当前位置:文档之家› 地源热泵与传统空调运行费用比较

地源热泵与传统空调运行费用比较

地源热泵与传统空调运行费用比较
地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1. 冷、热源及空调方式选择比较

2. 运行费用分析比较:

制冷机选用二大一小三台机组,300冷吨两台,150 冷吨一台,(共2637KW 计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW (1200KW)。

选用地源热泵机组LTLHM-370制冷量1300KV,功率245.4KW;制热量

1400KV,功率324.6KW

循环泵功率(估算):37KW(—用一备)

补水泵功率(估算):4KW(—用一备)

地埋管循环泵功率(估算):30KW(—用一备)冬季使用一台机组。

A、地源热泵系统,冬夏两用

?夏季各设备的配电功率

? a. 地源热泵机组:夏季245.4kW/台*2台。

? b.空调侧循环泵:37kW/台。

? c.地埋管侧循环泵:30kW冶。

d.空调水电子水处理仪:0.2 kW/台

e. 埋管侧电子除垢仪:0.2 kW/ 台

? f. 补水泵:4kW台。

?地埋管热泵工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、夏季制冷90 天,每天间歇运行8 小时。

? 3 、空调同时使用率取0.8 。

? 4 、机组运行率取65%。

夏季运行费用:

90X 8X 0.8 X(0.2 X 2+4+30+245.4X 2+37)x 65%< 0.8=16.8 万元。?冬季各设备的配电功率

? a. 地源热泵机组:夏季324.6kW/台*2台。

? b.空调侧循环泵:37kW/台。

? c.地埋管侧循环泵:30kW冶。

? d.空调水电子水处理仪:0.2 kW/台。

? e. 井水电子除垢仪:0.2 kW/ 台。

? f. 补水泵:4kW台。

?地埋管热泵工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、冬季制热120 天,每天间歇运行8 小时。

? 3 、空调同时使用率取0.8 。

? 4 、机组运行率取65%。

冬季运行费用:

120X 8X 0.8 X (0.2 X2+4+30+324.6+37)X 65%X 0.8=15.8 万元。

B、水冷冷水机组和燃油锅炉

选用水冷冷水机组LTLS-280两台,制冷量1021KV,功率243KW 另选用水冷冷水机组LTLS-160一台,制冷量550KW功率130KW

循环泵功率(估算):37KW(—用一备)

补水泵功率(估算):4KW(—用一备)

冷却塔循环泵功率(估算):30KW(—用一备)

?夏季各设备的配电功率

? a. 水冷冷水机组:夏季243kW冶*2台,130kW冶*1台

? b.空调侧循环泵:37kW冶。

? c.冷却塔循环泵:30kW冶。

? d. 空调水电子水处理仪:0.2 kW/ 台。

? e. 冷却水电子除垢仪:0.2 kW/ 台。

? f. 补水泵:4kW/台。

?冷水水冷工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、夏季制冷90 天,每天间歇运行8 小时。

? 3 、空调同时使用率取0.8 。

? 4 、机组运行率取65%。夏季运行费用:

90X 8X 0.8 X(0.2 X 2+4+37+243X 2+130+3Q X 65%< 0.8=20.58 万元。冬季各设备的配电功率

选用燃油锅炉机组LTR-100一台,制热量1163KV,燃油量106. 1Kg/h。

? a. 燃油机组:耗油量(轻油):106.1Kg/h

? b.空调侧循环泵:37kW/台。

? c. 空调水电子水处理仪:0.2 kW/ 台。

? d. 补水泵:4kW/台。

?冬季燃油锅炉工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、冬季制热120 天,每天间歇运行8 小时。

? 3 、空调同时使用率取0.8 。

? 4 、小时耗油量106.1Kg,若油价为4.80元/ k go

冬季运行费用:

120X 8X 0.8 X( 0.2 X 2+4+37)X 65%X 0.8=1.65 万元。

油价:106.1Kg/h X 120X 10X 4.8 X 0.8=48.89 万元。

冬季总运行费用:50.54 万元。

C水冷冷水机组和空气源热泵

?夏季各设备的配电功率

a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台

? b.空调侧循环泵:37kW/台。

? c.冷却塔循环泵:30kW/台。

? d.空调水电子水处理仪:0.2 kW/台。

? e. 冷却水电子除垢仪:0.2 kW/ 台。

? f. 补水泵:4kW/台。

?冷水水冷工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、夏季制冷90 天,每天间歇运行8 小时。

? 3 、空调同时使用率取0.8 。

? 4 、机组运行率取65%。

夏季运行费用:

90X 8X 0.8 X (0.2 X 2+4+37+243X 2+130+30)X 65%X 0.8=20.58 万元。冬季各设备的配电功率

选用风冷机组LTLF-500两台,制热量578.7KW,功率152.2KW

循环泵功率(估算):37KW(—用一备)

补水泵功率(估算):4KW(—用一备)

? a. 空气源热泵机组:152.2 kW/台*2台。

? b. 辅助电加热:360kW/台。

? c.空调侧循环泵:37kW/台。

? d.空调水电子水处理仪:0.2 kW/台。

冬季空气源热泵工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、冬季制热120天,每天间歇运行8小时。

? 3 、空调同时使用率取0.8 。

? 4 、机组运行率取65%。

冬季运行费用:

120X 8X 0.8 X(0.2+37+360+152.2 X 2)X 65%< 0.8=28.0 万元。

D空气源热泵

选用风冷机组LTLF-500五台,制冷量536.1KW 功率164KW制热量578.7KW 功率152.2KW 冬季使用两台。

循环泵功率(估算):37KW(—用一备)

补水泵功率(估算):4KW(—用一备)

? a. 空气源热泵机组:173 kW/台*2台。

? b. 辅助电加热:360kW/台。

? c.空调侧循环泵:37kW/台。

? d. 空调水电子水处理仪:0.2 kW/ 台。

?夏季各设备的配电功率

? a. 水冷冷水机组:夏季164kW/台*5台。

? b.空调侧循环泵:37kW/台。

? c. 空调水电子水处理仪:0.2 kW/ 台。

?空气源热泵工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、夏季制冷90 天,每天间歇运行8 小时。

? 3 、空调同时使用率取0.8 。

? 4 、机组运行率取65%。

夏季运行费用:

