当前位置:文档之家› 传感器总结报告

传感器总结报告

传感器总结报告
传感器总结报告

传感器总结报告

机械0806 0401080623

摘要:传感器是被测量进入测量系统的第一个环节——把被测量转换成容易检测、传输和处理的电信号。其性能直接影响整个测试装置和测试结果的准确性、可靠性。其地位在电子技术和测试技术中举足轻重。

关键词:传感器、特性、应用

A summing-up on sensors

Abstract:sensors are the first link that measured signals enter into measure system——measured signals be converted into electro-signals that is easily tested,transfered and dealt with. Its function directly influences the accuracy, credibility of the whole test device and test result. Its position is prominent in the electronics technique and the test technique.

Keywords:sensors、characteristics、application

传感器种类繁多、形式多样:有的是很小的敏感元件,例如应变片、霍尔元件等;有的是一个复杂的系统,如智能型传感器。传感器分类依据不同,分得的结果也各种各样。此报告主要按物理现象分类方式分别介绍常用的结构型传感器、物性型传感器的工作原理、性能特点、转换电路和应用。

结构型传感器

结构型传感器是依靠其结构参数的变化实现信号转换。常见的结构型传感器有:电阻式传感器、电容式传感器、电感式传感器、磁电式传感器。

一、电阻式传感器

电阻式传感器是一种把被测量的变化转换成电阻变化的传感器。按其工作原理可分为变阻器式和电阻应变式传感器两类。

1、变阻器式传感器

▲变阻器式传感器也称为电位器式传感器,是三端电阻器件,基本敏感量是位移。作用于动触头的位移被转换成电阻的变化。转换原理:

l

R=ρ

A

式中ρ为电阻率,l为电阻丝长度,A为电阻丝截面积。当电阻丝的材料和直径一定时电阻R和电阻丝长度成线性关系,即R=K l。这样可以通过电阻的变化推倒出相应的长度变化,进而可知被测量的变化。

▲常用的变阻器式传感器可以测量直线位移、角位移和一些非线性量。其优点是结构简单、使用方便、测量范围大。

变阻器式传感器有两种形式:

(1)电阻丝式变阻器其电阻值是不连续的,一般分辨率不小于20毫米。另外,由于磨损、尘埃等原因将使接触电阻发生不规则变化,产生噪声。动态特

性较差,只能测量变化较慢的信号。

(2)导电橡胶变阻器 其优点是阻值连续、精度可达0.1%、动态特性较好,允许测量信号变化较快的信号、结构紧凑、可靠性好、寿命长。

▲应用:适用于自动化设备中的位置、位移的检测。如下图是一个电阻式位移传感器:

2、电阻应变式传感器(半导体应变片见物性型传感器)

▲金属电阻应变片的工作原理 其工作原理基于金属的电阻—应变效应:金属丝的电阻值随着它所受的机械变形而发生相应的变化。

ελμ)21(E R dR

++=

式中:μ为电阻丝材料的泊桑比:λ为压阻系数,与材料有关;E 为电阻丝材料的弹性模量;ε为应变。

金属电阻材料的λE 很小,因此λE ε项的变化所引起的电阻变化可以忽略因此可以简化为

εμ)21(+=R dR

上式说明电阻的相对变化与应变成正比,比例系数(灵敏度):

S=1+2μ=常数

用于制作应变片的材料的灵敏度K 0在1.7到3.6之间。金属应变片的灵敏

度S ≈K 0。

▲电阻应变片的应用和特点

电阻应变片应用范围广泛,分为直接应用和传感器应用。

直接应用是将应变片直接粘于被测量件上,可以测量力、压力、扭矩、位移、加速度等参数,测量范围从10-3到108,精度达到0.05%,且具有相当高的稳定性。

弹性元件是应变式传感器的感受元件,根据测力的大小、性质及传感器准确度等不同要求,弹性元件采用不同的结构形式:柱式弹性元件结构紧凑、简单、承载能力大,主要用于中等载荷的拉压力测量中;环式弹性元件稳定性好、固有频率高,主要用于中小载荷的测力中,可测几十到几百的拉压力;梁式弹性元件结构简单、易于加工、贴片方便、灵敏度较高,主要用于小载荷、高准确度的拉

压传感器中,测量范围从0.01到几千牛顿;轮辐式传感器元件外形低矮,可承受大载荷,固有频率很高,常用于重型载荷的电子称中,其灵敏度不高,但抗偏心载荷和抗侧向载荷能力强。

二、电容式传感器

电容式传感器是将被测量物理量转换为电容量变化的装置,其实质是具有可变参数的电容器。

▲电容式传感器原理

甴物理定律可知,当忽略边缘效应时,平行极板组成的电容器的电容量为:

δεεA

C 0=

式中:δ为极板间距离;A 为极板介质面积;ε为极板间介质的相对介电常数;ε0为真空中介电常数。上式表明当被测量使ε、A 或δ发生变化时,都能引起电容C 的变化。

根据可变参数不同,电容式传感器可分为极距变化型、面积变化型和介质变化型。

1、极距变化型电容传感器

▲极距变化型电容式传感器原理

使两极板相互覆盖面积与极间介质不变(常为空气),则电容量C 与极距δ成非线性关系。其灵敏度为

20δεεδA

d dC

S -==

▲极距变化型电容式传感器特点与应用

其优点是灵敏度高、动态响应快、可进行非接触测量;缺点是输出非线性、电缆电容影响较大、处理电路比较复杂。可以测量位移、压力等物理量。

2、面积变化型和介质变化型电容传感器

面积变化型电容传感器原理是其极距和极间介质固定不变,改变极板相互覆盖的介电面积以改变电容量。可测量角位移、线位移等物理量。其优点是输入输出成线性关系;缺点是灵敏度低。

介质变化型电容传感器原理是使其他量不变,只改变两极板间介质,从而改变电容量。这种传感器可以测量介质的液位或某些材料的厚度、湿度、温度等。

三、电感式传感器

电感式传感器以电磁感应为基础,把被测量转换为电感量变化。常分为可变电磁阻式、电涡流式和差动变压式等类型。

1、可变磁阻式电感传感器

▲原理:

δμ20

02A W L =

式中:μ0为空气磁导率;A 0为空气隙导磁截面积;δ为空气隙长度;W 为线圈匝数;L 为自感。此式表明,自感L 与气隙长度成反比;与气隙导磁截面积A0成正比

●变间隙式:

可知:L 与δ成反比,当A 0不变的情况下,

变化δ,L 与δ呈非线性关系。

① L = f (δ) 不是线性关系。

② 当δ= 0 时, L →∞

③ 如果考虑到磁导体的磁阻,则;当δ=

0 时,L ≠>∞ 。

④ 由于传感器结构上总漏磁现象产生,

故始终都会有L0 的输出。

⑤ 传感器灵敏度此时为20

022δμA W S -=

为避免非线性误差,要求工作间隙△ δ/ δ0≤0.1

▲特性:

该种传感器只适应与一般约为0.001~1mm 位移量的测量.

