当前位置:文档之家› 雷达原理习题与解答

雷达原理习题与解答

雷达原理习题与解答
雷达原理习题与解答

雷达生命探测仪

生命探测仪 之雷达生命探测仪原理及其应用 生命探测仪是借着感应人体所发出超低频电波产生之电场(由心脏产生)来 找到"活人"的位置。配备特殊电波过滤器可将其它动物,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测仪只会感应到人类所发出的频率产生之电场。仪器配备两种不同侦测杆,长距离侦测杆侦测距离可达500公尺,短距离20公尺。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器在碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 一、生命探测仪的种类: 目前所知的生命探测仪按原理结构可分为:雷达波探测器、视频探测器、音频探测器等。 1.音频探测器: ①.声波音频探测器 原理:通过获取在空气中传播的微弱声波并放大信号来探测目标。 ②.震动波音频探测器 原理:通过震动探头拾取并放大地面传来的震动波来探测目标 两者的共同特点就是:价格较低,比较简单易用。 局限性:现场需要有一定的孔洞和裂隙才能伸入探测设备;或只适用于浅表层、大空间的探测;在下雨或有消防用水的情况下会受到一定的环境干扰。 2.视频探测器 原理:利用可见光或非可见光,通过CCD传感器摄像转送到显示屏成像。 有视频形象化,直观简单、易用、价廉 一般在使用中需要线缆传输音频信号,或缝隙孔洞。 3.雷达波生命探测仪 原理:由雷达天线定向集中地发射电磁波,该电磁波能穿透混凝土墙壁、碎石瓦砾等,与人体接触后反射并产生变化。由于这种变化受人的身体活动、呼吸甚至心跳活动的影响,反射后变化了的电磁波被接收器接收,经过过滤背景干扰,某些特有的波谱经计算机软件分析处理,在显示屏显示。 特点:具有易携带、移动快、无需与物体接触的特点,无需由孔洞、裂隙等进入,可在被各种物质隔离覆盖的情况下探测到被困者。 二、雷达生命探测仪具体原理: 无线探测发射器首先发射雷达波,雷达波可穿透普通的建筑墙体和碎石等材料,到达最远6米的被测目标。目标物的移动或呼吸心跳等使雷达波产生一定的改变,并把变化后的雷达波通过天线发送回掌上电脑上。经过电脑内专业软件的数据处理,得出相应的波形图及信号显示,从而判断被测范围内是否有幸存人员。 在操作该探测雷达时,要确保掌上电脑与无线探测发射器之间的距离在 1.5-15米范围内,并保证在距探测器天线6.1米的范围内没有其他可疑的移动。该设备通常能够在3分钟之内在有效空间范围内完成搜寻,并进一步定位被困人员。

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

生命探测仪

四川汶川地震救灾中使用的声波生命探测仪是利用声波传递____生命信息__的一种救援方式声波生命探测仪寻找生命靠的是识别被困者发出的声音。人类有两只耳朵,这种仪器却有3至6个耳朵。它的耳朵叫做“拾振器”, 也叫振动传感器。它能根据各个耳朵听到声音先后的微小差异来判断幸存者的具体位置。如果幸存者已经不能说话,只要用手指轻 轻敲击,发出微小的声响,也能够被它听到。即便被埋压人困在一块相当严实的大面积水泥楼板下,只要心脏还有微弱的颤动, 探测仪也能感觉出来,于是救援队员可以确定废墟下是否有人活着。 生命探测仪的种类 根据不同的原理分为光学生命探测仪、热红外生命探测仪和声波生命探测仪。 生命探测仪是借着感应人体所发出超低频电波产生之电场(由心脏产生)来找到"活人"的位置。配备特殊电波过滤器可将其它动物 ,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测仪只会感应到人类所发出的频率产生之电场。仪器配备 两种不同侦测杆,长距离侦测杆侦测距离可达500公尺,短距离20公尺。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器在 碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 本仪器目标锁定功能在侦测到人体发出超低频产生之电场后,侦测杆会自动锁定此电场,人体移动时,侦测杆也会跟着移动。 另配备镭射光点,提供操作者寻找侦测杆方向。 生命探测仪是借着感应人体所发出超低频电波产生之电场(由心脏产生)来找到“活人”的位置。配备特殊电波过滤器可将其它动 物,诸如狗、猫、牛、马、猪等不同于人类的频率加以过滤去除,使生命探测仪只会感应到人类所发出的频率产生之电场。仪器配 备两种不同侦测杆,长距离侦测杆侦测距离可达500公尺,短距离20公尺。人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器 在碰到上述障碍物时,侦测距离会减少,但只要操作者向前靠近侦测地点,仍可精准地找到欲搜寻的人体目标。 目前所知的生命探测仪按原理结构可分为:雷达波探测器、视频探测器、音频探测器等,分别对比如下: 一、音频探测器: 1.声波音频探测器 原理:通过获取在空气中传播的微弱声波并放大信号来探测目标 2.震动波音频探测器