90X 8X 0.8 X(0.2+164 X 5+37)X 65%X 0.8=25.6 元/ m20

冬季各设备的配电功率

a. 空气源热泵机组:152 kW/台*6台

? b. 辅助电加热:1000kW冶。

? c.空调侧循环泵:45kW冶*2台。

? d.空调水电子水处理仪:0.2 kW/台。

?冬季空气源热泵工程运行费用如下:

? a. 空气源热泵机组:173 kW/台*2台。

? b. 辅助电加热:360kW/台。

? c.空调侧循环泵:37kW/台。

? d.空调水电子水处理仪:0.2 kW/台。

?冬季空气源热泵工程运行费用如下:

? 1 、电价按0.80元/KWH

? 2 、冬季制热120天,每天间歇运行8小时。

? 3 、空调同时使用率取0.8。

?4、机组运行率取65%

冬季运行费用:

120X 8X 0.8 X(0.2+37+360+152.2 X 2)X 65%X 0.8=28.0 万元。

3、比较结果:

注:1、以上各形式运行费用是在同条件下对比

(整理)地源热泵与传统空调运行费用比较.

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243KW。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·冷水水冷工程运行费用如下:

地源热泵与传统空调运行费用比较

XXX电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245. 4KW;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。

· e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、夏季制冷90天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。·冬季各设备的配电功率 · a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: ·1、电价按0.80元/KWH。 ·2、冬季制热120天,每天间歇运行8小时。 ·3、空调同时使用率取0.8。 ·4、机组运行率取65%。 冬季运行费用:

地源热泵优缺点及基本原理和参数

地源热泵的12大优势 由于地源热泵系统采取了特殊的换热方式,使它具有普通中央空调和锅炉不可比拟的优点: 一、高效节能 与锅炉(电、燃料)供热系统相比,土--气/水型地源热泵系统的转换效率最高可达4.7 。而锅炉供热只能将90%以上的电能或70~90%的燃料内能转换为热量供用户使用,因此它要比电锅炉加热节省2/3以上的电能,比燃料锅炉节省1/2以上的能量,运行费用为各种采暖设备的30-70%。由于土壤的温度全年稳定在10℃—20℃之间,其制冷、制热系数可达3.5—4.7,与传统的空气源热泵(家用窗式和分体式空调、中央式风冷热泵)相比,要高出40%以上,其运行费用仅为普通中央空调的50—60%。夏季高温差的散热和冬季低温差的取热,使得土--气型地源热泵系统换热效率很高。因此在产生同样热量或冷量时,只需小功率的压缩机就可实现,从而达到节能的目的,其耗电量仅为普通中央空调与锅炉系统的40%—60%。 二、绿色环保 土--气/水型地源热泵系统在冬季供暖时,不需要锅炉,无废气、废渣、废水的排放,可大幅度地降低温室气体的排放,能够保护环境,是一种理想的绿色技术。 三、分户计费 实现机组独立计费,分户计表,方便业主对整个系统的管理。 四、使用寿命长

家用空调设计寿命8年,燃气锅炉为10年;土--气型地源热泵机组为50年,水循环和风管系统60年以上,地耦管路系统为70年,它比所有各种空调系统和采暖设备的寿命都要长。 五、节省建筑空间控制设备简单 土--气/水型地源热泵系统采用将地源热泵机组分散安装于各处所(居室、会所、办公室等)的方式,中央控制仅需选择水路控制,除去了一般中央空调集中控制所有参量的复杂环节,从而降低控制成本。在各分散安装单元(居室、会所、办公室)可根据用户要求设不同的体积很小的终端控制器,实现从最简单(起停、供暖、制冷三档)到复杂的可编程智能控制方式。 六、系统可靠性强 每台机组可独立供冷或供热,个别机组故障不影响整个系统的运行。机组的运行工况稳定,几乎不受环境温度变化的影响,即使在寒冷的冬季制热量也不会衰减,更无结霜除霜之虑。 七、同时供暖制冷 土--气/水型地源热泵系统可做到同时有的房间或区域制冷,有的房间或区域供暖,这对大型商业建筑尤其重要。采用传统中央空调系统只有使用造价极其昂贵的四管空调系统才能做到,而土--气型地源热泵不需增加任何设备便可做到。 八、维护费用低廉 土—气/水型地源热泵系统不带有室外安装的设备,不设冷却塔、屋顶风机,没有室外设备安装维护费用。压缩机工作稳定,不会出现传

地源热泵造价与运行费用对比

目录 一、公司简介。。。。。。。。。。。.。。。。。。。。。。2 二、标志性工程案例。。。。。。。。。。。。。。。。。。。3 三、地源热泵技术原理介绍。。。。。。。。。。。。。。。。6 四、冷暖方式的分析。。。。。。。。。。。。。。。。。。。15 五、设计方案说明。。。。。。。。。。。。。。。。。。。。17 六、系统设计方案。。。。。。。。。。。。。。。。。。。。20 七、投资概算及运行费用对比。。。。。。。。。。。。。。。25 八、补充说明。。。。。。。。。。。。。。。。。。。。。。29 九、附件(图纸、企业资质及相关政策文件)。。。。。。。。30