●变气隙面积A 型自感式传感器

δμ20

02A W L =

S 与L 成线性关系,两端弯曲部分是磁漏造成的。

▲特性:

这种传感器,线性较好,测量范围较宽。甚至可作为非接触传感。

●螺旋管式自感式传感器

该传感器是一种可变磁阻式自感式传感器。

结构: 螺旋线圈、铁芯、骨架

▲工作原理

首先它是一种开磁路的,其工作原理是基于线圈磁通

泄漏路径中的磁阻变化。这种传感器的电感量与铁芯的位

移成一定的关系,但灵敏度较低,对微小位移的测量利用

价值不大。

▲特性:

结构简单、易制作、灵敏度低,但可在测量电路方

面加以解决。

2、涡流式电感传感器

▲其工作原理是基于金属导体在交流磁场中的涡

流效应。其应用是改变参数中某一因素,达到一定的变换目的。例如,当δ改变

时,可用于测量位移、振动;当ρ或μ值改变时,可作为材质鉴别和探伤等。

▲特性与应用

涡流传感器结构简单、使用方便和不受油污等介质影响。可用于回转轴的振动测量及其误差运动的测试、转速测量、金属材料的厚度测量、零件计数和探伤等。

▲转换电路有分压式调幅和调频电路。下图为分压式调幅电路原理:

3、差动变压器式电感传感器

▲原理

它是利用电磁感应中的互感现象来进行信号转换。实际应用的传感器多为螺管形差动变压器,其结构和工作原理如下图:

当初级线圈W加上交流电压时,次级感应电动势e1、e2的大小与铁芯位置有关。当铁芯在中间位置时e1=e2,铁芯向上移动,e1>e2;向下移动,则e1

▲特性与应用

差动变压器式电感传感器稳定性好、使用方便、线性范围大,有的可达300㎜、小位移测量精度高;缺点是侧量个频率受机械部分固有频率的限制。该种传感器可适用于力、压力、流体参数等测量。

▲转换电路:

上图所示电路中相敏检波器可根据输出的调幅波相位变化判别位移的方向和大小。可调电阻R与差动直流放大器的作用是消除传感器零点残余电压并放大信号。振荡器提供初级线圈交流电源和相敏检波电路的控制电压。

四、磁电式传感器

▲原理

一个匝数为W 的线圈,当穿过当穿过该线圈的磁通Φ发生变化时线圈内的感应电动势为:

dt d W e Φ

-=

感应电动势e 与其匝数和磁通变化率有关,改变上述因素之一将使线圈感应电动势改变。磁电式传感器可分为动圈式和磁阻式。

1、动圈式传感器

上图a 为线速度型磁电式传感器。线圈在磁场中作直线运动所产生的感应电动势:θsin WBl e =。对于一个特定的传感器来说,W 、B 和l 均为定值,所以感应电动势e 与速度v 成正比。

上图b 为角速度型传感器工作原理图。线圈在磁场中转动时产生的感应电动势为:e=BWA ω。在B、W 、A 为常数时,感应电动势的大小与角速度成正比。

2、磁阻式传感器

工作原理是传感器固定不动,被测体的运动使磁路磁阻改变,从而在线圈中产生感应电动势。其特点是输出阻抗不高,负载效应对其输出的影响可以忽略,且性能稳定、工作可靠、使用方便。可以测量旋转体频数、转速和振动等。 物性型传感器 物性型传感器不改变其结构参数的变化而是靠其敏感元件物理性能的变化

实现信号转换。

一、半导体应变片

▲原理

对于半导体材料而言,电阻率变化所引起的电阻变化远远大于因几何尺寸变化引起的电阻变化。因此:

ελE R dR

半导体应变片的灵敏度S ≈λE 。该值一般比金属应变片的灵敏度大50—70倍

▲特性与应用

半导体应变片的优点:灵敏度高、机械滞后和横向效应小、测量范围大、频响范围宽;缺点:温度稳定性差、灵敏度分散性较大以及较大应变作用下,非线性误差大等。

二、压电式传感器

▲原理

压电式传感器的工作原理是基于压电材料的压电效应。她是以压电晶片作为传感元件将力转换为电荷量的传感器。其可以看作是一个以压电材料为介质的平行板电容器,其电容量可按下式计算:

δεεA

C 0=

施加于晶片的外力不变时,且积聚在极板上的电荷若无泄露,那么在外力继续作用时,电荷量保持不变,而在离终止时,电荷随之消失。

实践证明:压电晶片上所受的作用力与由此产生的电荷量成正比,即:q=dF,式中d 为压电常数。

静态测量时,必须采取措施,使电荷漏失减小到足够的程度;动态测量时,由于电荷可以不断补充,对此要求不高。

▲特性与应用

它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。缺点是某些压电材料需要防潮措施,而且输出的直流响应差,需要采用高输入阻抗电路或电荷放大器来克服这一缺陷。配套仪表和低噪声、小电容、高绝缘电阻电缆的出现,使压电传感器的使用更为方便。它广泛应用于工程力学、生物医学、电声学等技术领域。

三、光电式传感器

光电传感器是将光能转换为电能的一种器件,它的物理基础是光电效应。光电式传感器是以光电效应为基础,将光信号转换成电信号的传感器。光电式传感器由于反应速度快,能实现非接触测量,而且精度高、分辨力高、可靠性好,加之半导体光敏器件具有体积小、重量轻、功耗低、便于集成等优点,因而广泛应

用于军事、宇航、通信、检测与工业自动控制等各个领域中。业生产和现实生活中光电传感器的应用非常广泛。

四、霍尔传感器

霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。

▲原理

如下图所示,将霍尔元件至于磁感应强度为B 的磁场中,a 、b 两端通以电流i ,在c 、d 两端将产生霍尔电势V H =K H iBsin α,式中K H 为霍尔系数,α为电流与磁场方向夹角。

▲特性与应用

霍尔元件可以检测电流、磁场以及它们的成绩,因此广泛的应用于压力、振动等参数的测量。其有精度高、线性度好、动态性能好、工作频带宽、测量范围广、可靠性高、抗外磁场干扰能力强等优点。多应用于测力、压力、应变、机械振动等。

总结:传感器种类繁多,这里并没有一一列举,仅列举了生产生活中常见常用的几种。许多传感器的应用范围又很宽,本次总结所列举的应用仅供参考,具体应用应根据传感器静态、动态特性以及抗干扰能力、滞后等特性,还要考虑使用的技术领域、环境、精度等要求选用何种类型。总之,此份报告尚有许多不足之处,还请老师谅解。

通过本次总结,再一次比较全面的的了解、认识了不同类型传感器的原理、特性、应用和转换电路,从中受益匪浅,相信一定会对我们今后的学习生活带来很大帮助。最后,衷心感谢尤丽华、周德辉老师对我们的悉心指导! 照相机自动测光

工业测光

传感器与检测技术(重点知识点总结)

