m 处的油压即为压力管中气体压力,则

00(0.4)go o p g h p g H ρρ+?=+- 得

1.260.7

0.40.4 1.66 m 0.7

go o h H ρρ??=

+=+= 【2-5】 图示两水管以U 形压力计相连,A 、B 两点高差1m ,U 形管内装有水银,

若读数△h =0.5m ,求A 、B 两点的压力差为多少?

【解】 选取U 形管内水银最低液面为等压面,设B 点到水银最高液面的垂直高度为x ,则 w H w (1)()A B p g x g h p g x h ρρρ+++?=++?

w H w 4() 7.15410 Pa

B A p p g g h ρρρ-=+-?=?

【2-6】 图示油罐发油装置,将直径为d 的圆管伸进罐内,端部切成45°角,

用盖板盖住,盖板可绕管端上面的铰链

旋转,借助绳系上来开启。已知油深H =5m ,圆管直径d =600mm ,油品相对密度0.85,不计盖板重力及铰链的摩擦力,求提升此盖板所需的力的大小?(提示:盖板为椭圆形,要先算出长轴

2b 和短轴2a ,就可算出盖板面积

A =πab )。

【解】 分析如图所示 以管端面上的铰链为支点,根据力矩平衡

T d P L ?=? 其中

4( 1.66410 N 2o o d P gH A gH ρρπ=?=??

=?

题2-4图

题2-5图

C D C C J L y y y A =-+

=

30.43 m d π

?

?=

= 可得

441.664100.43

1.1910 N 0.6

P L T d ???===?

【2-7】图示一个安全闸门,宽为0.6m ,高为1.0m 。距底边0.4m 处装有闸门转轴,使之仅可以绕转轴顺时针方向旋转。不计各处的摩擦力,问门前水深h 为多深时,闸门即可自行打开?

【解】分析如图所示,由公式

C D C C J

y y y A -=可知,水深h 越大,则形心

和总压力的作用点间距离越小,即D 点上

移。当D 点刚好位于转轴时,闸门刚好平衡。 即

3

120.1(0.5)C D C C BH J y y y A h BH -===- 得

1.33m h =

【2-8】有一压力贮油箱(见图),其宽度(垂直于纸面方向)b =2m ,箱内油层厚h 1=1.9m ,密度ρ0=800kg/m 3,油层下有积水,厚度h 2=0.4m ,箱底有一U 型水银压差计,所测之值如图所示,试求作用在半径R =1m 的圆柱面AB 上的总压力(大小和方向)。

【解】分析如图所示,首先需确定自由液面,选取水银压差计最低液面为等压面,则

题2-7图

/ρo g

题2-8图

w 0.5 1.9 1.0H B o g p g g ρρρ?=+?+?

由p B 不为零可知等效自由液面的高度

w *0.5 1.9 1.0 5.35 m H o B o o g g g p

h g g

ρρρρρ?-?-?===

曲面水平受力

*()91.728kN 2

x o R

P g h Rb ρ=+=

曲面垂直受力

2*1

()120.246kN 4

Z o o P gV g R Rh b ρρπ==+=

151.24kN P =

arctan(

)arctan(0.763)37.36x

Z

P P θ===o 【2-9】 一个直径2m ,长5m 的圆柱体放置在图示的斜坡上。求圆柱体所受的水平力和浮力。

【解】分析如图所示,因为斜坡的倾斜角为60°,故经D 点过圆心的直径与自由液面交于F 点。

BC 段和CD 段水平方向的投影面积相同,力方

向相反,相互抵消,故

圆柱体所受的水平力

3 1.0109.80.515 24.5kN

x C x

P gh A ρ==??????=

圆柱体所受的浮力

123()

11

1.0109.8(11522

119.365kN

Z P g V V ρπ=+=????+??=

【2-10】 图示一个直径D =2m ,长L =1m 的圆柱体,其左半边为油和水,油和水的深度均为1m 。已知油的密度为ρ=800kg/m 3,求圆柱体所受水平力和浮力。

【解】因为左半边为不同液体,故分别来分析AB 段和BC 段曲面的受力情况。

题2-9图

题2-10图

AB 曲面受力

132

0.8109.80.511 3.92kN

x o R

P g RL ρ=?

?=?????= 2211

() 4Z o P g R R L ρπ=-?