一、公司简介 浙江亿能建筑节能科技有限公司其前身是台州亿能建筑节能科技有限公司,于2010年4月由浙江省工商行政管理局批准正式更名,是台州首家集科技、设计、培训、咨询、新能源投资、建筑节能、环境保护于一体的科技型企业,公司成立至今一直从事于节能、环保工作。随着人们生活水平的不断改善与提高,环境保护意识的日益增强,国家政府大力提倡减排,公司于2010年5月在山东滨州先后成立了“浙江亿能建筑节能科技有限公司滨城分公司”、“滨州市艾斯达节能材料有限公司”,致力于建筑节能新技术与新产品的开发与利用、节能环保型中央空调系统配件与设备的研发与推广,形成产品系列化。 目前,公司已经建立了包括生产、营销、采购、供应、质量控制、设计、决策等在内的科学、高效的管理体系,为公司的迅速发展提供了组织机构和管理制度保障,使公司呈现良好的发展态势。现与中国建筑科学研究院建筑环境与节能研究院等多家科研机构建立了战略合作同盟体,可以为客户提供各种建筑节能方案和先进的节能设备。 公司08年度被浙江省科学技术协会、浙江省科技报社评为“浙江省优秀创新型企业”,被中国质量诚信企业协会、中国品牌价值评估中心评为“浙江省重质量守承诺创品牌”单位,暨“首批三满意单位”。2008年12月份公司参与了国家4个标准的制定:①地源热泵系统经济运行标准;②溴化锂吸收式冷水机组能效限定值节能标准;③地源热泵机组能效限定值及能源效率等级标准;④商业或工业用及类似用途低温空气源热泵机组标准,其中地源热泵系统经济运行标准由我司参与主编。2009年6月,我司与台州职业技术学院于市政府签订了“台州市校企校地合作协议书”。 公司始终坚守“高效、节能、环保”为重的经营理念及“诚信、团结、创新”的企业精神,以推广建筑节能事业为目标,以缓解能源紧张,降低能源消耗为己任,大力促进可再生能源应用和节能环保项目的推广,为加快建设“十一五”规划提出的能源节约型社会做出自己的贡献。亿能人以精湛的合作团队,凭借先进的技术真诚希望与国内外的客商携手共创节能型社会!

中央空调系统运行费用概算

中央空调系统运行费用概算 一、亘元大厦中央空调工程方案简介 亘元大厦为综合办公楼,框架结构,地下一层,地上十四层,建筑面积为36887㎡,总高度为H=,属于一类高层建筑。该工程空调系统为风机盘管加新风的形式,冷源由两台螺杆式水冷机组提供,冬季采暖采用风机盘管+地板敷设采暖方式,热源为燃气锅炉+板换机组。中央空调系统主要设备参数见下表: 1、末端设备 序号设备名称型号规格 单 位 数 量 备注 1 吊顶式新风 机组(新风工况) TF3D型L=3000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台8 K1 2 卧式新风机 组(新风工况) TF4DW型L=4000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 1 K2 3 吊顶式新风 机组(新风工况) TF5D型L=5000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 3 K3 4 吊顶式新风 机组(新风工况) TF6D型L=6000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 2 K4 5 卧式新风机 组(新风工况) TF06W型L=6000m3/h Q冷= Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 2 K5 6 卧式风机盘 管 FP-34WAX型L=340m3/h Q冷= Q热= N=40W H=30Pa 出口噪音<40dB(A) 后回风箱 台 3 53 7 卧式风机盘 管 FP-51WAX型L=450m3/h Q冷= Q热= N=54W H=30Pa 出口噪音<42dB(A) 后回风箱 台 5 74 8 卧式风机盘 管 FP-68WAX型L=600m3/h Q冷= Q热= N=72W H=30Pa 出口噪音<44dB(A) 后回风箱 台 8 9 卧式风机盘 管 FP-85WAX型L=730m3/h Q冷= Q热= N=92W H=30Pa 出口噪音<46dB(A) 后回风箱 台 6 5 2、制冷机房(含锅炉房/水泵间)设备 序号设备名称型号规格 单 位 数 量 备注 1 双螺杆半封 闭冷水机组 30HXC400A;制冷量1392KW;输入功率279KW。台 2 开利 2 燃气锅炉 GE-615-1020型;额定热功率= MW;N=;G=;耗 气量130m3/h 台 2 泰州安信 3 燃气锅炉型;额定热功率= MW;N=;G=;耗气量h 台 1 广州迪森 4 热水循环泵KQW80/2型;流量=h;扬程=28m;N= 台 4 3用1备

清华同方地源热泵中央空调

清华同方地源热泵中央空调 清华同方|同方人工环境有限公司 清华同方中央空调河南办事处https://www.doczj.com/doc/c0342345.html,/

清华同方满液式地源热泵机组|清华同方地源热泵-SGHP机组 产品简介 一机多用,夏季空调制冷、冬季供热采暖,热回收型免费制取生活热水 ±针对地温工况特征,为地埋管地源热泵专用产品 ±充分利用建筑周边土壤热物性和地温能,应用温度宽,适用岩土范围广。 ±卓越的高能效地源热泵,有利于长期高效运行,为可再生能源利用重点推荐产品 核心优势: ◎专门针对地温工况设计研发了清华同方地源热泵机组,能较好地适应低温工况,尤其适用于土壤源热泵项目。 ◎土壤源热泵通过地埋管系统与土壤换热,夏季供冷,冬季供暖,是一种高效节能、环保无污染、性能可靠的真正的绿色环保冷暖空调系统。 ◎土壤不受外界环境影响,温度恒定,机组运行稳定,比传统空调系统COP值高40%~60%,节省运行费用30%~60% 适用环境: ◎适用于建筑物周边水资源相对匮乏、使用其他能源方式不方便、不经济的项目

◎适用于建筑周边土壤环境利于应用、土壤资源不受到破坏的项目◎适用于环保要求高且需尽量节省运行费用的项目 ◎特别适用于冬季寒冷且气候条件较恶劣的地区 安装简单 ◎机组现场安装时,您只需接上电源以及冷冻、冷却水管即可使用◎无须冷却塔,室外设备安装及维护的费用,为您全面免除 操作方便 ◎我们在机组控制设计上,实现完全电脑自动化 ◎操作非常简便每台机组您都可以自由地选择在供冷或供热模式下进行切换 ◎为您全年提供生活热水,实现能量的多元化供给 建筑节能 ◎夏季制冷运行时,我们为您提供cop值高达5.1的热泵系统 ◎冬季供暖运行时,无需任何辅助加热装置,即可为您带来温暖 ◎根据建筑物的实际负荷,我们的机组将自动调节输出能量 环境美好 ◎冬季,我们通过地源热泵向土壤吸收热量,然后在夏季将热量补偿释放回土壤中,实现能源的循环利