传感器与检测技术知识总结 1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。 一、传感器的组成 2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。 ③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类 (1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理 (1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。 (2)结构型传感器是利用物理学中场的定律和运动定律等构成的(主要有①电感式传感器;②电容式传感器;③光栅式传感器)。 3、按被测物理量分类 如位移传感器用于测量位移,温度传感器用于测量温度。 4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类 (1)无源型:不需外加电源。而是将被测量的相关能量转换成电量输出(主要有:压电式、磁电感应式、热电式、光电式)又称能量转化型; (2)有原型:需要外加电源才能输出电量,又称能量控制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类 (1)开关型(二值型):是“1”和“0”或开(ON)和关(OFF); (2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性; (3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码型(又称编码型):输出的信号是数字代码,各码道的状态随输入量变化。其代码“1”为高电平,“0”为低电平。 三、传感器的特性及主要性能指标 1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。 表征传感器静态特性的指标有线性度,敏感度,重复性等。 3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特性取决于传感器的本身及输入信号的形式。传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节; ③数字环节。评定其动态特性:正弦周期信号、阶跃信号。 4、传感器的主要性能要求是:1)高精度、低成本。2)高灵敏度。3)工作可靠。4)稳定性好,应长期工作稳定,抗腐蚀性好;5)抗干扰能力强;6)动态性能良好。7)结构简单、小巧,使用维护方便等; 四、传感检测技术的地位和作用 1、地位:传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。 2、作用:能够进行信息获取、信息转换、信息传递及信息处理等功能。应用:计算机集成制造系统(CIMS)、柔性制造系统(FMS)、加工中心(MC)、计算机辅助制造系统(CAM)。 五、基本特性的评价 1、测量范围:是指传感器在允许误差限内,其被测量值的范围; 量程:则是指传感器在测量范围内上限值和下限值之差。2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。 3、灵敏度:是指传感器输出量Y与引起此变化的输入量的变化X之比。 4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。K值越大,对外界反应越强。 5、反映非线性误差的程度是线性度。线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△Lmax与理论量程输出值Y(=ymax—ymin)的百分比进行计算。 6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素是时间和环境。 7、温度影响其零漂,零漂是指还没输入时,输出值随时间变化而变化。长期使用会产生蠕变现象。 8、重复性:是衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标;(分散范围

(完整版)传感器的目前现状与发展趋势综述

传感器的目前现状与发展趋势 吴伟 1106032008 材控2班 摘要:传感器是高度自动化系统乃至现代尖端技术必不可少的一个关键组成部分。传感器技术是世界各国竞相发展的高新技术,也是进入21 世纪以来优先发展的十大顶尖技术之一。传感器技术所涉及的知识领域非常广泛,其研究和发展也越来越多地和其他学科技术的发展紧密联系。本文首先介绍了传感器的基本知识和传感器技术的发展历史。之后,综述了近几年高端前沿的光电传感器技术和生物传感器技术的主要研究状况。最后,展望了现代传感器技术的发展和应用前景。 关键词:传感器技术;传感器;研究现状;趋势 引言 当今社会的发展,是信息化社会的发展。在信息时代,人们的社会活动将主要依靠对信息资源的开发及获取、传输与处理。而传感器是获取自然领域中信息的主要途径与手段,是现代科学的中枢神经系统。它是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置的总称。传感器处于研究对象与测控系统的接口位置,一切科学研究和生产过程所要获取的信息都要通过它转换为容易传输和处理的电信号。如果把计算机比喻为处理和识别信息的“大脑”,把通信系统比喻为传递信息的“神经系统”,那么传感器就是感知和获取信息的“感觉器官”。 传感器技术是现代科技的前沿技术,发展迅猛,同计算机技术与通信技术一起被称为信息技术的三大支柱,许多国家已将传感器技术列为与通信技术和计算机技术同等重要的位置。现代传感器技术具有巨大的应用潜力,拥有广泛的开发空间,发展前景十分广阔。 1 传感器的基本知识

1.1 传感器的定义和组成 广义地说,传感器是指将被测量转化为可感知或定量认识的信号的传感器。从狭义方面讲,感受被测量,并按一定规律将其转化为同种或别种性质的输出信号的装置。传感器一般由敏感元件、转换元件、测量电路和辅助电源四部分组成,其中敏感元件和转换元件可能合二为一,而有的传感器不需要辅助电源。 1.2 传感器技术的基本特性 在测试过程中,要求传感器能感受到被测量的变化并将其不失真地转换成容易测量的量。被测量有两种形式:一种是稳定的,称为静态信号;一种是随着时间变化的,称为动态信号。由于输入量的状态不同,传感器的输入特性也不同,因此,传感器的基本特性一般用静态特性和动态特性来描述。衡量传感器的静态特性指标有线性度、灵敏度、迟滞、重复性、分辨率和漂移等。影响传感器的动态特性主要是传感器的固有因素,如温度传感器的热惯性等,动态特性还与传感器输入量的变化形式有关。 2 传感器技术的发展历史与回顾 传感器技术是在20世纪的中期才刚刚问世的。在那时,与计算机技术和数字控制技术相比,传感技术的发展都落后于它们,不少先进的成果仍停留在实验研究阶段,并没有投入到实际生产与广泛应用中,转化率比较低。在国外,传感器技术主要是在各国不断发展与提高的工业化浪潮下诞生的,并在早期多用于国家级项目的科研研发以及各国军事技术、航空航天领域的试验研究。然而,随着各国机械工业、电子、计算机、自动化等相关信息化产业的迅猛发展,以日本和欧美等西方国家为代表的传感器研发及其相关技术产业的发展已在国际市场中逐步占有了重要的份额。 我国从20世纪60年代开始传感技术的研究与开发,经过从“六五”到“九五”的国家攻关,在传感器研究开发、设计、制造、可靠性改进等方面获得长足的进步,初步形成了传感器研究、开发、生产和应用的体系,并在数控机床攻关中取得了一批可喜的、为世界瞩目的发明专利与工况监控系统或仪器的成果。但从总体上讲,它还不能适应我国经济与科技的迅速发展,我国不少传感器、信号