31

0.8109.8(111)1 1.686kN 4

π=????-??=

BC 曲面受力

2*3()2

1109.8(0.80.5)1 12.74kN x w R

P g h RL ρ=?+

?=???+?= 22*31

()4

1

1109.8(10.81)14

15.533kN

Z w P g R h R L

ρππ=?+?=????+??=

则,圆柱体受力

12 3.9212.7416.66kN x x x P P P =+=+=

2115.533 1.68613.847kN Z Z Z P P P =-=-=(方向向上)

【2-11】 图示一个直径为1.2m 的钢球安装在一直径为1m 的阀座上,管内外水面的高度如图所示。试求球体所受到的浮力。

【解】分析如图所示,图中实压力体(+)为一圆柱体,其直径为1.0m

1232()

4

(0.50.5)3

5.016kN

Z P g V V g R ρρππ=-=?-??=

【2-12】图示一盛水的密闭容器,中间用隔板将其分隔为上下两部分。隔板中有一直径d =25cm 的圆孔,并用一个直径D =50cm 质量M =139kg 的圆球堵塞。设容器顶部压力表读数p M =5000Pa ,求测压管中水面高x 大于若干时,圆球即被总压力向上顶开?

题2-11图

【解】分析如图所示,图中虚压力体(-)为一球体和圆柱体体积之和

根据受力分析可知

12() g V V Mg ρ+=

32*41[()] 34

g R d x h Mg ρππ+-=

32

4

4()

3

2.0m

M M

R p x d g

πρπρ-=+=

※【2-13】水车长3m ,宽1.5m ,高1.8m ,盛水深1.2m ,见图2-2。试问为使水不益处,加速度a 的允许值是多少。

【解】根据自由夜面(即等压面方程)

0s ax +gz =

得 29.8(1.8 1.2)

3.92m/s 1.5

s gz a =x ?-==

h *=p

题2-12图

图2-13图

第三章流体运动学

一、学习引导

1.稳定流动

如果流场中每一空间点上的所有运动参数均不随时间变化,则称为稳定流动,也称作恒定流动或定常流动。

2.不稳定流动

如果流场中每一空间点上的部分或所有运动参数随时间变化,则称为不稳定流动,也称作非恒定流动或非定常流动。

3.迹线

流体质点在不同时刻的运动轨迹称为迹线。

4.流线

流线是用来描述流场中各点流动方向的曲线,在某一时刻该曲线上任意一点的速度矢量总是在该点与此曲线相切。

5.流管

在流场中作一条不与流线重合的任意封闭曲线,则通过此曲线上每一点的所有流线将构成一个管状曲面,这个管状曲面称为流管。

6.流束和总流

充满在流管内部的流体的集合称为流束,断面无穷小的流束称为微小流束。管道内流动的流体的集合称为总流。

7.有效断面

流束或总流上垂直于流线的断面,称为有效断面。

8.流量

单位时间内流经有效断面的流体量,称为流量。流体量有两种表示方法,一是体积流量,用Q表示,单位为m3/s;另一种为质量流量, 用Q m表示,单位为kg/s。

9.控制体

是指根据需要所选择的具有确定位置和体积形状的流场空间,控制体的表面称为控制面。

二、难点分析

1.拉格朗日法和欧拉法的区别

(1)拉格朗日法着眼流体质点,设法描述出单个流体质点的运动过程,研究流体质点的速度、加速度、密度、压力等描述流体运动的参数随时间的变化规律,以及相邻流体质点之间这些参数的变化规律。如果知道了所有流体质点的运动状

况,整个流体的运动状况也就知道了。 (2)欧拉法的着眼点不是流体质点,而是空间点,即设法描述出空间点处的运动参数,研究空间点上的速度和加速度等运动参数随时间的变化规律,以及相邻空间点之间这些参数的变化规律。如果不同时刻每一空间点处流体质点的运动状况都已知道,则整个流场的运动状况也就清楚了。 2.欧拉法表示的加速度

x

y

z

d =

=u u u dt t x y z

????+++????u u u u u a

或 ()d ==dt t

?+??u u

a u u ? 其中:

(1)t ??u 表示在同一空间点上由于流动的不稳定性引起的加速度,称为当地加速度或时变加速度;(注:对于同一空间点,速度是否随时间变化)

(2)()?u u ?表示同一时刻由于流动的不均匀性引起的加速度,称为迁移加速度或位变加速度。(注:对于同一时刻,速度是否随空间位置变化)

(3)x

y

z

d =u u u dt t x y z

????+++????称为质点导数。

3.流动的分类

(1)按照流动介质划分:牛顿流体和非牛顿流体的流动;理想流体和实际流体的流动;可压缩流体和不可压缩流体的流动;单相流体和多相流体的流动等。

(2)按照流动状态划分:稳定流动和不稳定流动;层流流动和紊流流动;有旋流动和无旋流动;亚声速流动和超声速流动等。

(3)按照描述流动所需的空间坐标数目又可划分为:一元流动、二元流动和三元流动。 4.迹线方程的确定 (1)迹线的参数方程

(,,,)(,,,)(,,,)x x a b c t y y a b c t z z a b c t ===??