中央空调(运行成本)收费标准

中央空调(运行成本)收费标准 商业物业包括各类商业广场及SHOPPING MALL等,由于商业物业公共设施配套齐全,每年公共设施能源费的消耗大都在数百万元乃至数千万元不等。中央空调系统作为公共设施中的一个重要组成部分,运行期间水电费的消耗颇巨,控制其运行成本,并有效地处理实际管理中遇到的各类问题,是商业物业管理工作中的一项不可或缺的重要环节,特别是对多产权、多业态的商业物业而言,尤为突出。 笔者根据对江苏省首家SHOPPING MALL四年多的管理实践,对中央空调运行成本及相关管理工作在此做一初探。 一、中央空调运行费用 中央空调系统,由于管道多,覆盖面积大,运行成本亦较高。在对商业物业的中央空调系统运行成本进行估算时,应主要考虑以上因素: 1、用电成本(P1、K1、P2) 主机(P1、K1) 根据商业物业所配备的空调主机数量、用电功率、营运时间、使用周期、用电价格等,对一年中夏冬二季的运行成本进行计算,然后按一年12个月进行平均,得出每个月的平均电费P1。 在实际操作过程中,由于主机并非满负荷运行,故根据具体情况,在计算中要考虑其负荷系数K1,K1≈0.6~0.9。 辅机(P2) 此处主要指中央空调系统中的冷却塔、冷却泵、冷冻泵、空气处理机组、各类风机盘管等。可根据实际不同的类型、数量和功率,进行估算。需注意的是因季节的不同,在制冷和供暖时,辅机的数量和类型亦有所不同。 2、用水成本(P3) 中央空调管道内的循环用水,开放式冷却塔的日常消耗用水,应根据空调供应期间的实际耗水量及每天的日均正常用水量综合进行考虑。 3、用汽成本(P4) 对于以蒸汽为能源的溴化锂机组,除考虑空调系统的用电成本外,还要考虑用汽费用。根据每台主机每小时耗汽量、每天运行时间、蒸汽单价、每年空调运行的天数等,计算出每月的平均蒸汽费用。 4、管道损耗(K2) 冷暖气在中央空调管道输送过程中,因气流的紊流损耗,管壁损失等所产生的管道损耗,以管道损耗系数K2表示,K2≈1.02~1.05。 5、预温损耗(K3) 因管道内外温度差异,冷暖气在输送过程中,在管道内要经过一段时间的预热或预冷后,才能达到一定的出口温度,故冷暖气在传输过程中的能量损失,可用预温损耗系数K3表示,K3≈1.05~1.08。 夏季预温时间随管道长短不同而有所变化,通常在40分钟左右,冬季预温时间较夏季短。 6、变损线损(K4) 广场内电能的变压器损耗和线路损耗应由所有用户共同承担,变损线损约占供电量的1%~3%,作为中央空调系统,该项损耗可在其用电成本中,取变损系数K4≈1.01~1.03加以考虑。 7、电价差异(K5、K6) 在估算上述用电成本中,注意各地动力用电和照明用电的电价差异,动力用电比照明用电通常约低15%左右,故应根据各地实际电价对之进行计算。 另外,白天用电高峰时期与夜间低谷时期电价也不同,在计算中,应根据用电的不同时间段加以区分,在此白天和夜间的电价分别以K5、K6表示。

埋管式地源热泵系统介绍,成本,运行费用.

一、地源热泵系统简介 0 引言 “热泵”这一术语是借鉴“水泵”一词而来。在自然环境中,水往低处流动,热向低温位传递,水泵将水从低处“泵送”到高处利用。而热泵可将低温位热能“泵送”(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-02)》中,对“热泵”的解释是“能实现蒸发器和冷凝器功能转换的制冷机”。我们也可以称热泵为既可以制冷又可以供热的机组。热泵的分类多种多样,国际上通常根据热泵的热汇:即冷源和热源的不同,以及供暖和制冷输送介质的不同进行热泵分类。当按冷源和热源分类时,可分为空气源热泵、水源热泵、地源热泵三大类。由于输送冷、热量的介质主要为空气和水,当同时考虑冷、热源的输送介质时,就形成了:空气-水热泵、水-空气热泵(包括地下水热泵和地表水热泵)、水-水热泵、以及地下耦合热泵。 地源热泵(GSHP)是一个广义的术语,它包括了使用土壤、地下水和地表水作为热源和冷源的热泵系统。即:地下耦合热泵系统,也叫地下热交换器地源热泵系统、地下水热泵系统、地表水热泵系统。地源热泵还有一系列其他术语:如地热热泵、地能热泵、地源系统等。1997年之后由ASHAE统一为标准术语:地源热泵(ground-source heat pump,GSHP)。 00 空气源热泵 空气源热泵以室外空气作为热源。在供热工况下将室外空气作为低温热源,从室外空气中吸收热量,经热泵提高温度送入室内供暖。空气源热泵系统简单,初投资较低。空气源热泵的主要缺点是在夏季高温和冬季寒

冷天气时热泵的效率大大降低。而且,其制热量随室外空气温度降低而减少,这与建筑负荷需求正好相反。因此当室外空气温度低于热泵工作的平衡点温度时,需要用电或其它辅助热源对空气进行加热。此外,在供热工况下空气源热泵的蒸发器上会结霜,需要定期除霜,这也消耗大量的能量。在寒冷地区和高湿度地区热泵蒸发器的结霜成为较大的技术障碍。在夏季高温天气,由于其制冷量随室外空气温度升高而降低,同样可能导致系统不能正常工作。空气源热泵不适用于寒冷地区,应用受到很大局限。 01地下水源热泵 地下水源热泵系统的热源是从水井或废弃的矿井中抽取的地下水。经过换热的地下水可以排入地表水系统,但对于较大的应用项目通常要求通过回灌井把地下水回灌到原来的地下水层。最近几年地下水源热泵系统在我国得到了迅速发展。但是,应用这种地下水热泵系统也受到许多限制。首先,这种系统需要有丰富和稳定的地下水资源作为先决条件。因此在决定采用地下水源热泵系统之前,一定要作详细的水文地质调查,并先打斟测井,以获取地下温度、地下水深度、水质和出水量等数据。地下水热泵系统的经济性与地下水层的深度有很大的关系。如果地下水位较低,不仅成井的费用增加,运行中水泵的耗电将大大降低系统的效率。此外,虽然理论上抽取的地下水将回灌到地下水层,但目前国内地下水回灌技术还不成熟,在很多地质条件下回灌的速度大大低于抽水的速度,从地下抽出来的水经过换热器后很难再被全部回灌到含水层内,造成地下水资源的流失。此外,即使能够把抽取的地下水全部回灌,怎样保证地下水层不受污染也是一个棘手的课题。水资源是当前最紧缺、最宝贵的资源,任何对水