传感器与检测技术复习总结Word版

l.检测系统由哪几部分组成? 说明各部分的作用。 答:一个完整的检测系统或检测装置通常是由传感器、测量电路和显示记录装置等几部分组成,分别完成信息获取、转换、显示和处理等功能。当然其中还包括电源和传输通道等不可缺少的部分。传感器与检测技术是研究自动检测系统中的信息提取,信息转换和信息处理的理论和技术为主要内容的一门应用技术学科。 2 .什么是传感器?它由哪几个部分组成?分别起到什么作用? 解:传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置,能完成检测任务;传感器由敏感元件,转换元件,转换电路组成。敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。 3 .简述正、逆压电效应。 解:某些电介质在沿一定的方向受到外力的作用变形时,由于内部极化现象同时在两个 表面上产生符号相反的电荷,当外力去掉后,恢复到不带电的状态;而当作用力方向改变时,电荷的极性随着改变。晶体受力所产生的电荷量与外力的大小成正比。这种现象称为正压电效应。反之,如对晶体施加一定变电场,晶体本身将产生机械变形,外电场撤离,变形也随之消失,称为逆压电效应。 4.简述电压放大器和电荷放大器的优缺点。 解:电压放大器的应用具有一定的应用限制,压电式传感器在与电压放大器配合使用时,连接电缆不能太长。优点:微型电压放大电路可以和传感器做成一体,这样这一问题就可以得到克服,使它具有广泛的应用前景。缺点:电缆长,电缆电容 C c 就大,电缆电容增大必然使传感器的电压灵敏度降低。 电荷放大器的优点:输出电压 U o 与电缆电容 C c 无关,且与 Q 成正比,这是电荷放大器的最大特点。但电荷放大器的缺点:价格比电压放大器高,电路较复杂,调整也较困难。要注意的是,在实际应用中,电压放大器和电荷放大器都应加过载放大保护电路,否则在传感器过载时,会产生过高的输出电压。 6.为什么说压电式传感器只适用于动态测量而不能用于静态测量? 答:因为压电式传感器是将被测量转换成压电晶体的电荷量,可等效成一定的电容,如被测量为静态时,很难将电荷转换成一定的电压信号输出,故只能用于动态测量。 7.压电式传感器测量电路的作用是什么?其核心是解决什么问题? 答:压电式传感器测量电路的作用是将压电晶体产生的电荷转换为电压信号输出,其核心是要解决微弱信号的转换与放大,得到足够强的输出信号。8.说明霍尔效应的原理? 解:置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上垂直于电流和磁场方向上的两个面之间产生电动势,这种现象称霍尔效应。 9 .磁电式传感器与电感式传感器有何不同? 解:磁电式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传感器。磁电感应式传感器也称为电动式传感器或感应式传感器。磁电感应式传感器是利用导体和磁场发生相对运动产生电动式的,它不需要辅助电源就能把被测对象的机械量转换成易于测量的电信号,是有源传感器。电感式传感器是利用电磁感应原理将被测非电量如位移、压力、流量、、重量、振动等转换成线圈自感量 L 或互感量 M 的变化,再由测量电路转换为电压或电流的变化量输出的装置,是无源传感器。 10 .霍尔元件在一定电流的控制下,其霍尔电势与哪些因素有关? 解:根据下面这个公式U=KIBf(L/B)可以得到霍尔电势还与磁感应强度 B, K H 为霍尔片的灵敏度 , 霍尔元件的长L 和宽度 b 有关。11.什么是热电势、接触电势和温差电势? 解:两种不同的金属 A 和 B 构成的闭合回路,如果将它们的两个接点中的一个进行加热,使其温度为 T ,而另一点置于室温 T 0 中,则在回路中会产生的电势就叫做热电势。由于两种不同导体的自由电子密度不同而在接触处形成的电动势叫做接触电势。温差电势是同一导体的两端因其温度不同而产生的一种热电势。 12 .说明热电偶测温的原理及热电偶的基本定律。 解:热电偶是一种将温度变化转换为电量变化的装置,它利用传感元件的电参数随温度变化的特征来达到测量的目的。通常将被测温度转换为敏感元件的电阻、磁导或电势等的变化,通过适当的测量电路,就可由电压电流这些电参数的变化来表达所测温度的变化

传感器重点总结

一、名词解释 1.偏差式测量用仪表指针的位移(即偏差)决定被测量的量值,这种测量方法称为偏差式测量。 2.零位式测量用指零仪表的零位反应测量系统的平衡状态,在测量系统平衡时,用已知的标准量决定被测量的量值,这种测量方法称为零位式测量。 3.微差式测量将被测量与已知的标准量相比较,取得差值后,再用偏差法测得此差值。 4.静态测量被测量在测量过程中是固定不变的,对这种被测量进行的测量称为静态测量。静态测量不需要考虑时间因素对测量的影响。 5.动态测量被测量在测量过程中是随时间不断变化的,对这种被测量进行的测量称为动态测量。 6.测量误差是测得值减去被测量的真值。 7.随机误差在同一测量条件下,多次测量被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。 8.迟滞传感器在相同工作条件下,输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出曲线不重合的现象。 9.电阻应变效应即导体在外界作用下产生机械变形(拉伸或压缩)时,其电阻值相应发生变化。 10.正压电效应机械能转换为电能的现象 11.逆压电效应当在电介质极化方向施加电场,这些电介质会产生几何变形,这种现象称为逆压电效应。 12.通常把沿电轴x方向的力作用下产生电荷的压电效应称为“纵向压电效应”。把沿机械轴y方向的力作用下产生电荷的压电效应称为“横向压电效应”。 13.在光线的作用下能够使物体产生一定方向的电动势的现象称为光生伏特效应。 14.光电池是一种直接将光能转换为电能的光电器件。 15.绝对湿度是指在一定温度和压力条件下,每单位体积的混合气体中所含水蒸气的质量。相对湿度是指气体的绝对湿度与同一温度下达到饱和状态的绝对湿度之比。 二、填空/选择 1.测量误差的表示方法有绝对误差、实际相对误差、引用误差、基本误差、附加误差。 2.传感器的静态特性性能指标有灵敏度、迟滞、线性度、重复性和漂移等。 3.传感器的时域动态性能指标有时间常数、延迟时间、上升时间、峰值时间、超调量、衰减比。 4.半导体应变片是用半导体材料制成的,其工作原理基于半导体材料的压阻效应。半导体材料的电阻率ρ随作用应力的变化而发生变化的现象称为压阻效应。 5.自感式电感传感器是利用线圈的变化来实现测量的,它由线圈、铁芯和衔铁三部分组成。 6. 变面积型电容式传感器(88页) 7.石英晶体纵向轴z称为光轴,经过六面体棱线并垂直于光轴的x称为电轴,与x和z同时垂直的轴y称为机械轴。 8.气敏传感器是用来检测气体类别、浓度和成分的传感器。 9.半导体气敏传感器是利用气体在半导体表面的氧化和还原反应导致敏感元件阻值变化而制成的。 10.图9-3、9-4直热式和旁热式气敏器件的符号(153页) 11.湿度是指大气中的水蒸气含量,通常采用绝对湿度和相对湿度两种表示方法。 12.频率在16~2×Hz之间,能为人耳所闻的机械波,称为声波;低于16Hz的机械波,称为次声波;高于2×Hz的机械波,称为超声波。 三、简答分析计算 1.迟滞的定义、原因、公式、曲线(30页) 2.习题9-7,ppt. 结构、Rp作用、测试过程、测量丝加热丝、旁热式优点等。(163页) 3.(171页)图10-5、10-6工作原理、公式计算

传感器技术的研究现状

传感器技术综述 Luqingsong@https://www.doczj.com/doc/c014992091.html, 摘要:本文简介了传感器技术的原理、分类和应用,以位移传感器为例概述了传感器技术的研究现状,在此基础上分析了我国传感器技术发展中存在的问题和解决方法,分析了传感器技术的发展方向。 关键词:传感器技术应用研究发展方向 1传感器 传感器是一种检测装置,一般由敏感元件、传感元件和其他辅助件组成,有时也将信号调节也转换电路、辅助电源作为传感器的组成部分。能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。传感器通常可以按照一系列方法进行分类。根据用途分类,传感器常以测别的物理量命名,如位移传感器、速度传感器、温度传感器、压力传感器等;根据工作原理分类,传感器可以依据工作原理进行命名,如振动传感器、磁敏传感器、生物感器等;按输出信号,可分为模拟传感器和数字传感器等;还可按照传感器的制造工艺、构成、作用形式等进行分类。[1] 随着微电子技术、微机械加工技术、光电科学以及当代生物科学等高新技术的推动下,传感器己经从过去单一功能转变为功能多样、科技含量高的新型产品。传感器技术是当前代表国家综合科研水平的重要技术,传感器技术的具体应用是传感器技术转化的重要途径和方法。其所涉及的知识领域非常广泛,研究和发展也越来越多地和其他学科技术的发展紧密联系。 2主要传感技术分类[2][5] 2.1光电传感技术 光电式传感器是以光为测量媒介、以光电器件为转换元件的传感器,它具有非接触、响应快、性能可靠等卓越特性。随着光电科技的飞速发展,光电传感器己成为光电传感器己成为各种光电检测系统中实现光电转换的关键元件,并在传感器应用中占据着重要的地位,其中在非接触式测量领域更是扮演者无法替代的角色。光电传感器工作时,光电器件负责将光能(红外辐射、可见光及紫外辐射)信号转换为电学信号。光电器件不仅结构简单、经济性好,且具有响应快、可靠性强等优势,在自动控制、智能化控制等方面应用前景十分广阔。此外,光电传感器除了对光学信号进行测量,还能够对引起光源变化的构件或其它被测量进行