???

(2)迹线微分方程

(,,,)

(,,,)

(,,,)

dx dy dz dt u x y z t v x y z t w x y z t =

=

=

5.流线方程的确定 流线微分方程

(,,,)

(,,,)

(,,,)

x y z dx dy dz u x y z t u x y z t u x y z t =

=

6.流线的性质

(1)流线不能相交,但流线可以相切;

(2)流线在驻点(u =0)或者奇点(u →∞)处可以相交; (3)稳定流动时流线的形状和位置不随时间变化;

(4)对于不稳定流动,如果不稳定仅仅是由速度的大小随时间变化引起的,则流线的形状和位置不随时间变化,迹线也与流线重合;如果不稳定仅仅是由速度的方向随时间变化引起的,则流线的形状和位置就会随时间变化,迹线也不会与流线重合;

(5)流线的疏密程度反映出流速的大小。流线密的地方速度大,流线稀的地方速度小。 7.系统的特点

(1)系统始终包含着相同的流体质点; (2)系统的形状和位置可以随时间变化;

(3)边界上可有力的作用和能量的交换,但不能有质量的交换。 8.控制体的特点

(1)控制体内的流体质点是不固定的; (2)控制体的位置和形状不会随时间变化;

(3)控制面上不仅可以有力的作用和能量交换,而且还可以有质量的交换。 9.空间运动的连续性方程

()()()0y x z ρu ρu ρu ρt

x

y

z

????+

+

+

=????

+div 0d ρ

ρ=dt

u

(1)稳定流动

()()()0y x z ρu ρu ρu x

y

z

???+

+

=???

div()0ρ=u

(2)不可压缩流体

0y x z u u u x

y

z

???+

+

=???

div 0=u 根据是否满足上述方程可判断流体的可压缩性。 10.流体有旋、无旋的判定

1()21()21()2y

z x x z y

y x z

u u y z u u z x u u x y ωωω???=-????????=-???????=-?????

上式的矢量形式为

x y z ωωω=++ωi j k 12x y z u u u x

y

z ???=

???j k i

11rot 22=

??u =

u

流体力学中,把0=ω的流动称为无旋流动,把0≠ω的流动称为有旋流动。

习题详解

【3-1】已知流场的速度分布为 u =x 2y i -3y j +2z 2k

(1)属几元流动?

(2)求(x , y , z )=(3, 1, 2)点的加速度? 【解】(1)由流场的速度分布可知

2232x y z u x y

u y u z

?=?

=-??=? 流动属三元流动。 (2)由加速度公式

x x x x x x

x y z y y y y y y x y z

z z z z z

z x y z du u u u u a u u u dt t x y z du u u u u a u u u dt t x y z du u u u u a u u u dt t x y z ?????==+++????????????

==+++???????????==+++???????

32232396x y z a x y x y

a y

a z

?=-?

=??=? 故过(3, 1, 2)点的加速度

27 9 48

x y z a a a ?=?

=??

=? 其矢量形式为:27948a i j k =++

【3-2】已知流场速度分布为u x =x 2,u y =y 2,u z =z 2,试求(x , y , z )=(2, 4, 8)点的迁移加速度?

【解】由流场的迁移加速度

x x x x

x y z y y y y x

y z z z z

z x y z u u u a u u u x y z

u u u a u u u x y z u u u a u u u x y z ????=++??????????

=++?????

????=++??????

333222x y z a x a y a z

?=?=??=? 故过(2, 4, 8)点的迁移加速度

16 128 1024

x y z a a a ?=?

=??

=? 

【3-3】有一段收缩管如图。已知u 1=8m/s ,u 2=2m/s ,l =1.5m 。试求2点的迁移加速度。

【解】由已知条件可知流场的迁移加速度为

x x x u a u x

?=?

其中:126

41.5x u u u x l ?-===?

则2点的迁移加速度为

22248 m/s x x u

a u x

?==?=?

【3-4】某一平面流动的速度分量为u x =-4y ,u y =4x 。求流线方程。

【解】由流线微分方程

x y

dx dy u u = 得

dx dy y x

=- 解得流线方程

22x y c +=

【3-5】已知平面流动的速度为222222()

B y B x

u x y x y ππ=

+++()i j ,式中B 为常数。

求流线方程。

【解】由已知条件可知平面流动的速度分量

222222()x y B y u x y B x u x y ππ?=?+?

?

?=?+?