地源热泵分析及造价

地源热泵工程造价分析众所周知,地源热泵是一种利用浅层和深层的大地能量,包括土壤、地下水、地表水等天然能源作为冬季热源和夏季冷源,然后再由热泵机组向建筑物供冷供热的系统,是一种利用可再生能源的既可供暖又可制冷的新型中央空调系统。 抽取地下水的水源热泵,由于技术限制,全部回灌不易做到,监督实施也比较困难,而且容易造成地下水污染。 在国外目前大面积推广使用的是埋管式地源热泵技术,是充分利用浅层地热的最佳技术途径。在我国,建设部和一些省市的建筑节能政策中明确提出要推广使用埋管式地源热泵。 水源热泵系统的存在的困感: 1、回灌困难,许多水源热泵工程难以回灌,只能将大量地下水排向市政排水管道。一般 来说回灌井与抽水井回灌比超过3,都不适合水源热泵工程。 2、容易污染地下水资源

机组内工质一旦泄漏,将对地下水造成难以挽救化学污染;其次,不能严格做到同层回灌,造成不同地下层地下水的混合,使得优质地下水层的水质受到污染。 3、取水井长时间取水后,易出现水量不足。主要原因是取水井被细沙堵塞,运行期间每 隔一段时间就需要洗井,而且洗井费用较高,长期来看,系统运行费用较高。另外一个原因就是地下水位的下降,很多地区的地下水位每年都在下降。 4、抽水井、回水井之间互相影响。 很多项目根本不具备采用水源热泵,项目硬上,水井之间距离过近,造成抽水温度接近于回水温度,热源温度越来越差,机组能效比降低。 5、水源热泵工程中,潜水泵扬程都较大,一般都在80米以上,甚至更高,系统耗电量 大。而且潜水泵一旦损坏,维修困难。 地源热泵系统一般情况下的造价 不同土质地源井造价对比表(成井深度80m) 土质钻井单价钻井De32双U型管双U型头单井造价单位井深换热量换热量成本 单位 元/m元元元/个元W/m元/W 沙土30 24001408130393835 1.41 黄土45 36001408130513835 1.84 风化岩100 80001408130953840 2.98说明:一般,沙土地质地源井造价在20~30元/m之间,黄土地质造价在30~45元/m之间,风化岩地质造价在80~100元/m之间,混合地质类型约为85元/m。(各地地质情况、环境不同,仅供参考)。 以10000m2办公楼为例估算地埋管系统造价(仅供参考) 土质类型单井 造价 所需地下提热 量 所需井数 地埋管井 总价 水平管及附件安装合价平米造价 单位 元个个元元元元元/平米 沙土 39385251877364062350351055601077001108 黄土 51385251879608062350351055601301401130 风化岩 1153852518721576062350351055602498201250 说明:热负荷指标按70W/m2,冷负荷指标按100W/m2;地源井冬季单位井深提热量按35 W/m,夏季地源井单位井深散热量按70W/m计算。 土壤源热泵系统与基础设计 土壤源系统是一种利用地下浅层土壤资源的热能,既可供热又可制冷的高效节能系统。土壤源热泵通过输入少量的高品位能源(如电能),实现低温位热能向高温位转移。地能分别在冬季作为热泵供暖的热源和夏季空调的冷源,即在冬季,把地能中的热

地源热泵简介地源热泵概述

地源热泵简介地源热泵概述 地源热泵是一种利用浅层地热资源(也称地能,包括地下水、土壤或地表水等)的既可供热又可制冷的高效节能空调设备。 地源热泵通过输入少量的高品位能源(如电能),实现由低温位热能向高温位热能转移。地能分别在冬季作为热泵供热的热源和夏季制冷的冷源,即在冬季,把地能中的热量取出来,提高温度后,供给室内采暖;夏季,把室内的热量取出来,释放到地能中去。通常地源热泵消耗1kWh的能量,用户可以得到4kWh以上的热量或冷量。 地源热泵由来 "地源热泵"的概念,最早于1912 年由瑞士的专家提出,而该技术的提出始于英、美两国。北欧国家主要偏重于冬季采暖,而美国则注重冬夏联供。由于美国的气候条件与中国很相似,因此研究美国的地源热泵应用情况,对我国地源热泵的发展有着借鉴意义。编辑本段地源热泵的热源地源热泵目前,地源热泵已成功利用地下水、江河湖水、水库水、海水、城市中水、工业尾水、坑道水等各类水资源以及土壤源作为地源热泵的冷、热源。编辑本段地源热泵组成地源热泵供暖空调系统主要分三部分:室外地能换热系统、地源热泵机组和室内采暖空调末端系统。其中地源热泵机主要有两种形式:水—水式或水—空气式。三个系统之间靠水或空气换热介质进行热量的传递,地源热泵与地能之间换热介质为水,与建筑物采暖空调末端换热介质可以是水或空气。 主要特点

(1)地源热泵技术属可再生能源利用技术。由于地源热泵是利用了地球表面浅层地热资源(通常小于400米深)作为冷热源,进行能量转换的供暖空调系统。地表浅层地热资源可以称之为地能,是指地表土壤、地下水或河流、湖泊中吸收太阳能、地热能而蕴藏的低温位热能。地表浅层是一个巨大的太阳能集热器,收集了47%的太阳能量,比人类每年利用能量的500倍还多。它不受地域、资源等限制,真正是量大面广、无处不在。这种储存于地表浅层近乎无限的可再生能源,使得地能也成为清洁的可再生能源一种形式。 (2)地源热泵属经济有效的节能技术。其地源热泵的COP值达到了4以上,也就是说消耗1KWh的能量,用户可得到4KWh以上的热量或冷量。 (3)地源热泵环境效益显著。其装置的运行没有任何污染,可以建造在居民区内,没有燃烧,没有排烟,也没有废弃物,不需要堆放燃料废物的场地,且不用远距离输送热量。 (4)地源热泵一机多用,应用范围广。地源热泵系统可供暖、空调,还可供生活热水,一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统;可应用于宾馆、商场、办公楼、学校等建筑,更适合于别墅住宅的采暖、空调。然而实现地源热泵主机系统的这一机多用,则需要一整套系统解决方案,其有动力输配系统-----节能空调机房,室内末端输送设备采用地暖分集水器,水力平衡分配器,生活热水采用多功能水箱。由此可体现出地源热泵主机的一机多用也代表着暖通系统的整个运行体系。水力平衡分配器(5)地源热泵空调系统维护费用低。地源热泵的机械运动部件非常少,所有的部件不是埋在地下便是安装在室内,从而避免了室外的恶劣气候,机组紧凑、节省空间;自动控制程度高,可无人值守。