图像传感器综述

图像传感器综述 通过前几篇文章,相信大家可能对数码图像和色彩有了一定的认识。从这篇文章开始,我们将会对大家拍摄使用的“武器”--数码相机进行全方位的介绍。首先我们来了解一下数码相机的核心部件--图像传感器。 一、图像传感器的历史 与传统相机不同,数码相机并不是使用胶片来感光,而是使用图像传感器来捕捉图像。图像传感器的历史可以说非常的悠久:早在1873年,当时科学家约瑟·美(Joseph May)及伟洛比·史密夫(WilloughbySmith)就发现了硒元素结晶体感光后能产生电流,这是电子影像发展的开始。以后陆续有组织和学者研究电子影像,发明了几种不同类型的图像传感器。其中重要的发明有20世纪50年代诞生的光学倍增管(Photo Multiplier Tube,简称PMT)和70年代出现的电荷耦合装置(Charge Coupled Device,简称CCD)。 20世纪末,又有三种新型的图像传感器问世了,它们分别是互补氧化金属半导体(Complementary Metal Oxide Semiconductor,简称CMOS)、接触式图像传感器(Contact lmage Sensor,简称CIS)和LBCAST传感器系统(Lateral Buried Charge Accumulator, Sensing Transistor Array)。 二、PMT PMT是最早出现的图像传感器,从五十年代发展到现在,技术已经非常成熟,是目前性能最好的传感器。它就像一个圆柱体小灯泡,直径约一寸,长度约二寸;内置多个电极,将进入的光信号转化为电信号,即使很微弱的光线也可准确补捉。其最高动态范围可达4.2,相对于其它类型只能达到3.2-3.6的传感器,PMT要胜出不少;而且它非常耐用,可以运作十万小时以上。但是由于其造价相当高,只能应用于专业的印刷、出版业扫描仪及工程分析仪等。类似小灯泡的传感器“PMT” 三、CCD CCD是美国贝尔实验室于1969年发明的,与电脑晶片CMOS技术相似,也可作电脑记忆体及逻辑运作晶片。CCD是一种特殊的半导体材料,由大量独立的感光二极管组成,一般这些感

传感器与检测技术第二知识点总结

、电阻式传感器 1) 电阻式传感器的 原理:将被测量转化为传感器 电阻值的变化,并加上测量电路。 2) 主要的种类:电位器式、 应变式、热电阻、热敏电阻 应变电阻式传感器 1) 应变:在外部作用力下发生形变的现象。 2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化 a. 组成:弹性元件+电阻应变片 b. 主要测量对象:力、力矩、压力、加速度、重量。 c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等 点的输出。 PL 3) 电阻值:R (电阻率、长度、截面积)。 A 4) 应力与应变的关系: 打二E ;(被测试件的应力=被测试件的材料弹性模量 *轴向应变) 应注意的问题: a. R3=R4; b. R1与 R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值; c. 补偿片的材料一样,个参数相同; d. 工作环境一样; 、电感式传感器 1) 电感式传感器的 原理:将输入物理量的变化转化为线圈 自感系数L 或互感系数 M 的变化 2) 种类:变磁阻式、变压器式、电涡流式。 3) 主要测量 物理量:位移、振动、压力、流量、比重。 变磁阻电感式传感器 1) 原理:衔铁移动导致气隙变化导致 电感量变化,从而得知位移量的大小方向。 点 八、、 5) 应力与力和受力面积的关系: 二(应力) F (力)

2)自感系数公式: 2 N 4 (( 磁导率)Ao (截面积) L 二2;(气隙厚度) 3) 种类:变气隙厚度、变气隙面积 4) 变磁阻电感式传感器的灵敏度取决于工作使得 当前厚度。 5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。 P56 6) 应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化) 差动变压器电感式传感器 1) 原理:把非电量的变化转化为互感量的变化。 2) 种类:变隙式、变面积式、螺线管式。 3) 测量电路:差动整流电路、相敏捡波电路。 电涡流电感式传感器 1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动 势,电动势将在导体表面形成闭合的电流回路。 Z W 「,r ,f ,x ) 等效阻抗 (电阻率、磁导率、尺寸 、励磁电流的频率、距 离) 2) 趋肤效应:电涡流只集中在导体表面的现象。 3) 原理:产生的感应电流产生新的交变磁场来反抗原磁场,式传感器的等效阻抗变化 4) 测量电路:调频式测量电路、调幅式测量电路。 5) 测量对象:位移、厚度、表面温度、速度、应力、材料损伤、振幅、转速。 三、电容式传感器 1) 原理:将非电量的变化转化为电容量的变化。 2) 特点:结构简单、体积小、分辨率高、动态响应好、温度稳定性好、电容量小、负载能力差、易受外 界环境的影响。 3) 测量对象:位移、振动、角度、加速度、压力,差压,液面、成分含量。 结构分类:平板和圆筒电容式传感器 1) 公式: >0 zr A d 2) 平板式电容器可分为三类:变极板覆盖面积的 的变极距型。 变面积型,变介质介电常数的 变介质型、变极板间距离 3) 测量电路:调频电路、运算放大器、变压器是交流电桥、二极管双 T 型交流电路、脉冲宽度调制电路 4) 典型应用 四、压电式传感器(有源) 1) 正压电效应:对某些电介质沿一定方向加外力使之形变,其内部产生极化而在表面产生 电荷聚集的现

传感器技术文献综述_百度文库重点

传感器技术文献综述 学校邕江大学专业 09信息学号 40号姓名赵丽霞 一、摘要 传感器技术是综合多种学科的复合型技术, 是一门正在蓬勃发展的现代化传感器技术。本文通过将所看的传感器相关文献总分为传感器、智能传感器以及无线传感器网络三个类别, 对每一类别进行综述, 分析每类别传感器研究中所存在的不足,探讨了相应的解决方案。 二、关键词:传感器 三、引言 传感器技术是一门正在蓬勃发展的现代化传感器技术, 是涉及微机械与微电子技术、计算机技术、信号处理技术、电路与系统、传感技术、神经网络技术以及模糊控制理论等多种学科的综合性技术, 而该技术也广泛应用到了军事、太空探索、智能家居、农业、医疗等领域。在伴随着“信息时代” 的到来,作为获取信息的重要手段——传感器技术得到飞速发展, 其应用领域越来越广, 人们对其要求越要越高, 需求也越来越迫切。但传感器技术的广泛应用以及飞速发展并不代表着该技术已经成熟, 相反在很多方面它还只是一项新兴的技术, 依然存在很多的问题等待我们去解决。如何能够让我们的传感器装置很快的适应周围的环境, 迅速准确的处理传输客户所需求的信号, 并可以根据客户的要求作出相应的反应以及如何可以尽量的延长传感器装置的生存时间等等。这些问题都是我们在研究传感器技术的过程中所应该解决的问题。 四、传感器 传感器是一种物理装置, 能够探测、感受外界的信号、物理条件 (如光、热、温度、湿度等或化学组成, 并将探知到的信息传递给其他装置。该装置相当我们的人类的眼睛、鼻子、舌头、耳朵以及皮肤等一些感知器官。这样,精确快速地感