() 代入流线微分方程中,则

dx dy

y x

= 解得流线方程

22x y c -=

【3-6】用直径200mm 的管输送相对密度为0.7的汽油,使流速不超过1.2m/s

题3-3 图

工程流体力学试题及答案1

一\选择题部分 (1)在水力学中,单位质量力是指(答案:c ) a、单位面积液体受到的质量力; b、单位体积液体受到的质量力; c、单位质量液体受到的质量力; d、单位重量液体受到的质量力。 (2)在平衡液体中,质量力与等压面(答案:d) a、重合; b、平行 c、相交; d、正交。 (3)液体中某点的绝对压强为100kN/m2,则该点的相对压强为 a、1 kN/m2 b、2 kN/m2 c、5 kN/m2 d、10 kN/m2 答案:b (4)水力学中的一维流动是指(答案:d ) a、恒定流动; b、均匀流动; c、层流运动; d、运动要素只与一个坐标有关的流动。 (5)有压管道的管径d与管流水力半径的比值d /R=(答案:b) a、8; b、4; c、2; d、1。 (6)已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于答案:c a、层流区; b、紊流光滑区; c、紊流过渡粗糙区; d、紊流粗糙区(7)突然完全关闭管道末端的阀门,产生直接水击。已知水击波速c=1000m/s,水击压强水头H = 250m,则管道中原来的流速v0为答案:c a、1.54m b 、2.0m c 、2.45m d、3.22m (8)在明渠中不可以发生的流动是(答案:c ) a、恒定均匀流; b、恒定非均匀流; c、非恒定均匀流; d、非恒定非均匀流。 (9)在缓坡明渠中不可以发生的流动是(答案:b)。 a、均匀缓流; b、均匀急流; c、非均匀缓流; d、非均匀急流。 (10)底宽b=1.5m的矩形明渠,通过的流量Q =1.5m3/s,已知渠中某处水深h = 0.4m,则该处水流的流态为答案:b a、缓流; b、急流; c、临界流; (11)闸孔出流的流量Q与闸前水头的H(答案:d )成正比。 a、1次方 b、2次方 c、3/2次方 d、1/2次方 (12)渗流研究的对象是(答案:a )的运动规律。 a、重力水; b、毛细水; c、气态水; d、薄膜水。 (13)测量水槽中某点水流流速的仪器有答案:b a、文丘里计 b、毕托管 c、测压管 d、薄壁堰 (14)按重力相似准则设计的水力学模型,长度比尺λL=100,模型中水深为0.1米,则原型中对应点水深为和流量比尺为答案:d a、1米,λQ =1000; b、10米,λQ =100;

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

工程流体力学课后习题(第二版)答案

第一章 绪论 1-1.20℃的水2.5m 3 ,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+== 原原原μρν035.1035.1== 035.0035.1=-=-原 原 原原原μμμμμμ 此时动力粘度μ增加了3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02 y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。试求m h 5.0=时渠底(y =0)处的切应力。 [解] μρ/)(002.0y h g dy du -= )(002.0y h g dy du -==∴ρμ τ 当h =0.5m ,y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。 δ

[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑 y u A T mg d d sin μθ== 001 .0145.04.062 .22sin 8.95sin ????= = δθμu A mg s Pa 1047.0?=μ 1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μ τ=,定性绘出切应力沿y 方向的分布图。 [解] 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径0.9mm ,长度20mm ,涂料的粘度μ=0.02Pa .s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。(1.O1N ) [解] 2533 10024.5102010 8.014.3m dl A ---?=????==π y u u u u y u u y ττ= 0y ττy 0 τττ=0 y

工程流体力学习题全解

工程流体力学习题全解 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第1章 绪论 选择题 【】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内 的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分 子,且具有诸如速度、密度及压强等物理量的流体微团。 (d ) 【】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切 应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。 解:牛顿内摩擦定律是 d d v y τμ =,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故 d d t γ τμ =。 (b ) 【】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。 解:流体的运动黏度υ的国际单位是/s m 2 。 (a ) 【】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏 性;(d )符合 RT p =ρ 。 解:不考虑黏性的流体称为理想流体。 (c ) 【】 当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。 解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==???=。 (a ) 【】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应

工程流体力学第二版习题答案_(杜广生)