多普勒天气雷达练习题

练习题2 1.业务运行的多普勒天气雷达通常采用体积扫描的方式观测。我国业务运行多普勒雷达通常采用的体描模式(VCP11、VCP21、VCP31)2.多普勒天气雷达与常规天气雷达的主要区别在于:前者可以测量目标物(沿雷达径向速度),从而大大加强了天气雷达对各种天气系统特别是(强对流天气系统)的识别和预警能力。 3.新一代雷达系统对灾害天气有强的监测和预警能力。对台风、暴雨等大范围降水天气的监测距离应不小于(400km)。 4.新一代雷达系统对灾害天气有强的监测和预警能力。对雹云、中气旋等小尺度强对流现象的有效监测和识别距离应大于(150km)。 5.新一代雷达观测的实时的图像中,提供了丰富的有关(强对流天气)信息。 6.新一代雷达速度埸中,辐合(或辐散)在径向风场图像中表现为一个最大和最小的径向速度对,两个极值中心连线和雷达射线(一致)。7.新一代雷达速度埸中,气流中的小尺度气旋(或反气旋),在径向风场图像中表现为一个最大和最小的径向速度对,但中心连线走向则与雷达射线相(垂直)。 8.新一代天气雷达观测采用的是北京时。计时方法采用24小时制,计时精度为秒。 9.速度场(零等值线)的走向不仅表示风向随高度的变化,同时表示雷达有效探测范围内的(冷、暖平流)。 10.在距离雷达一定距离的一个小区域内,通过对该区域内沿雷达径向速度特征的分析,可以确定该区域内的气流(辐合)、(辐散)和(旋转)等特征。 11.天气雷达是用来探测大气中降水区的(位置)、大小、强度及变化

12.气象目标对雷达电磁波的(散射)是雷达探测的基础。 13.气象上云滴、雨滴和冰雹等粒子一般可近似地看作是圆球。当雷达波长确定后,球形粒子的散射情况在很大程度上依赖于粒子直径D 和入射波长λ之比。对于(D远小于λ)情况下的球形粒子散射称为瑞利散射;而(D与λ尺度相当)情况下的球形粒子散射称为(Mie)米散射。 14.多普勒天气雷达使用低脉冲重复频率PRF测(反射率因子),用高脉冲重复频率PRF测(速度)。 15.每秒产生的触发脉冲的数目,称为(脉冲重复频率),用PRF 表示。两个相邻脉冲之间的间隔时间,称为(脉冲重复周期),用PRT表示,它等于脉冲重复频率的(倒)数。 16.降水粒子产生的回波功率与降水粒子集合的反射率因子成(正比)。与取样体积到雷达的距离的平方成(反比)。 17.S波段天气雷达是(10)cm波长的雷达。 18.在天线方向上两个半功率点方向的夹角称为(c波束宽度)。19.在强回波离雷达(较近)时,有可能产生旁瓣造成虚假回波. 20.降水粒子的后向散射截面是随粒子尺度增大而(增大)。 21.0 dBZ、-10dBZ、30dBZ和40dBZ对应的Z值分别为(1)、(0.1)、(1000)、(10000) (mm6/m3)。 22.SA雷达基数据中反射率因子的分辨率为(1km×1°)。 23.写出Z-I关系的表达公式 (b Z ) AI 24.Ze的物理意义是(所有粒子直径的6次方之和)。 25.雷达反射率η是单位体积中,所有降水粒子的(雷达截面之和)。 26.雷达气象方程说明回波功率与距离的(二)次方成反比。