地源热泵设计方案及运行费用分析实例

地源热泵设计方案及运行费用分析实例 时间:2006-2-19 9:24:58 作者:天津大学机械工程学院热能工程系朱强汪健生 浏览次数:4666 摘要:本文对津晋高速公路津港收费站地源热泵系统的设计进行了分析与计算,并对系统的实际运行费用进行了分析。与以空气作为热源的一般空调器在相同的供热、供冷负荷下运行相比,地源热泵系统具有显著的节能效果。 关键词:热泵供热制冷 引言 地源热泵作为热泵技术应用的一个新的分支,由于其节能和优越的环保性能,近年来正在得到广泛的应用。地源热泵是利用土壤的良好蓄热及蓄冷特性进行的热力学逆循环的一种工程应用;在冬季供热时,热泵系统通过预埋在地下的管道将储存在地下的热通过传热介质吸收,作为逆循环中的低温热源,由热泵完成逆循环并向热用户提供热量;在夏季供冷时,利用地下环境温度较低的特点使制冷系统中的冷凝温度降低,从而提高系统的制冷系数,与冷凝器直接与空气环境进行热交换的普通空调器制冷相比,有一定的节能效果。由于地源热泵系统在运行工作过程中除驱动热泵的动力外,无需其他热源或动力,而驱动热泵的动力主要是电能。因此,如不考虑电能的来源,地源热泵系统是城市供热及供冷的一种清洁能源,它不需要建立一般城市供热所需的锅炉房,同样也不存在由于燃料燃烧(燃煤、燃油)而带来的城市环境污染问题,可以实现冷热联供。此外,在实际使用中,对于一些受客观条件限制而无法采用其他供热、供冷方式的场所,如高速公路收费站、人员设备相对较少的科考站、边防哨所,地源热泵则更体现出其特有的优越性;基于以上特点,本文对津港高速公路收费站地源热泵系统的设计及实际运行效果进行了系统分析。 一、地源热泵系统负荷计算 1.1 热泵系统负荷计算 津晋高速公路天津段自天津起至大港,全长35公里,建有三个收费站。津港收费站包括综合楼、综合楼附属用房及7个收费亭。其中综合楼建筑面积为744m2;综合楼附属餐厅为80m2;7个收费亭合计建筑面积47m2;津港收费站合计总建筑面积为871m2。 根据天津气候条件及收费站建筑物的土建围护结构,本设计采用了ASHRAE推荐提供的CLF冷负 荷系数法计算收费站建筑负荷;地源热泵系统在制冷工况时,蒸发器温度为7~12℃,冷凝器温度为30~35℃,室内温度25℃。其中收费站综合楼和附属用房的供冷负荷为120W/m2,收费亭供冷负荷 为220W/m2。据此,津港收费站供冷最大负荷合计为113 KW,津港收费站埋地换热器放热最大负荷 合计为146 KW。 热负荷计算,本设计采用了ASHRAE推荐提供的方法计算收费站建筑热负荷,地源热泵系统在制 热工况时,冷凝器温度为45~50℃,蒸发器温度为2~6℃,室内温度为18℃。其中收费站综合楼和附属用房的供热负荷为100w/m2,收费亭供负荷为120 W/m2。由此可以计算出津港收费站最大供 热负荷为92KW。 1.2 室内末端系统设计

全套进口地源热泵-GSHP-中央空调地暖及热水系统方案解析

?简介:地源热泵是地下土壤层为冷(热)源对建筑物进行供暖、供热水和空调供应的技术。 ?关键字:地源热泵,GSHP,中央空调,地暖,热水系统 一、地源热泵简介 1.1地源热泵技术简介 地源热泵是地下土壤层为冷(热)源对建筑物进行供暖、供热水和空调供应的技术。众所周知,地层之下一年四季均保持一个相对稳定的温度。在夏季,地下的温度要比地面空气温度低,在冬季却比地面空气温度高。地源热泵正是利用大地的这个特点,通过埋藏在地下的换热器,与土壤或岩石交换热量。地源热泵全年运行工况稳定,不需要其它辅助热源及冷却设备即可实现冬季供热、夏季供冷。所以,地源热泵是一项高效节能型、环保型并能实现可持续发展的新技术,它既不会污染地下水,又不会影响地面沉降。在冬天,管道内的液体将地下的热量抽出,然后通过系统导入建筑物内,同时蓄存冷量,以备夏用;在夏天,热量从建筑物内抽出,通过系统排入地下,同时蓄存热量,以备冬用。地源热泵一年四季均能可靠的提供高品质的冷暖空气,为我们营造一个非常舒适的室内环境。 随着社会的发展,能源危机、环境问题已经越来越为人们所关注,而地源热泵系统恰恰能够同时解决这两项问题,所以今年来地源热泵空调系统被广泛重视和使用。