《工程流体力学》习题答案(杜广生主编) 第一章 习题 1. 解:依据相对密度的定义:13600 13.61000 f w d ρρ===。 式中,w ρ 表示4摄氏度时水的密度。 2. 解:查表可知,标准状态下:2 31.976/CO kg m ρ=,2 32.927/SO kg m ρ=,2 31.429/O kg m ρ=, 2 31.251/N kg m ρ=,2 30.804/H O kg m ρ= ,因此烟气在标准状态下的密度为: 11223 1.9760.135 2.9270.003 1.4290.052 1.2510.760.8040.051.341/n n kg m ρραραρα=++=?+?+?+?+?=L 3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为4atm 的空气的等温体积模量: 34101325405.310T K Pa =?=? ; (2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量: 31.44101325567.410S K p Pa κ==??=? 式中,对于空气,其等熵指数为1.4。 4. 解:根据流体膨胀系数表达式可知: 30.0058502V dV V dT m α=??=??= 因此,膨胀水箱至少应有的体积为2立方米。 5. 解:由流体压缩系数计算公式可知: 392 5 11050.5110/(4.90.98)10 dV V k m N dp -?÷=-=-=?-? 6. 解:根据动力粘度计算关系式: 74678 4.2810 2.910Pa S μρν--==??=?? 7. 解:根据运动粘度计算公式:

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图 所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

工程流体力学习题全解

第1章 绪论 选择题 【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒; (c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有 诸如速度、密度及压强等物理量的流体微团。 (d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变 形速度;(c )切应力和剪切变形;(d )切应力和流速。 解:牛顿内摩擦定律是 d d v y τμ =,而且速度梯度d d v y 是流体微团的剪切变形速度 d d t γ,故d d t γ τμ=。 (b ) 【1.3】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。 解:流体的运动黏度υ的国际单位是/s m 2 。 (a ) 【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p =ρ 。 解:不考虑黏性的流体称为理想流体。 (c ) 【1.5】 当水的压强增加一个 大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。 解:当水的压强增加一个大气压时,其密度增大约 95d 1 d 0.51011020 000k p ρ ρ -==???= 。 (a ) 【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时 不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。 解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。 (c ) 【1.7】 下列流体哪个属牛顿 流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。 解:满足牛顿内摩擦定律的流体称为牛顿流体。 (a ) 【1.8】 15C o 时空气和水的运动黏度6215.210m /s υ-=?空气,62 1.14610m /s υ-=?水 ,这 说明:在运动中(a )空气比水的黏性力大;(b )空气比水的黏性力小;(c )空气 与水的黏性力接近;(d )不能直接比较。 解:空气的运动黏度比水大近10倍,但由于水的密度是空气的近800倍,因此水的黏度反而比空气大近50倍,而黏性力除了同流体的黏度有关,还和速度梯度有 关,因此它们不能直接比较。 (d ) 【1.9】 液体的黏性主要来自于液体:(a )分子热运动;(b )分子间内聚力;(c )易变形

工程流体力学教学--作者闻建龙工程流体力学习题+答案(部分)

闻建龙主编的《工程流体力学》习题参考答案 第一章 绪论 1-1 物质是按什么原则分为固体和液体两大类的? 解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。如空气、水等。而在同等条件下,固体则产生有限的变形。 因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。 1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么? 解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。 流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。 在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。 1-3 底面积为2 5.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层 厚度为mm 4,当液体分别为C 020的水和C 0 20时密度为3 856m kg 的原油时,移动平板 所需的力各为多大? 题1-3图 解:20℃ 水:s Pa ??=-3 10 1μ 20℃,3 /856m kg =ρ, 原油:s Pa ??='-3 102.7μ 水: 23 3 /410 416 101m N u =??=? =--δμτ N A F 65.14=?=?=τ

(完整版)工程流体力学课后习题(第二版)答案.doc

第一章绪论1-1. 20℃的水 2.5m 3,当温度升至80℃时,其体积增加多少?[ 解 ] 温度变化前后质量守恒,即1V12V2 又20℃时,水的密度80℃时,水的密度1998.23kg / m3 2971.83kg / m3 V2 1V 1 2.5679m3 2 则增加的体积为V V2 V1 0.0679 m3 1-2.当空气温度从0℃增加至 20℃时,运动粘度增加15%,重度减少 10% ,问此时动力粘度增加多少(百分数)? [ 解 ] (1 0.15) 原 (1 0.1) 原 1.035 原原 1.035 原 原 1.035 原原 0.035 原原 此时动力粘度增加了 3.5% 1-3.有一矩形断面的宽渠道,其水流速度分布为u 0.002 g( hy 0.5y2 ) /,式中、分别为水的密度和动力粘度,h 为水深。试求h 0.5m 时渠底(y=0)处的切应力。 [ 解 ] du 0.002 g (h y) / dy du 0.002 g(h y) dy 当h =0.5m,y=0时 0.002 1000 9.807(0.50) 9.807Pa 1-4.一底面积为 45× 50cm2,高为 1cm 的木块,质量为 5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度 u=1m/s,油层厚 1cm,斜坡角 22.620(见图示),求油的粘度。 u