雷达工作原理

一、雷达工作原理、专业术语解释 雷达是军事电子对抗的尖端技术和设备,是作为21世纪反恐和安保的技术新标准(家庭安全警戒网) 幕帘技术同红外技术相似,只是它的防范区域与普通红外不同,顾名思义就是象一道帘子一样,适合于整个平面防范。 A)幕帘夹角 幕帘的两道之间的夹角。 B)幕帘张角 每道幕帘展开扇形的两条边之间的夹角。 C)探测范围

探测范围指雷达正常工作的感应范围,即雷达能够探测到在此范围以内的所有物体运 动从而产生报警状态。 D)探测距离 雷达在正常工作下所能探测到的最远距离,雷达分为四档;分别是2-3m、3-4m、5-6m、6-8m。 E)发射距离 报警系统中无线器件在被触发后将无线报警信号以电磁波的形式发射出去的最远距离,雷达在空旷地带为100M。 F)发射频率 电磁波发射的频率用HZ计算,国家电磁波管理委员会规定的公用波段频率是315/433MHZ G)关于护窗雷达的防宠物功能 护窗雷达发展到今天,在技术上已经比较成熟,防小宠物是护窗雷达的一种重要的功能,慑力护窗雷达对抗小宠物干扰的处理方式有两种: 一种是物理方式,即通过菲涅尔透镜的分割方式的改变来降低由于小宠物引起误报的概率,这种方式是表面的,效果也是有限的。第二种方式是采用对探测信号处理分析方式,主要是对探测的信号进行数据采集,然后分析其中的信号周期,幅度,极性。这些因素具体反应出移动物体的速度、热释红外能量的大小,以及单位时间内的位移。探测器中的微处理器将采集的数据进行分析比较,由此判断移动物体可能是人是小动物。 由此看来,我们要注意的是护窗雷达的防小宠物的功能是相对的。这种相对性包括两个方面,一个是防宠物是相对的,相对于没有防宠物功能的探测器其误报率是大大降低了,它对小宠物的数量和大小有一定限度的。第二方面是安装位置是要有一定要求的,并不是随意的安装就可以达到防小宠物功能。 效果 一旦整幢别墅设防,将形成无形的雷达警戒网,有效的将整幢别墅警戒起来,如果贼匪将在深夜靠近别墅时,男警立刻通通碟,紧接着高达95分贝的防恐警和国际反恐广播立刻炸响,十二束红眩捕俘灯和墙壁上太阳灯交替发射,同时雷达第一时间了射无线电信号给装在室内的主机,主机会告诉你哪个位置在报警,并第一时间拨打您

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

雷达生命探测仪 型号

雷达生命探测 雷达生命探测仪型号:FGMOD27003+ FGMOD雷达生命探测仪是美国超视安全系统公司于2005年新近推出的一种安全救生系统。著名地球物理学家,麻省理工学院博士大卫席思(David Cist)创造性地将雷达超宽频技术(UWB)应用于安全救生领域,从而为该领域带来一项革命性的新技术。基于这种新技术的安全救生系统----FGMOD雷达生命探测仪,成功地解决了多项困扰传统安全救生系统的问题,使搜救工作比以往更迅速,更精确,也更安全,是现在世界上最先进的生命探测系统。该系统的天线是美国航空航天局(NASA)指定的火星探测器两种候选雷达天线之一,是世界上最先进的探地雷达天线,能够非常敏锐地捕捉到非常微弱的运动。该产品已获得美国专利。超视安全系统公司近日内在中美日三国同步推出这个系统。 二、FGMOD雷达生命探测仪的组成 超视安全系统公司的FGMOD雷达生命探测仪移动探测系统是一个由以下主要部件组成的传感器: 一个发送超宽频信号的发送器 一个侦测接收返回信号的接收器 一台用于读入接收器的信号并进行算法处理的电脑 传感器包含了可编程的固件。传感器产生的信号通过无线传输传送给掌上电脑(PDA控制器)进行显示。传感器和控制器有各自相互独立的电源。