受外界的信号就是迅速正确作出反应实施行动的前提条件。现在的物理传感器、生物传感器都是力图解决感知、精确以及快速这三个难题。例如气体流量监测就有很多种的感知方法,但每种方法都存在着精确以及反应速率方面的问题, 所以还需要不断的改进。然而,有很多的问题大自然已经很好的为我们解决了, 我们应该取其精华。因此, 我认为仿生传感器一定会解决很多传感器方面的问题。 模仿沙漠蚂蚁利用太阳偏振光在沙漠中很好的辨别方向机理设计了偏振测角传感器。在我们的生活中, 大自然还有很多聪明的发明, 这些都可以应用到我们现在所讨论的传感器技术中。比如鲸鱼、鸽子能够探测到地球微弱的磁场并根据其来确定旅行路线; 双髻鲨能都根据探测到微弱的生物电来捕食, 在它的双髻上分布着许多微小的孔,传感器也可以设计成与此相同的结构来探测微弱的电磁波, 并可以将此项技术应用到医学中来检测人体的健康;苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到,仿生学家根据苍蝇嗅觉器官的结构和功能,利用活的苍蝇,把非常纤细的微电极插到苍蝇的嗅觉神经上仿制成一种十分奇特的小型气体分析仪,用来检测舱内气体的成分。此外,还有很多的动物都具有特异功能,可以利用这些大量的自然资源来实现我们对自然界一些信息的需求,可以直接利用动物,降低成本,可以根据研究其特异功能的机制, 改进现在的传感器。 目前的传感器往往仅能感知一种或几种物理量。因此, 要尽量集成传感器的功能。在实际中, 需要检测的物理量往往不是唯一的, 这样就需要多种传感器共同工作来完成对这些物理量的检测, 浪费了大量资源, 比如人力资源——我们要花费大量的时间与精力去部署以及维护这些节点, 通信资源——每个节点都会向基站发送信号, 占用带宽, 容易造成数据拥堵。要求一种传感器可以同时感知多种物理量比较困难, 这样可以将多种传感器固定在同一装置上, 通过程序让它们在分配间隙时间内轮流工作发送数据, 间隙时间越短, 该传感器的整体测量效率也就越高。但如果对测量的实时性要求不高的话, 一个传感器装置就可以达到预期效果。也可以在监测区域分布多个的装置, 编制程序, 使在同一时刻能够测量到多种物理量。 五、智能传感器

传感器与检测技术(重点知识点总结)0001

传感器与检测技术知识总结 1:传感器是能感受规定的被检测量并按照一定规律转换成可输出信号的器件或装置。 一、传感器的组成 2:传感器一般由敏感元件,转换元件及基本转换电路三部分组成。①敏感元件是直接感受被测物理量,并以确定关系输出另一物理量的元件(如弹性敏感元件将力,力矩转换为位移或应变输出)。②转换元件是将敏感元件输出的非电量转换成电路参数(电阻,电感,电容)及电流或电压等电信号。 ③基本转换电路是将该电信号转换成便于传输,处理的电量。 二、传感器的分类 1、按被测量对象分类 (1)内部信息传感器主要检测系统内部的位置,速度,力,力矩,温度以及异常变化。(2)外部信息传感器主要检测系统的外部环境状态,它有相对应的接触式(触觉传感器、滑动觉传感器、压觉传感器)和非接触式(视觉传感器、超声测距、激光测距)。 2、传感器按工作机理 (1)物性型传感器是利用某种性质随被测参数的变化而变化的原理制成的(主要有:光电式传感器、压电式传感器)。 (2 )结构型传感器是利用物理学中场的定律和运动定律 等构成的(主要有①电感式传感器;②电容式传感器;③ 光栅式传感器)。 3、按被测物理量分类 如位移传感器用于测量位移,温度传感器用于测量温度。 4、按工作原理分类主要是有利于传感器的设计和应用。 5、按传感器能量源分类 (1 )无源型:不需外加电源。而是将被测量的相关能量 转换成电量输出(主要有:压电式、磁电感应式、热电式、 光电式)又称能量转化型; (2 )有原型:需要外加电源才能输出电量,又称能量___ 制型(主要有:电阻式、电容式、电感式、霍尔式)。 6、按输出信号的性质分类 (1)开关型(二值型):是“T和“ 0”或开(ON)和关(OFF); (2)模拟型:输出是与输入物理量变换相对应的连续变化的电量,其输入/输出可线性,也可非线性; (3)数字型:①计数型:又称脉冲数字型,它可以是任何一种脉冲发生器所发出的脉冲数与输入量成正比;②代码______ (又称编码型):输出的信号是数字代码,各码道的状态随输 入量变化。其代码“ 1”为高电平,“ 0”为低电平。 三、传感器的特性及主要性能指标1、传感器的特性主要是指输出与输入之间的关系,有静态特性和动态特性。 2、传感器的静态特性是当传感器的输入量为常量或随时间作缓慢变化时,传感器的输出与输入之间的关系,叫静态特性,简称静特性。 表征传感器静态特性的指标有线性度,敏感度,重复性等。3、传感器的动态特性是指传感器的输出量对于随时间变化的输入量的响应特性称为动态特性,简称动特性。传感器的动态特性取决于传感器的本身及输入信号的形式。传感器按其传递,转换信息的形式可分为①接触式环节;②模拟环节; ③数字环节。评定其动态特性:正弦周期信号、阶跃信号。 4、传感器的主要性能要求是:1)高精度、低成本。2)高灵敏度。3)工作可靠。4)稳定性好,应长期工作稳定,抗腐 蚀性好;5)抗干扰能力强;6)动态性能良好。7)结构简单、小巧,使用维护方便等; 四、传感检测技术的地位和作用 1、地位:传感检测技术是一种随着现代科学技术的发展而迅猛发展的技术,是机电一体化系统不可缺少的关键技术之一。 2、作用:能够进行信息获取、信息转换、信息传递及信息处 理等功能。应用:计算机集成制造系统(CIMS )、柔性制造系统(FMS )、加工中心(MC )、计算机辅助制造系统(CAM ) 五、基本特性的评价 1、测量范围:是指传感器在允许误差限内,其被测量值的范 围; 量程:则是指传感器在测量范围内上限值和下限值之差。 2、过载能力:一般情况下,在不引起传感器的规定性能指标永久改变条件下,传感器允许超过其测量范围的能力。过载能力通常用允许超过测量上限或下限的被测量值与量程的百分比表示。 3、灵敏度:是指传感器输出量Y与引起此变化的输入量的变化X 之比。 4、灵敏度表示传感器或传感检测系统对被测物理量变化的反应能力。灵敏度越高越好,因为灵敏度越高,传感器所能感知的变化量越小,即被测量稍有微小变化,传感器就有较大输出。K值越大,对外界反应越强。 5、反映非线性误差的程度是线性度。线性度是以一定的拟合直线作基准与校准曲线作比较,用其不一致的最大偏差△ Lmax与理论量程输出值Y (=ymax —ymin、的百分比进行计算。 6、稳定性在相同条件,相当长时间内,其输入/输出特性不发生变化的能力,影响传感器稳定性的因素是时间和环境_ 7、温度影响其零漂,零漂是指还没输入时,输出值随时间变化而变化。长期使用会产生蠕变现象。 8、重复性:是衡量在同一工作条件下,对同一被测量进行多 次连续测量所得结果之间的不一致程度的指标;(分散范围小,重复性越好)