[ 解 ] 木块重量沿斜坡分力 F 与切力 T 平衡时,等速下滑 mg sin T A du dy mg sin 5 9.8 sin 22.62 A u 0. 4 0.45 1 0.001 0.1047 Pa s 1-5.已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律 du ,定性绘出切应力 dy 沿 y 方向的分布图。 y y y u u u u u u [ 解 ] y y y = 0 = 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 0.9mm ,长度 20mm ,涂料 的粘度 =0.02Pa . s 。若导线以速率 50m/s 拉过模具,试求所需牵拉力。 (1.O1N ) [ 解 ] A dl 3.14 0.8 10 3 20 10 3 5.024 10 5 m 2

工程流体力学习题及答案

工程流体力学习题及答案(1) 1 某种液体的比重为3,试求其比容。 (答:3.3×10-4米3/公斤) 2 体积为5.26米3的某种油,质量为4480公斤,试求这种油的比重、密度与重度。 (答:0.85;851公斤/米3;8348牛/米3) 3 若煤油的密度为0.8克/厘米3,试求按工程单位计算的煤油的重度、密度与比容。 (答:800公斤力/米3;81.56公斤力·秒2/米4;1.25×10-3米3/公斤力) 4 试计算空气在温度t=4℃,绝对压力P=3.4大气压下的重度、密度与比容。 (答:42.4牛/米3;4.33公斤/米3;0.231米3/公斤) 5 试计算二氧化碳在温度为t=85℃,绝对压力P=7.1大气压下的重度、密度与比容。 (答:104牛/米3;10.6公斤/米3;0.09厘米3/公斤 ) 6 空气在蓄热室内于定压下,温度自20℃增高为400℃,问空气的体积增加了多少倍? (答:1.3倍) 7 加热炉烟道入口烟气的温度900=t 入℃,烟气经烟道及其中设置的换热器后,至烟道出 口温度下降为500=t 出℃,若烟气在0℃时的密度为28.10 =ρ公斤/米3,求烟道入口与出口处烟气的密度。 (答:298.0=ρ人公斤/米3;452.0=ρ出 公斤/米3) 8 试计算一氧化碳在表压力为0.3大气压、温度为8℃下的重度。 (答:15.49牛/米3) 9 已知速度为抛物线分布,如图示 y=0,4,8,12,17厘米处的速度梯度。又若气体的绝 对粘性系数为1013.25-?=μ牛·秒/米3,求以上各处气体的摩擦切应力。 9 题图 10 夹缝宽度为h ,其中所放的很薄的大平板以定速v 移动。若板上方流体的粘性系数为μ,

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

工程流体力学第2版答案

课后答案网 工程流体力学 第一章绪论 1-1. 20C 的水2.5m 3 ,当温度升至80C 时,其体积增加多少? [解]温度变化前后质量守恒,即 = 7V2 3 又20C 时,水的密度 d 二998.23kg / m 3 80C 时,水的密度 = 971.83kg/m 3 啦 3 V 2 =亠=2.5679m 「2 则增加的体积为 V 二V 2 -V^ 0.0679 m 3 1-2.当空气温度从 0C 增加至20C 时,运动粘度\增加15%,重度 减少10%,问此时动力粘度 」增加 多少(百分数)? [解] 宀(1 0.15)、.原(1 -0.1)「原 = 1.035 原「原=1.035'I 原 ■' -「原1.035?L 原一」原 原 原——原二0.035 卩原 卩原 此时动力粘度 J 增加了 3.5% 2 1-3?有一矩形断面的宽渠道,其水流速度分布为 u =0.002 Jg(hy-0.5y )/」,式中'、」分别为水的 密度和动力粘度,h 为水深。试求h =0.5m 时渠底(y=0)处的切应力。 [解] 一 =0.002「g(h -y)/「 dy 当 h =0.5m , y=0 时 = 0.002 1000 9.807(0.5 —0) J du dy -0.002 'g(h -y)

= 9.807Pa 1-4.一底面积为45 x 50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块 运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。 mg sin v I mg sin A U 0.4 0.45 — d 0.001 」-0.1047Pa s 1-5 .已知液体中流速沿 y 方向分布如图示三种情况,试根据牛顿内摩擦定律 沿y 方向的分布图。 [解]木块重量沿斜坡分力 F 与切力T 平衡时,等速下滑 5 9.8 sin 22.62 -=一,定性绘出切应力 dy 1-6 ?为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 的粘度」=0.02Pa . s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。 0.9mm ,长度20mm ,涂料 (1.O1N ) e y I