无线探测发射器发射器 掌上操作接收显示器 三、技术数据 无线探测发射器 尺寸:44×44×24 cm 重量:9.5 kg(包括电池) 电池:10.8V锂电池,可连续工作长达4h 废墟瓦砾中探测距离:4.6米内的呼吸活动以及6米内的移动 废墟瓦砾中探测范围:36 m2 探测角度:120°角 符合美国联邦通信委员会(FCC)认证 工作频率:270 MHz 脉冲频率范围:100-700 MHz 掌上操作显示器 PDA掌上电脑,方便携带 专业探测软件集成了上千种人体呼吸心跳模式,使探测结果更精确 当探测到幸存者时,能显示其与探测器间的距离 可对现场探测过程做数据记录 可兼容GPS全球卫星定位系统 USB接口可与电脑连接传递数据 操作系统:MS Windows Mobile 2003 for Pocket PC 四、FGMOD雷达生命探测仪的工作原理 FGMOD雷达生命探测仪实际上是一个呼吸和运动探测器。雷达信号发送器连续发射电磁信号,对一定空间进行扫描.,接收器不断接收反射信号并对返回信号进行算法处理。如果被探测者保持静止,返回信号是相同的。如果目标在动,则信号有差异。通过对不同时间段接受的信号进行比较等算法处理,就可以判断目标是否在动。 FGMOD雷达生命探测仪是通过测试被探测者的呼吸运动或者移动来工作的。由于呼吸的频率较低,一般每秒1到2次,就可以把呼吸运动和其他较高频率的运动区分开来。测移动的原理也大致是这样。超视安全系统公司的天线是美国航空航天局(NASA)指定的两种火星探测器地质雷达天线之一,能够非常敏锐地捕捉到非常微弱的运动,加上功能强大的算法处理,是安全救生部门最好的帮手。 五、FGMOD雷达生命探测仪有别于传统安全救生系统技术优势 超视安全系统公司的FGMOD雷达生命探测仪旨在解决当前市场上现存救生系统的根本缺点。当前的救生系统除了无法穿透障碍物侦测移动外,大部分的系统,例如摄像系统,侦测的范围非常有限并且只有在移动的遇险者进入摄像机镜头或传感器的视野后才能报警。基于音频的侦测系统大大受限于距离,障碍物,残垣以及遇险者是否还强壮和清醒到能够发出声音。 超视安全系统公司的FGMOD雷达生命探测仪可以在30秒内侦测出一定范围内遇险者的移动和呼吸,可以穿透障碍物(例如钢筋混凝土砖墙,柏油层,泥石流和雪崩造成的积雪)进行侦测,不受声音和背景噪音的影响。超视安全系统公司的传感器可以发出包含目标指定信息

多普勒天气雷达原理与业务应用思考题

1 多普勒天气雷达主要由几个部分构成?每个部分的主要功能是什么? 答:主要由雷达数据采集子系统(RDA ),雷达产品生成子系统(RPG ),主用户终端子系 统(PUP )三部分构成。RDA 的主要功能是:产生和发射射频脉冲,接收目标物对这些脉冲的散射能量,并通过数字化形成基本数据。 RPG 的主要功能是:由宽带通讯线路从RDA 接收数字化的基本数据,对其进行处理和生成各种产品,并将产品通过窄带通讯线路传给用户,是控制整个雷达系统的指令中心。 PUP 的主要功能是:获取、存储和显示产品,预报员主要通过这一界面获取所需要的雷达产品,并将它们以适当的形式显示在监视器上。2 多普勒天气雷达的应用领域主要有哪些? 答:一、对龙卷、冰雹、雷雨大风、暴洪等多种强对流天气进行监测和预警;二、利用单部或多部雷达实现对某个区域或者全国的降水监测;三、进行较大范围的降水定量估测; 四、获取降水和降水云体的风场信息,得到垂直风廓线;五、改善高分辨率数值预报模式的初值场。 3 我国新一代天气雷达主要采用的体扫模式有哪些? 答:主要有以下三个体扫模式: VCP11——规定5分钟内对14个具体仰角的扫描,主要对强对流天气进行监测; VCP21——规定6分钟内对9个具体仰角的扫描,主要对降水天气进行监测;VCP31——规定10分钟内对5个具体仰角的扫描(使用长脉冲),主要对无降水的天气进行监测。 4 天气雷达有哪些固有的局限性? 答:一、波束中心的高度随距离的增加而增加;二、波束宽度随距离的增加而展宽;三、静锥区的存在。 5 给出雷达气象方程的表达式,并解释其中各项的意义。 答: P t 为雷达发射功率(峰值功率);G 为天线增益;h 为脉冲长度; 、:天线在水平方向和垂直方向的波束宽度; r 为降水目标到雷达的距离; :波长;m :复折射指数; Z 雷达反射率因子。 6 给出反射率因子在瑞利散射条件下的理论表达式,并说明其意义。 答: 单位体积6i D z ,反射率因子指在单位体积内所有粒子的直径的六次方的总和,与波长无关。 7 给出后向散射截面的定义式及其物理意义。 答:定义:设有一个理想的散射体,其截面面积为?,它能全部接收射到其上的电磁波能量,并全部均匀的向四周散射,若该理想散射体返回雷达 天线处的电磁波能流密度,恰好等于同距离上实际散射体返回雷达天线的电磁波能流密度,则该理想散射体的截面面积 ?就称为实际散射体的后向散射截面。物理意义:定量表示粒子后向散射能力的强弱,后向散射截面越大,粒子的后向散射 能力越强,在同等条件下,它所产生的回波信号也越强。 8 什么是天气雷达工作频率?什么是天气雷达脉冲重复频率? 答:工作频率——天气雷达发射的探测脉冲的震荡频率 脉冲重复频率——每秒产生的触发脉冲的数目 9 什么是波束的有效照射深度和有效照射体积? 答:有效照射深度——雷达发出的探测脉冲具有一定的持续时间τ,在空间的电磁波列就有Z R C Z m m r h G p p t r 2222 2223212ln 1024i S s R S 24