传感器知识点总结

小知识点总结: 1.传感器是能感受规定的被测量并按照一定规律转换成可 用输出信号的器件或装置,通常由敏感元件和转换元件组 成。其中,敏感元件是指传感器中直接感受被测量的部分,转换元件是指传感器能将敏感元件输出转换为适于传输 和测量的电信号部分。 2.传感器的静态特性:线性度、迟滞、重复性、分辨率、稳 定性、温度稳定性和多种抗干扰能力 3.电阻式传感器的种类繁多,应用广泛,其基本原理是将被 测物理量的变化转换成电阻值的变化,再经相应的测量电 路而最后显示被测量值的变化。 4.电位器通常都是由骨架、电阻元件及活动电刷组成。常用 的线绕式电位器的电阻元件由金属电阻丝绕成。 5.电阻丝要求电阻系数高,电阻温度系数小,强度高和延 展性好,对铜的热电动势要小,耐磨耐腐蚀,焊接性好。 6.电阻应变片的工作原理是基于电阻应变效应,即在导体产 生机械变形时,它的电阻值相应发生变化。 7.金属电阻应变片分金属丝式和箔式。箔式应变片横向效应 小。 8.电阻应变片除直接用来测量机械仪器等应变外,还可以与 某种形式的弹性敏感元件相配合,组成其他物理量的测试 传感器。 9.电感式传感器是利用线圈自感或互感的变化来实现测量 的一种装置。可以用来测量位移、振动、压力、流量、重 量、力矩、应变等多种物理量。 10.电感式传感器的核心部分是可变自感或可变互感。 11.变压器式传感器是将非电量转换为线圈间互感M的一种磁 电机构,很像变压器的工作原理,因此常称变压器式传感 器。这种传感器多采用差分形式。 12.金属导体置于变化着的磁场中,导体内就会产生感应电 流,称之为电涡流或涡流。这种现象称为涡流效应。涡流 式传感器就是在这种涡流效应的基础上建立起来的。13.电容式传感器是利用电容器原理,将非电量转换成电容 量,进而实现非电量到电量的转化的一种传感器。 14.电容式传感器可以有三种基本类型,即变极距型(非线 性)、变面积型(线性)和变介电常数型(线性)。 15.霍尔式传感器是利用霍尔元件基于霍尔效应原理而将被 测量、如电流、磁场、位移、压力等转换成电动势输出的 一种传感器。 16.热电式传感器是将温度变化转换为电量变化的装置,它利 用敏感元件的电磁参数随温度变化而变化的特性来达到 测量目的。 17.热电阻测温的基础:电阻率随温度升高而增大,具有正的 温度系数 18.目前应用最广泛的热电阻材料是铂和铜。 19.热电阻温度计最常用的测量电路是电桥电路(三线连接法 和四线连接法)。 20.工业用标准铂电阻100Ω和50Ω两种。分度号分别为 Pt100和Pt50. 21.热电偶产生的热电动势是由两种导体的接触电动势(珀尔 贴电动势)和单一导体的温差电动势(汤姆逊电动势)组 成的。 22.热敏电阻是用一种半导体材料制成的敏感元件,其特点是 电阻随温度变化而显著变化,能直接将温度的变化转换为 能量的变化。 23.测量方法按测量手段分有:直接测量、间接测量和联立测 量;按测量方式分有:偏差式测量、零位式测量和微差式 测量。 24.偏差式测量的标准量具不装在仪表内,而零位式测量和微 差式测量的标准量具装在仪表内。 25.测量误差的表示方法有以下3种:绝对误差、相对误差、 引用误差; 26.误差按其规律性分为三种,即系统误差、偶然误差和疏失 误差。 27.形成干扰的三要素:干扰源、耦合通道和对干扰敏感的接 收电路 28.为了抑制干扰,常用的电路隔离方法:光电隔离法、变压 器隔离法 简答: 1、什么是霍尔效应? 答:一块长为l、宽为b、厚为d的半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过时,在垂直于电流和磁场的方向上将产生电动势U h。这种现象称为霍尔效应。 2、简述热电偶的工作原理。 答:热电偶的测温原理基于物理的“热电效应”。所谓热电效应,就是当不同材料的导体组成一个闭合回路时,若两个结点的温度不同,那么在回路中将会产生电动势的现象。两点间的温差越大,产生的电动势就越大。引入适当的测量电路测量电动势的大小,就可测得温度的大小。 3、什么是引用误差? 答:人们将测量的绝对误差与测量仪表的上量限(满度)值的百分比定义为引用误差。 4、如何消除和减小边缘效应? 答:1、适当减小极间距,使电极直径或边长与间距比很大,可减小边缘效应的影响,但易产生击穿并有可能限制测量范围。2、电极应做得极薄使之与极间距相比很小,这样也可减小边缘电场的影响。3、在结构上增设等位环也可以用来消除边缘效应。论述:电容式传感器的设计要点 答:电容式传感器的高灵敏度、高精度等独特的优点是与其正确设计、选材以及精细的加工工艺分不开的。在设计传感器的过程中,在所要求的量程、温度和压力等范围内,应尽量使它具有低成本、高精度、高分辨率、稳定可靠和高的频率响应等。对于电容式传感器,设计时可以从下面几个方面予以考虑:1、保证绝缘材料的绝缘性能。必须从选材、结构、加工工艺等方面来减小温度等误差和保证绝缘材料具有高的绝缘性能。2、消