工程流体力学习题答案

第三章 流体静力学 【3-2】 图3-35所示为一直煤气管,为求管中静止煤气的密度,在高度差H =20m 的两个截面装U 形管测压计,内装水。已知管外空气的密度ρa =1.28kg/m3,测压计读数h 1=100mm ,h 2=115mm 。与水相比,U 形管中气柱的影响可以忽略。求管内煤气的密度。 图3-35 习题3-2示意图 【解】 1air 1O H 1gas 2p gh p +=ρ 2air 2O H 2gas 2p gh p +=ρ 2gas gas 1gas p gH p +=ρ 2air air 1air p gH p +=ρ 2gas gas 1air 1O H 2 p gH p gh +=+ρρ gH gh p p air 2O H 1air 2gas 2ρρ-=- gH gh gH gh air 2O H gas 1O H 2 2 ρρρρ-+= H H h h gas air 2O H 1O H 2 2 ρρρρ=+- () 3air 21O H gas kg/m 53.028.120 115 .01.010002 =+-?=+-=ρρρH h h 【3-10】 试按复式水银测压计(图3-43)的读数算出锅炉中水面上蒸汽的绝对压强p 。已知:H =3m , h 1=1.4m ,h 2=2.5m ,h 3=1.2m ,h 4=2.3m ,水银的密度ρHg =13600kg/m 3。 图3-43 习题3-10示意图 ()()

()232O H 32p h h g p +-=ρ ()a 34Hg 3p h h g p +-=ρ ()()212Hg 1O H 2 p h h g p h H g +-=+-ρρ ()()a 34Hg 232O H 2 p h h g p h h g +-=+-ρρ ()()a 3412Hg 321O H 2 p h h h h g p h h h H g +-+-=+-+-ρρ ()()()()() Pa 14.3663101013252.15.24.13807.910004.15.22.13.2807.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ ()()()()()Pa 366300.683 1013252.15.24.1380665.910004.15.22.13.280665.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ 【3-15】 图3-48所示为一等加速向下运动的盛水容器,水深h =2m ,加速度a =4.9m/s 2 。试确定:(1) 容器底部的流体绝对静压强;(2)加速度为何值时容器底部所受压强为大气压强?(3)加速度为何值时容器底部的绝对静压强等于零? 图3-48 习题3-15示意图 【解】 0=x f ,0=y f ,g a f z -= 压强差公式 () z f y f x f p z y x d d d d ++=ρ ()()z g a z f y f x f p z y x d d d d d -=++=ρρ ()?? --=h p p z g a p a d d ρ ()()()()??? ? ??-=-=----=-g a gh a g h g a h g a p p a 10ρρρρ ??? ? ??-+=g a gh p p a 1ρ () a g h p p a -=-ρh p p g a a ρ-- = (1) ()()()Pa 111138.39.480665.921000101325=-??+=-+=a g h p p a ρ

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

工程流体力学习题

【1-4】用200升汽油桶装相对密度0.70的汽油。罐装时液面上压强为98000Pa 。封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。若汽油的膨胀 系数为0.0006K -1,弹性系数为13.72×106 Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少? 【解】(1)由1 β=-=P p dV Vdp E 可得,由于压力改变而减少的体积为 6 20017640 0.257L 13.7210??=-= ==?P p VdP V dV E 1β= t t dV V dT 得 0.000620020 2.40L β?===??=t t t V dV VdT (2)因为??t p V V ?,相比之下可以忽略由压力变化引起的体积改变,则 200L β+=t V V dT 1198.8%200110.000620 β===++?t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。 【解】根据牛顿内摩擦定律 =du dy τμ 则 21 =0.980798.07N/m 0.01 u τμ δ=? = 【2-1】容器中装有水和空气,求A 、B 、C 和D 各点的表压力? 【解】空气各点压力相同,与空气接触的液面压力即为空气的压力,另外相互连通的同种液体同一高度压力相同,即等压面 3434222 3232() ()()(2) MA MB MA MC MB MD MC p g h h p p g h h h gh p p gh p p g h h g h h ρρρρρρ=+=-++=-==-=-+=-+ Pmc=Pmd+ρg(h1+h2+h3) Pmd= -ρg (h1+2h2+h3) 【2-5】图示两水管以U 形压力计相连,A 、B 习题1-5图

水力学工程流体力学

水力学工程流体力学 实验指导书及实验报告 专业农田水利班级 学号姓名 河北农业大学城乡建设学院水力学教研室

目录 (一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1) (二)不可压缩流体恒定流动量定律实验 (4) (三)雷诺实验 (8) (四)文丘里实验 (10) (五)局部水头损失实验 (14) (六)孔口与管嘴出流实验 (18)