最新1多普勒天气雷达原理与应用

1多普勒天气雷达原 理与应用

第六部分 多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章 我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA )、雷达产品生成子系统(RPG )、主用户处理器(PUP )。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性 (密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 2 /3730/776.0T e T P N +=波束直线传播 波束向上弯曲波束向下弯曲000=>

雷达波长,K 表示与复折射指数有关的系数,C 为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c 为光速,PRF 为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax )以外时,会发生距离折叠。换句话说,当目标物位于Rmax 之外时,雷达却把目标物显示在Rmax 以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z 值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): ?=dD D D N Z 6)( 3 60/1m mm Z = 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z 值与雨强I 有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在 一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模糊的处理等,均增大了雷达资料的误差。虽然如此,由于径向速度是从多个脉冲对得到的径向速度的平均值,为平均径向速度,雷达反射率因子通过对沿径向上的四个取样体积平均得到的,其径向分辨率相当于四个取样体积的长度,这也使雷达探测的资料具有一定的代表性。 第二章 天气雷达图像识别 一、掌握多普勒效应 多普勒效应为,当接收者或接受器与能量源处于相对运动状态时,能量到达接受者或接收器时频率的变化。多普勒频率,是由于降水粒子等目标的径向运动引起的雷

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

生命探测仪原理简介

生命探测仪原理简介 我们大家都不会忘记2008年5月12日14时28分在四川汶川发生的8.0 级大地震,这次地震给人民生命财产造成了极大的损失,数万同胞永远离我们而去!地震发生后,各级党委政府广大干部群众迅速投入到救援行动中,中央第一时间成立了国务院抗震救灾总指挥部,举全国之力抗震救灾。在救援行动中,专业救援人员用到了一种叫做“生命探测仪”的设备,它帮助救援人员更准确快速的找到被困人员实施求助。 生命探测仪是基于穿墙生命探测(Though-the-Wall Surveillance,简称T WS)技术的发展应运而生的。TWS是研究障碍物后有无生命现象的一种探测技术,可采用无源探测和有源探测两种方法。无源探测主要是根据人体辐射能量与背景能量的差异,或者人体发出的声波或震动波等进行被动式探测,如红外生命探测仪、音频生命探测仪;有源探测则主动发射电磁波,根据人的呼吸、心跳等生理特点,从反射回来的电磁波中探测是否存在生命,如雷达生命探测仪。 红外生命探测仪 任何物体只要温度在绝对零度以上都会产生红外辐射,人体也是天然的红外辐射源。但人体的红外辐射特性与周围环境的红外辐射特性不同,红外生命探测仪就是利用它们之间的差别,以成像的方式把要搜索的目标与背景分开。人体的红外辐射能量较集中的中心波长为9.4μm,人体皮肤的红外辐射范围为3~50μm,其中8~14μm占全部人体辐射能量的46%,这个波长是设计人体红外探测仪的重要的技术参数[3]。 红外生命探测仪能经受救援现场的恶劣条件,可在震后的浓烟、大火和黑暗的环境中搜寻生命。红外生命探测仪探测出遇难者身体的热量,光学系统将接收到的人体热辐射能量聚焦在红外传感器上后转变成电信号,处理后经监视器显示红外热像图,从而帮助救援人员确定遇难者的位置。 红外探测设备最早应用于军事,并随着科学技术的发展而不断改进。1988年瑞典AGA公司推出的全功能热像仪能将温度的测量、修改、分析及图像采集、储存合于一体,并利用这一技术研制出便携式全功能热像仪,主要用于军事侦查。随着社会的发展,各国都开始重视研制用于减少各种灾害造成的人员伤亡的技术设备,红外探测技术也由军用转变为救援仪器——红外生命探测仪.