几种常见传感器总结

几种常见传感器总结 1、红外对管: 红外对管是根据红外辐射式传感器原理制作的一种红外对射式传感器。与一般红外传感器一样,红外对管也由三部分构成:光学系统(发射管)、探测器(接收管)、信号调理及输出电路。红外探测器是利用红外辐射与物质相互作用所呈现的物理效应来探测红外辐射的。在此接收管通过对发射管所发出的红外线做出反应实现,实现信号的采集,再通过后续信号处理电路完成信号的采集和输出。 2、霍尔传感器: 霍尔传感器是基于霍尔效应的一种传感器。霍尔效应是指置于磁场中的静止载流导体, 当它的电流方向与磁场方向不一致时, 载流导体上平行于电流和磁场方向上的两个面之间产生电动势的现象。该电势称霍尔电势。霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有灵敏度高,线性度好,稳定性高、体积小和耐高温等特点。对测速装置的要求是分辨能力强、高精度和尽可能短的检测时间。目前市场上的霍尔传感器都是集成了外围的测量电路输出的是数字信号,即当传感器检测到磁场时将输出高低电平信号。传感器主要包括两部分,一为检测部分的霍尔元件,一为提供磁场的磁钢。霍尔电流传感器反应速度一般在7微妙,根本不用考虑单片机循环判断的时间. 3、光电开关: 光电开关是一种利用感光元件对变化的入射光加以接收, 并进行光电转换, 同时加以某种形式的放大和控制, 从而获得最终的控制输出“开”、“关”信号的器件。上图为典型的光电开关结构图。是一种反射式的光电开关,它的发光元件和接收元件的光轴在同一平面且以某一角度相交,交点一般即为待测物所在处。当有物体经过时, 接收元件将接收到从物体表面反射的光, 没有物体时则接收不到。透射式的光电开关, 它的发光元件和接收元件的光轴是重合的。当不透明的物体位于或经过它们之间时, 会阻断光路, 使接收元件接收不到来自发光元件的光, 这样起到检测作用。光电开关的特点是小型、高速、非接触, 而且与TTL、MOS等电路容易结合。此类传感器目前也多为开关量传感器,输出的为1,0开关量信号,可以和单片机直接连接使用。光电开关广泛应用于工业控制、自动化包装线及安全装置中作光控制和光探测装置。可在自控系统中用作物体检测,产品计数, 料位检测,尺寸控制,安全报警及计算机输入接口等用途。 4、超声波传感器: 利用超声波在超声场中的物理特性和各种效应而研制的装置可称为超声波换能器、探测器或传感器。超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等, 而以压电式最为常用。压电式超声波探头常用的材料是压电晶体和压电陶瓷, 这种传感器统称为压电式超声波探头。它是利用压电材料的压电效应来工作的: 逆压电效应将高频电振动转换成高频机械振动, 从而产生超声波, 可作为发射探头; 而利用正压电效应, 将超声振动波转换成电信号, 可用为接收探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声

最新无线传感器网络知识点归纳

一、无线传感器网络的概述 1、无线传感器网络定义,无线传感器网络三要素,无线传感器网络的任务,无线传感器网 络的体系结构示意图,组成部分(P1-2) 定义:无线传感器网络(wireless sensor network, WSN)是由部署在监测区域内大量的成本很低、微型传感器节点组成,通过无线通信方式形成的一种多跳自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖范围内感知对象的信息,并发送给观察者或者用户 另一种定义:无线传感器网络(WSN)是大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,目的是协作地采集、处理和传输网络覆盖地域内感知对象的监测信息,并报告给用户 三要素:传感器,感知对象和观察者 任务:利用传感器节点来监测节点周围的环境,收集相关的数据,然后通过无线收发装置采用多跳路由的方式将数据发送给汇聚节点,再通过汇聚节点将数据传送到用户端,从而达到对目标区域的监测 体系结构示意图: 组成部分:传感器节点、汇聚节点、网关节点和基站 2、无线传感器网络的特点(P2-4) (1)大规模性且具有自适应性 (2)无中心和自组织 (3)网络动态性强 (4)以数据为中心的网络 (5)应用相关性 3、无线传感器网络节点的硬件组成结构(P4-6) 无线传感器节点的硬件部分一般由传感器模块、处理器模块、无线通信模块和能量供应模块4部分组成。

4、常见的无线传感器节点产品,几种Crossbow公司的Mica系列节点(Mica2、Telosb) 的硬件组成(P6) 5、无线传感器网络的协议栈体系结构(P7) 1.各层协议的功能 应用层:主要任务是获取数据并进行初步处理,包括一系列基于监测任务的应用层软件 传输层:负责数据流的传输控制 网络层:主要负责路由生成与路由选择 数据链路层:负责数据成帧,帧检测,媒体访问和差错控制 物理层:实现信道的选择、无线信号的监测、信号的发送与接收等功能 2.管理平台的功能 (1)能量管理平台管理传感器节点如何使用能源。 (2)移动管理平台检测并注册传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪邻居的位置。 (3)任务管理平台在一个给定的区域内平衡和调度监测任务。 6、无线传感器网络的应用领域(P8-9) (1)军事应用 (2)智能农业和环境监测 (3)医疗健康 (4)紧急和临时场合 (5)家庭应用 (6)空间探索

生物传感器综述

生物传感器综述

————————————————————————————————作者: ————————————————————————————————日期: ?

生物传感器课程论文 论文题目:生物传感器技术在环境分析 与检测方面的应用研究进展专业: 分析化学 姓名:雷杰 学号:12015130529 指导教师:晋晓勇 时间:2015年10月23日

生物传感器技术在环境分析与检测方面的应用研究进展 摘要:生物传感器作为一类新兴传感器,它是以生物分子敏感元件,将化学信号、热信号、光信号转换成电信号或者直接产生电信号予以放大输出,从而得到检测结果。文章综述了生物传感器在环境监测,包括水环境、大气环境等领域的应用和最新进展,并展望了环境监测生物传感器的发展前景及发展方向。 关键词:生物传感器技术;环境分析检测;

0.前言 生物传感器这门课属于分析化学和生物化学的一门交叉学科,它涉及到生物化学、电化学等多个基础学科。就目前生物传感器研究的历史阶段,它仍然处于十分活跃的研究阶段,生物传感器的研究逐渐变得专业化、微型化、集成化、也有一些生物相容的生物传感器,生物可控和智能化的传感器制成[1]。基于生物传感器的基本结构和性能,从它的选择性,稳定性,灵敏度和传感器系统的集成化发展的特点和趋势,科研人员主要研究生物传感器在医疗、食品工业和环境监测等方面,它的发展对生产生活都有极大影响,尤其是生物传感器专一性好、易操作、设备简单、可现场检测、便携式、测量快速准确、适用范围广,从而深受研究者的青睐。本文主要概述了近三年来生物传感器在环境分析与检测方面的应用研究,从而对以后生物传感器技术的研究有所帮助与借鉴。 1.生物传感器技术 1.1生物传感器的组成及工作原理 生物传感器主要是由生物识别和信号分析两部分组成。生物识别部分是由具有分子识别能力的生物敏感识别元件构成,包括细胞、生物素、酶、抗体及核酸。信号分析部分通常叫换能器。它们的工作原理一般是根据物质电化学、光学、质量、热量、磁性等,物理化学性质将被分析物与生物识别元件之间反应的信号转变成易检测、量化的另一种信号,比如电信号、焚光信号等,再经过信号读取设备的转换过程,最终得到可以对分析物进行定性或定量检测的数据[2]。 生物传感器识别和检测待测物的工作原理:首先,待测物分子与识别元素接触;然后,识别元素把待测物分子从样品中分离出来;接着,转换器将识别反应相应的信号转换成可分析的化学或物理信号;最后,使用现代分析仪器对输出的信号进行相应的转换,将输出信号转化为可识别的信号。生物传感器的各个部分包括分析装置、仪器和系统也由此构成。生物传感器中的识别元素决定了传感器的特异性,是生物定性识别的决定因素;识别元素与待测分子的亲合力,以及换能器和检测仪表的精密度,在很大程度上决定了传感器的灵敏度和响应速度。

相关主题
文本预览
相关文档 最新文档