着人们生活水平的提高,人均能耗的增长,一次性矿物能源的日益衰竭以及环境的日趋恶化, 地源热泵技术已越来越引起人们的重 视。据统计,仅在北京2004年施工并投入运行的地源热泵系统的空调工程占全年空调工程总量的2/3以上。可以预见,随着经济的发展,人们节能、环保意识的日益提高,地源热泵作为一种节能、环保的绿色空调设备适应能源可持续发展战略要求,在中国必将有广阔的应用 和发展前景。 1.3地源热泵工作原理 地源热泵系统工作原理如图所示,夏季制冷时,大地作为排热场所,把室内热量以及压缩机耗能加热生活热水,多余的热能通过埋地盘管排入大地中,再通过土壤的导热和土壤中水分的迁移把热量扩散出去。冬季供热时,大地作为热泵机组的低温热源,通过埋地盘管获取土壤中热量为室内供热及供应热水。两个换热器都即可作冷凝器又可作蒸发器,只因季节不同而功能不同。在地源热泵系统中,由于冬季从大地中取出的热量可在夏季得到补偿,因而可使大地 的热量基本维持平衡。 1.4政府对地源热泵系统的政策 地源热泵作为一项节能、环保的技术,国家给予了大力的支持。目前,政府出台了一份文件,对北京地区使用地源热泵机组的用户,给予50元/M2的补助,另外在去年9月沈阳市也被国家建设部正式确定为全国地源热泵技术推广试点城市。除此以外,国内还有许多城市也有 相关的鼓励、优惠政策。 二、选择NOBO地源热泵的原因 (一)NOBO地源热泵机组与其他机组比较的优势

【2019年整理】地源热泵与传统空调运行费用比较

江西某电子厂空调运行比较分析1. 冷、热源及空调方式选择比较 系统形式 地源热泵 (空调方式一) 水冷冷水中央空调机 组+燃油锅炉(空调方 式二) 水冷冷水中央空调机组 +空气源热泵(空调方 式三) 风冷冷热水中央空调 机组 (空调方式四) 系统特点设置热泵主机,室 外埋管系统,可辅 助冷却塔等设备, 未端组合柜机组、 风机盘 管、热水取暖 设制冷主机,燃油锅 炉,冷却塔,未端组 合柜机组、风机盘管、 燃油锅炉制热水取暖 设风冷制冷主机,空气 源热泵主机,未端组合 柜机组、风机盘管、空 气源热泵制热水取暖 设风冷热泵机组,夏 季空调,冬季取暖。 (全空气系统?) 造价比较高(造价100%较低(造价约75%中(造价约85%高(造价100%运行费用较低高中较局 优点一套系统满足冬、 夏季使用,运行费 用最低、环保 可靠性低,维护较难 可靠性高,运行费用 低、维护较容易 运行费用最高, 造价中、维护最容易 缺点需有打井位置需设置锅炉房、储存 油罐、制冷机房,冷 却塔 需设痢U冷机房,冷却 塔 不够节能

适用场合使用时间长,系统 较大时米用 使用时间长,系统较 大时采用 使用时间长,系统较大 时采用 系统较小时米用 2. 运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KV计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW( 1200KW/。 选用地源热泵机组LTLHM-370制冷量1300KW功率245.4KVV 制热量1400KW 功率324.6KW 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 -夏季各设备的配电功率 - a. 地源热泵机组:夏季245.4kW/台*2台。 -b.空调侧循环泵:37kW冶。 c.地埋管侧循环泵:30kW冶

中央空调系统运行费用概算

中央空调系统运行费用概算 一、???? 亘元大厦中央空调工程方案简介 亘元大厦为综合办公楼,框架结构,地下一层,地上十四层,建筑面积为36887㎡,总高度为H=,属于一类高层建筑。该工程空调系统为风机盘管加新风的形式,冷源由两台螺杆式水冷机组提供,冬季采暖采用风机盘管+地板敷设采暖方式,热源为燃气锅炉+板换机组。中央空调系统主要设备参数见下表: 1、末端设备 序号设备名称型号规格 单 位 数 量 备注 1 吊顶式新风 机组(新风工况)TF3D型L=3000m3/h Q冷=? Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台8 K1 2 卧式新风机 组???? (新风工况) TF4DW型L=4000m3/h Q冷=? Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 1 K2 3 吊顶式新风 机组(新风工况)TF5D型L=5000m3/h Q冷=? Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 3 K3 4 吊顶式新风 机组(新风工况)TF6D型L=6000m3/h Q冷=? Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 2 K4 5 卧式新风机 组?????? (新风工况)TF06W型L=6000m3/h Q冷=? Q热= N= H=450Pa n=6排管出口噪音<58dB(A) 台 2 K5 6 卧式风机盘 管 FP-34WAX型L=340m3/h Q冷=? Q热= N=40W H=30Pa 出口噪音<40dB(A) 后回风箱 台 3 53 7 卧式风机盘 管 FP-51WAX型L=450m3/h Q冷=? Q热= N=54W H=30Pa 出口噪音<42dB(A) 后回风箱 台 5 74 8 卧式风机盘 管 FP-68WAX型L=600m3/h Q冷=? Q热= N=72W H=30Pa 出口噪音<44dB(A) 后回风箱 台 8 9 卧式风机盘 管 FP-85WAX型L=730m3/h Q冷=? Q热= N=92W H=30Pa 出口噪音<46dB(A) 后回风箱 台 6 5 2、制冷机房(含锅炉房/水泵间)设备 序号设备名称型号规格 单 位 数 量 备注 1 双螺杆半封 闭冷水机组 30HXC400A;制冷量1392KW;输入功率279KW。台 2 开利 2 燃气锅炉 GE-615-1020型;额定热功率= MW;N=;G=;耗 气量130m3/h 台 2 泰州安信

地源热泵中央空调工程设计程序

-- 天津技术有限公司 地源热泵中央空调系统工程设计程序编制:审核:批准: --

目录 (一)地源热泵空调工程设计前的准备一熟悉国家标准和有关规范错误!未指定书签。 (二)地源热泵空调系统工程设计前的准备一熟悉工程情况和土建资料错误!未指定书签。 (三)方案设计程序方案设计阶段 ........................................... 错误!未指定书签。(四)方案设计程序初步设计阶段 ........................................... 错误!未指定书签。(五)方案设计程序施工图设计阶段 ....................................... 错误!未指定书签。(六)地源热泵空调工程设计的内容与步骤大致是: ........... 错误!未指定书签。(一)地源热泵空调工程设计前的准备一熟悉国家标准和有关规范 、《采暖通风与空气调节设计规范》() 、《公共建筑节能设计标准》() 、《建筑给水排水设计规范》() 、《岩土工程勘察规范》() 、《供水管井技术规范》() 、《供水水文地质钻探与凿井操作规程》() 、《室外给水设计规范》() 、《地面辐射供暖技术规范》(-) 、《地源热泵系统工程技术规范》() 、《水源热泵机组》(/) 、《暖通空调制图标准》 () 、《通风与空调工程施工质量验收规范》 () 、《建筑安装工程施工质量验收统一标准》(—) 、《建筑给排水及采暖工程施工质量验收规范》() 、《制冷设备、空气分离设备安装工程施工及验收规范》() 、《民用建筑电气设计规范》() 、《高层民用建筑设计防火规范》 ()