(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 一.实验目的要求: 1.掌握流速、流量、压强等动水力学水力要素的实验两侧技术; 2.验证恒定总流的能量方程; 3.通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 二.实验装置: 本实验的装置如图1.1所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀。 三.实验原理:

在实验管路中沿管内水流方向取n 个过水断面,可以列出进口断面(1)至断面(i )的能量方程式(2,3,,i n =??????) 1i z + +=z +++22 1 1 1122i i i w i p v p v h g g 取121n a a a ==???=,选好基准面,从已设置的各断面的测压管中读出z+ p 值,测出通过 管路的流量,即可计算出断面平均流速v 及2 2v g ,从而即可得到各断面测管水头和总水头。 四.实验方法与步骤: 1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3.打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测管水头的变化情况。 4.调节阀13开度,待流量稳定后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5.再调节阀13开度1~2次,其中一次使阀门开度最大(以液面降到标尺最低点为限),按第4步重复测量。 五.实验成果及要求: 实验台号No 1.把有关常数记入表1.1 表1.1 有关常数记录表 水箱液面高程0?= cm,上管道轴线高程s ?= cm 。 注:(1)打“*”者为毕托管测点(测点编号见图1.2) (2)2、3为直管均匀流段同一断面上的二个测压点,10、11为弯管非均匀流段同一断面上的二个测点。 2.量测(z+ p )并记入表1.2。

(完整版)工程流体力学课后习题(第二版)答案

第一章绪论 3 1-1. 20C的水2.5m,当温度升至80C时,其体积增加多少? [解]温度变化前后质量守恒,即V 2V 3 又20C时,水的密度i 998.23kg /m 3 80C 时,水的密度 2 971.83kg/m3 V2— 2.5679m3 2 3 则增加的体积为V V V i 0.0679m 1-2.当空气温度从0C增加至20C时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)? [解](1 0.15)原(1 0.1)原 1.035原原1.035原 原 1.035原原 0.035 原原 此时动力粘度增加了 3.5% 1-3?有一矩形断面的宽渠道,其水流速度分布为u 0.002 g(hy 0.5y2)/ ,式中、分别为水的密度和动力粘度,h为水深。试求h 0.5m时渠底(y=0)处的切应力。 [解]——0.002 g(h y)/ dy 0.002 g(h y) dy 当h =0.5m , y=0 时 0.002 1000 9.807(0.5 0) 9.807Pa 1-4.一底面积为45 x 50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度。

[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑 mg sin du T A dy mg sin A U 5 9.8 sin 22.62 1 0.4 0.45 - 0.001 0.1047 Pa s 1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律 沿y方向的分布图。 3 3 5 2 [解] A dl 3.14 0.8 10 20 10 5.024 10 m 石,定性绘出切应力 1-6 ?为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径 的粘度=0.02Pa. s。若导线以速率50m/s拉过模具,试求所需牵拉力。 0.9mm,长度20mm,涂料 (1.O1N) y

工程流体力学课后习题答案

第一章 绪论 1-1.20℃的水,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度3 1/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 32 1 125679.2m V V == ∴ρρ 则增加的体积为3 120679.0m V V V =-=? 1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==Θ 原原原μρν035.1035.1== 035.0035.1=-=-原 原 原原原μμμμμμΘ 此时动力粘度μ增加了% 1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02 y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。试求m h 5.0=时渠底(y =0)处的切应力。 [解] μρ/)(002.0y h g dy du -=Θ )(002.0y h g dy du -==∴ρμ τ 当h =,y =0时 )05.0(807.91000002.0-??=τ Pa 807.9= 1-4.一底面积为45×50cm 2 ,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角 (见图示),求油的粘度。 [解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑

y u A T mg d d sin μθ== 001 .0145.04.062 .22sin 8.95sin ????= = δθμu A mg s Pa 1047.0?=μ 1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律y u d d μ τ=,定性绘出切应力沿y 方向的分布图。 [解] 1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。已知导线直径,长度20mm ,涂料的粘度 μ=.s 。若导线以速率50m/s 拉过模具,试求所需牵拉力。() [解] 2 53310024.51020108.014.3m dl A ---?=????==πΘ N A h u F R 01.110024.510 05.05002.053=????==∴--μ 1-7.两平行平板相距,其间充满流体,下板固定,上板在2Pa 的压强作用下以s 匀速移动,求该流体的 动力粘度。 [解] 根据牛顿内摩擦定律,得 dy du / τμ=

相关主题
文本预览
相关文档 最新文档