生命探测仪—研究现状

这次大汶川地震中数百万房屋被震塌,十几万人被压埋在倒塌的房屋下面,尽快抢救被压埋的幸存者成为开始救灾的第一位紧急任务,但是由于房屋倒塌现场的各种复杂情况,许多被深埋的幸存者无法主动把呼救信息传递上来,在这种地震灾害中就急需一种被称为生命探测仪的信息检测技术。 生命探测技术是近代发展的一项新技术,主要用于废墟中发现存活者及寻找清理战场时的伤员。传统的方法一般应用光学、红外线、无线电、卫星定位技术、声波等技术进行探测。红外生命探测技术利用了人体的红外辐射特性,人体的红外辐射能量较集中的中心波长为9.4μm,人体皮肤的红外辐射范围为3~50μm,其中8~14μm占全部人体辐射能量的46%,这个波长是设计人体红外探测仪的重要的技术参数,决定了人体与周围环境的红外辐射特性不同与差别,探测仪可以用成像的方式把要搜索的目标与背景分开。声波振动生命探测仪应用了声波及震动波的原理,采用声音/振动传感器,进行全方位的振动信息收集,可探测以空气为载体的各种声波和以其它媒体为载体的振动,并将非目标的噪音波和其它背景干扰波过滤,进而确定被困者的位置。但这些技术都有各自的局限性,无法有效地探测到埋藏在废墟、瓦砾或建筑物下的人员。 随着无线电技术的迅猛发展,根据HAETC(Hughes Advanced Electro-magnetic Technology Center)对电磁波在多种介质中的穿透特性的测量研究可知:在低频段,在l~10GHz范围的电磁波在穿过混凝墙壁时衰减很小,并且随着频率的降低,衰减也在减少,其中在8GHz时衰减大约为l0dB,在2GHz 时衰减将下降到5dB以下【1】。因此,低于10G 的频率适合对砖块和混凝土构筑的墙壁进行穿透探测。所以微波多普勒雷达被用于探测几米厚的墙体后探测数十米距离幸存者的呼吸、心跳和体动等生命体征信息。多普勒探测雷达发射电磁波探测信号,遇墙壁、废墟等穿透性较好,遇生命体后反射并由接收机接受解调,得到呼吸、心跳和体动等生命体征信息【2】。根据多普勒原理,运动物体对反射信号后,会对反射信号的频率、相位造成影响,其影响主要决定于物体的运动速度。将人体的胸腔、心脏看作目标物体,则它们的振动变化会对反射信号造成有规律的变化,接收机解调反射信号后就可以得到呼吸、心跳等生命体征信息。 目前,微波生命探测雷达主要有两种,连续波探测雷达与脉冲探测雷达。 连续波探测雷达连续不断的发射与接收某一频率连续波,而脉冲探测雷达则是发射与接收脉冲信号的探测雷达。连续波雷达的原理较为简单,它的发射机和接收机都采用同一信号源,采用超外差式接收机或者零拍接收机【3】。它不断的发射和接受窄带信号连续波,因此不需要接收和发射选通,并且由于窄带信号的特点,连续波雷达对滤波器的要求不高,其接收机每一级的滤波器可以设计的较为简单。连续波雷达最大的有点是,它可测量的目标物体的速度和距离范围极大,而脉冲和其他调制雷达则要受到待测目标物体速度和距离的限制。 1970年后,利用连续波雷达测量呼吸和心跳被逐渐提出了。当时,呼吸和心跳是分开测量的。Lin等人使用了X波段的扫描震荡器,发射天线采用指向目标的号角天线,测量了30厘米处未被麻醉的兔子的呼吸,并且利用同样的系统测量了麻醉过的兔子和猫的心跳【4,5,6】。 1980年后到1990年间,出现了在系统中同时处理模拟信号和数字信号的新系统,可以通过信号的处理区别呼吸信号和心跳信号,这样就可以同时进行呼吸与心跳信号的测量了【7,8,9,10】。1990年,Chuang等人利用一种自动消除杂波的电路及其算法,成功测量了7层砖和10英尺碎石后面的呼吸与心跳信号【8,9】。他的系统中采用了工作频率分别为2GHz和10GHz的两种,其中2GHz