最新地源热泵与传统空调运行费用比较

地源热泵与传统空调运行费用比较2011

江西某电子厂空调运行比较分析1.冷、热源及空调方式选择比较

2.运行费用分析比较: 制冷机选用二大一小三台机组,300冷吨两台,150冷吨一台,(共2637KW计算),以适应不同负荷时制冷机能处于高效状态下运行。采暖总热量约1.2MW(1200KW)。 选用地源热泵机组LTLHM-370,制冷量1300KW,功率245.4K W;制热量1400KW,功率324.6KW。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 地埋管循环泵功率(估算):30KW(一用一备) 冬季使用一台机组。 A、地源热泵系统,冬夏两用 ·夏季各设备的配电功率 · a.地源热泵机组:夏季245.4kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.埋管侧电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、夏季制冷90天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 夏季运行费用: 90×8×0.8×(0.2×2+4+30+245.4×2+37)×65%×0.8=16.8万元。 ·冬季各设备的配电功率

· a.地源热泵机组:夏季324.6kW/台*2台。 · b.空调侧循环泵:37kW/台。 · c.地埋管侧循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.井水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。 ·地埋管热泵工程运行费用如下: · 1、电价按0.80元/KWH。 · 2、冬季制热120天,每天间歇运行8小时。 · 3、空调同时使用率取0.8。 · 4、机组运行率取65%。 冬季运行费用: 120×8×0.8×(0.2×2+4+30+324.6+37)×65%×0.8=15.8万元。 B、水冷冷水机组和燃油锅炉 选用水冷冷水机组LTLS-280两台,制冷量1021KW,功率243K W。另选用水冷冷水机组LTLS-160一台,制冷量550KW,功率130K W。 循环泵功率(估算):37KW(一用一备) 补水泵功率(估算):4KW(一用一备) 冷却塔循环泵功率(估算):30KW(一用一备) ·夏季各设备的配电功率 · a.水冷冷水机组:夏季243kW/台*2台,130kW/台*1台 · b.空调侧循环泵:37kW/台。 · c.冷却塔循环泵:30kW/台。 · d.空调水电子水处理仪:0.2 kW/台。 · e.冷却水电子除垢仪:0.2 kW/台。 · f.补水泵:4kW/台。

地源热泵保养及方案介绍

金豪新能源科技(大连)有限公司 维 保 方 案 书 2015年10月

目录 (一)金豪地源热泵产品定期维修保养通知函 (3) (二)中央空调维护保养的基本概念 (4) (三)金豪中央空调维保推进的背景 (6) (四)地源热泵机组保养内容 (7) (五)主要部件的保养方法及要领 (10) (六)远程监控收费标准 (11) (七) 金豪地源热泵空调运行管理协议 (12) (八)结束语 (15)

(一)金豪地源热泵机组定期维修保养通知函 尊敬的用户: 您好,感谢您一直以来对金豪地源热泵产品的支持与厚爱! 为使您的空调机组在使用的过程中保持稳定,降低故障率,延长机 器使用寿命,降低运行成本,我公司特别推出设备有偿维保服务。针对 贵方购买金豪产品机组的使用情况及管理需求,制定有偿服务方案,涉 及全年的保养费、材料费等;签约后,我单位在用户需求的情况下,24 小时内给予响应。详细内容请关注后续内容。 如果您对我们的有偿维保内容不满意或有不明之处,需要进一步沟通,请您与我们联系。 联系人: 联系电话: 传真: 金豪企业运行中心顾客服务部 2015年10月10日

(二) 中央空调维护保养的基本概念 1、维护保养的必要性 中央空调系统运行管理是现代企业设施管理的一个主要组成部分,中央空调系统担负着创造和维持舒适的或满足某些特定要求的室内空气环境重任,如果其运行不好,不仅会造成空调效果不好还会出现耗能大,设备故障多等问题。 在我国,民用建筑的中央空调系统主要有冷热源、空气处理装置、管道系统、末端装置和控制系统组成,一般用于有大面积空调要求的场所,如写字楼、星级酒店、影剧院、会展中心大型商场、大型餐饮和娱乐场所等。这些地方采用空调的主要目的是为了满足人们对室内空气环境的舒适要求。因此,舒适性中央空调系统的主要服务对象是人,我们维保工作的首要任务是以人为本,确保室内空气环境的要求。 其次,我国的中央空调主要以电力驱动为主,而且运行时间长,耗电量大。统计资料表明:中央空调的用电量一般占整个建筑业用电量的1/4~1/3,因此在满足使用要求的前提下,降低中央空调的运行费用也是企业物业管理的一个主要任务,他既涉及到经济效益问题,又包含专业技术问题。 第三,中央空调系统往往一次性投资大,包含设备品种多,管线长自动化程度高,其运行、维护、保养、检修都要综合运用热工、流体、空调、制冷、机械、电工电子、自动化控制等多方面的知识和技能。因此,要求运行管理人员和维修保养人员必须具有一定的专业知识和专业技能,这样才能管好他,用好他。否则,会使设备的使用效率降低、故障频繁、寿命缩短,不仅影响正常使用,还会增加企业非正常资金投入,从而加大运行管理成本。 综上所述,中央空调系统的运行维护保养有十分丰富的科学内涵。由于对此认识不足,往往致使管理工作存在很多疏漏和认识的误区。例如把自动化程度高当成容易管理,不用维护保养;把满足人的舒适性要求当成是天热有冷气,天冷有暖气就达到了要求;把系统能开动当成工作正常等等。由于领导不重视,人员不专业,运行不调节,使用不维护等现象普遍存在,从而造成中央空调存在以下问题: ①空调效果不理想。即:冷热效果有明显下降; ②运行费用高; ③故障频繁,常出现跑、冒、滴、漏等现象; ④设备使用寿命短; ⑤系统运行不正常,设备达不到最佳运行效果。

相关主题
文本预览
相关文档 最新文档