雷达测速与测距 ()

雷达测速与测距 GZH 2016/3/29 系统流程图 模块分析 1 脉冲压缩 1.1 原理分析 雷达的基本功能是利用目标对电磁波的散射而发现目标,并测定目标的空 间位置。雷达分辨力是雷达的主要性能参数之一。所谓雷达分辨力是指在各 种目标环境下区分两个或两个以上的邻近目标的能力。一般说来目标距离不 同、方位角不同、高度不同以及速度不同等因素都可用来分辨目标,而与信 号波形紧密联系的则是距离分辨力和速度(径向)分辨力。两个目标在同一角 度但处在不同距离上,其最小可区分的距离称为距离分辨力,雷达的距离分 辨力取决于信号带宽。对于给定的雷达系统,可达到的距离分辨力为 (1.1) 其中c为光速,为发射波形带宽。 雷达的速度分辨率可用速度分辨常数表征,信号在时域上的持续宽度越大, 在频域上的分辨率能力就越好,即速度分辨率越好。 对于简单的脉冲雷达,,此处,为发射脉冲宽度。因此,对 于简单的脉冲雷达系统,将有 (1.2)在普通脉冲雷达中,由于信号的时宽带宽积为一常数(约为1),因此不 能兼顾距离分辨力和速度分辨力两项指标。 雷达对目标进行连续观测的空域叫做雷达的探测范围,也是雷达的重要 性能数,它决定于雷达的最小可测距离和最大作用距离,仰角和方位角的探 测范围。而发射功率的大小影响作用距离,功率大则作用距离大。发射功率 分脉冲功率和平均功率。雷达在发射脉冲信号期间 内所输出的功率称脉冲功 率,用Pt表示;平均功率是指一个重复周期Tr内发射机输出功率的平均值, 用Pav表示。它们的关系为 (1.3) 脉冲压缩(PC)雷达体制在雷达脉冲峰值受限的情况下,通过发射宽脉 冲而获得高的发能量,以保证足够的最大作用距离,而在接收时则采用相应

生命探测仪

光学生命探测仪 摘要:光学生命探测仪俗称“蛇眼”,是一种用于探测生命迹象的高科技援救设备。它利用光反射进行生命探测。仪器的主体呈管状非常柔韧,能在瓦砾堆中自由扭动。仪器前面有细小的探头,可深入极微小的缝隙探测,准确发现被困人员,其深度可达几十米以上,特别适用于对难以到达的地方进行快速的定性检查,广泛应用于矿山、地震、塌方救援中。 每次提及地震,生命探测仪是各种媒体报道出现频率最高的器材之一。 一般而言,生命探测仪可以分为光学生命探测仪、热红外生命探测仪和声波生命探测仪。 生命探测仪的原理极其简单,因为只要是生命,身体之中就会有着许多特别的生命信息,这些生命信息会通过各种能量方式表现在身体外部,比如声波、超声波、电波、光波以及一些地球人目前还没有掌握的特殊波如大脑在进行活动时所产生的一些特殊 波等,这些波的频率不同,自然就会发出完全不同的能量,这种生命探测仪正是通过探测这些不同的波而判断出现在屏幕上的不同生命形式。 光学生命探测仪是利用光反射进行生命探测,它集声音和视频图像于一体,主要通过高清晰红外(自主式微光)摄像头与高灵敏度声音探测器,可探测废墟下人员声音和视频图像,能够准确发现被困人员,其深度可达几十米以上,因此被誉为“蛇眼”。 仪器的主体呈管状非常柔韧,能在瓦砾堆中自由扭动。仪器前面有细小的探头,可深入极微小的缝隙探测,类似摄像仪器,将信息传送回来,救援队员利用观察器就可以把瓦砾深处的情况看得清清楚楚。 光学生命探测仪是一种成本低,坚固耐用,手持式,远距离视频监测系统,特别适用于对难以到达的地方进行快速的定性检查,广泛应用于矿山、地震、塌方救援中。采用模块式结构和轻小便携的蛇眼生命探测仪使眼睛能看到原来不能看到的地方。这种镜头可以安装在直杆窥镜或光纤窥镜上,灵活的鹅颈弯管上,延伸线缆上,可伸缩的套筒上,或者机械手接头上,高清晰度的全彩色的液晶视频图像帮助进行快速的定性检查。它还可直接连到一台标准的VCR,进行录像和回放。 热红外生命探测仪

生命探测仪的原理

生命探测仪的原理 只要是生命,身体之中就会有着许多特别的生命信息,这些生命信息会通过各种能量方式表现在身体外部,比如声波、超声波、电波、光波以及一些地球人目前还没有掌握的特殊波如大脑在进行活动时所产生的一些特殊波等,这些波的频率不同,自然就会发出完全不同的能量,这种生命探测仪正是通过探测这些不同的波而判断出现在屏幕上的不同生命形式。比如采用超低频电波产生之电场(由心脏产生)原理来找"活人"位置的,由于人体发出的超低频电场可穿过钢筋混凝墙、钢板。仪器在碰到上述障碍物时,侦测距离会减少。 生命探测仪分很多种 有的是感应人心脏所发出的超低频电波,并产生电场,使天线摆动,最终指向目标的电场探测型。还有用红外热成像的。还有声波/震动原理的,就是一个听音器,听听哪里有动静。最土的是光学原理的,就是一个光纤探头。 最先进的是雷达型的,也就是用超宽频的冲击雷达,连续照射,检测回波中的心跳信号,生命探测仪移动探测系统是一个由以下主要部件组成的传感器: 一个发送超宽频信号的发送器 一个侦测接收返回信号的接收器 一台用于读入接收器的信号并进行算法处理的电脑 生命侦测仪实际上是一个呼吸和运动探测器。雷达信号发送器连续发射电磁信号,对一定空间进行扫描.,接收器不断接收反射信号并对返回信号进行算法处理。如果被探测者保持静止,返回信号是相同的。如果目标在动,则信号有差异。通过对不同时间段接受的信号进行比较等算法处理,就可以判断目标是否在动。 生命侦测仪是通过测试被探测者的呼吸运动或者移动来工作的。由于呼吸的频率较低,一般每秒1到2次,就可以把呼吸运动和其他较高频率的运动区分开来。测移动的原理也大致是这样。超视安全系统公司的天线是美国航空航天局(NASA)指定的两种火星探测器地质雷达天线之一,能够非常敏锐地捕捉到非常微弱的运动,加上功能强大的算法处理,是安全救生部门最好的帮手。 15日晚,日本救援队第一批31名队员启程前往中国。他们携带的救灾设备中,包括了三件最新“武器”,第一是世界最先进的生命探测仪,能够探测到废墟地下心脏的跳动和轻微呼吸;第二是二氧化碳探测仪,是通过细管伸下去抽吸里面的空气,通过检测抽吸出来的空气里面的二氧化碳含量判断是否有人,人呼吸释放二氧化碳,造成二氧化碳浓度增加。;第三是地震预警器,可以提前测知余震。 每一个卫星在经过特定目标上空时都有一定的周期,最长的可达二十多天,也就是说,灾难发生的时候,很多卫星可能不在现场上空;即使处于现场上空,也可能没有提前安排拍摄活动;即使在拍摄,也有可能只拍摄了局部地区而漏掉了灾害可能影响范围内的居住区和道路;即使拍摄了居住区和道路,也有可能由于精度达不到而无法有效识别。云雨天气也可能让光学卫星无法拍摄。总之,在灾难发生后的一段时间内,还无法做到实时地获取灾区现场的所有资料。因此,快速反应和协调国内和国际间的数据资源就成为了必要。 国际海事卫星电话(International Maritime Satellite T elephone Service)指通过国际海事卫星接通的船与岸、船与船之间的电话业务。 海事卫星电话用于船舶与船舶之间、船舶与陆地之间的通信,可进行通话、数据传输和传真. 海事卫星

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

相关主题
文本预览
相关文档 最新文档