当前位置:文档之家› 运筹学各章的题

运筹学各章的题

运筹学各章的题
运筹学各章的题

《运筹学》各章的作业

----复习思考题及作业题

第一章绪论

复习思考题

1、从运筹学产生的背景认识本学科研究的内容和意义。

2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。

3、体会运筹学的学习特征和应用领域。

第二章线性规划建模及单纯形法

复习思考题

1、线性规划问题的一般形式有何特征?

2、建立一个实际问题的数学模型一般要几步?

3、两个变量的线性规划问题的图解法的一般步骤是什么?

4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误?

5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。

6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。

7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。

8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法?

9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢?

10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段?

作业题:

1、把以下线性规划问题化为标准形式:

(1) max z= x1-2x2+x3

s.t. x1+x2+x3≤12

2x1+x2-x3≥ 6

-x1+3x2=9

x1, x2, x3≥0

(2) min z= -2x1-x2+3x3-5x4

s.t x1+2x2+4x3-x4≥ 6

2x1+3x2-x3+x4=12

x1+x3+x4≤ 4

x1, x2, x4≥0

(3) max z= x1+3x2+4x3

s.t. 3x1+2x2≤13

x2+3x3≤17

2x1+x2+x3=13

x1, x3≥0

2、用图解法求解以下线性规划问题

(1) max z= x1+3x2

s.t. x1+x2≤10

-2x1+2x2≤12

x1≤7

x1, x2≥0

(2) min z= x1-3x2

s.t. 2x1-x2≤4

x1+x2 ≥3

x2≤5

x1≤4

x1, x2≥0

3、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。

max z= 2x1+x2-x3

s.t. x1+ x2+2x3≤6

x1+4x2-x3≤4

x1, x2, x3≥0

4、用单纯形表求解以下线性规划问题

(1) max z= x1-2x2+x3

s.t. x1+x2+x3≤12

2x1+x2-x3≤ 6

-x1+3x2≤9

x1, x2, x3≥0

(2) min z= -2x1-x2+3x3-5x4

s.t x1+2x2+4x3-x4≤ 6

2x1+3x2-x3+x4≤12

x1+x3+x4≤ 4

x1, x2, x3, x4≥0

5、用大M法和两阶段法求解以下线性规划问题

(1) Max z= x1+3x2+4x3

s.t. 3x1+2x2≤13

x2+3x3≤17

2x1+x2+x3=13

x1, x2, x3≥0

(2) max z= 2x1-x2+x3

s.t. x1+x2-2x3≤8

4x1-x2+x3≤2

2x1+3x2-x3≥4

x1, x2, x3≥0

6、某饲养场饲养动物,设每头动物每天至少需要700克蛋白质、30克矿物质、100毫克维生素。现有五种饲料可供选用,各种饲料每公斤营养成分含量及单价如下表所示:

7、某工厂生产Ⅰ、Ⅱ、Ⅲ、Ⅳ四种产品,产品Ⅰ需依次经过A、B两种机器加工,产品Ⅱ需依次经过A、C两种机器加工,产品Ⅲ需依次经过B、C两种机器加工,产品Ⅳ需依次经过A、B机器加工。。有关数据如表所示,请为该厂制定一个最优生产计划。

第三章线性规划问题的对偶及灵敏度分析

复习思考题

1、对偶问题和它的经济意义是什么?

2、简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么?

3、什么是资源的影子价格?它和相应的市场价格之间有什么区别?

4、如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检验数之间的关系?

5、利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?

6、在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意义是什么?

7、在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ,其经济意义是什么? 8、关于i j j i b c a ,,单个变化对线性规划问题的最优方案及有关因素将会产生什么影响?有多少种不同情况?如何去处理?

9、线性规划问题增加一个变量,对它原问题的最优方案及有关因素将会产生什么影响?如何去处理?

10、线性规划问题增加一个约束,对它原问题的最优方案及有关因素将会产生什么影响?如何去处理?

作业题

1、写出以下问题的对偶问题

(1) min z= 2x 1 +3x 2 +5x 3 +6x 4

s.t. x 1 +2x 2 +3x 3 +x 4 ≥2

-2x 1 -x 2 -x 3 +3x 4 ≤-3

x 1,

x 2,

x 3, x 4 ≥0

(2) min z= 2x 1 +3x 2 -5x 3

s.t. x 1 +x 2 -x 3 +x 4 ≥5

2x 1

+x 3

≤4

x 2 +x 3 +x 4

=6

x 1≤0, x 2≥0, x 3≥0, x 4无符号限制

2、已知如下线性规划问题

Max z= 6x 1 -2x 2 +10x 3 s.t. x 2 + 2x 3 ≤5 3x 1 -x 2 + x 3 ≤10

x 1,

x 2,

x 3

≥0

其最优单纯形表为

(1)写出原始问题的最优解、最优值、最优基 B 及其逆 B -1

(2)写出原始问题的对偶问题,并从上表中直接求出对偶问题的最优解。

3、用对偶单纯形法求解以下问题

(1) min z= 4x1+6x2+18x3

s.t. x1+3x3≥3

x2+2x3≥5

x1, x2, x3≥0

(2) min z= 10x1+6x2

s.t. x1+x2≥2

2x1-x2≥6

x1, x2≥0

4、已知以下线性规划问题

max z= 2x1+x2-x3

s.t. x1+2x2+x3≤8

-x1+x2-2x3≤4

x1, x2, x3≥0

及其最优单纯形表如下:

(1) 求使最优基保持不变的c2=1的变化范围。如果c2从1变成5,最优基是否变化,如果变化,求出新的最优基和最优解。

(2) 对c1=2进行灵敏度分析,求出c1由2变为4时的最优基和最优解。

(3) 对第二个约束中的右端项b2 = 4 进行灵敏度分析,求出b2 从 4 变为 1 时新的最优基和最优解。

(4) 增加一个新的变量x6,它在目标函数中的系数c6 = 4,在约束条件中的系数向

量为a

6

1

2

=

?

?

?

?

?

?,求新的最优基和最优解。

(5) 增加一个新的约束x2+x3≥2,求新的最优基和最优解。

5、某工厂用甲、乙、丙三种原料生产A 、B 、C 、D 四种产品,每种产品消耗原料定额以及三种原料的数量如下表所示:

(1)求使总利润最大的生产计划和按最优生产计划生产时三种原料的耗用量和剩余量。

(2)求四种产品的利润在什么范围内变化,最优生产计划不会变化。 (3)求三种原料的影子价格。

(4)在最优生产计划下,哪一种原料更为紧缺?如果甲原料增加120吨,这时紧缺程

度是否有变化?

第四章 运输问题

复习思考题

1、运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等

于1-+n m ?

2、用西北角法确定运输问题的初始基本可行解的基本步骤是什么?

3、最小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到运输问题的最优方案?

4、试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意义是什么?

5、用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回路?这闭回路是否是唯一的?

6、试述用位势法求检验数的原理、步骤和方法。

7、试给出运输问题的对偶问题(对产销平衡问题)。

8、如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平衡的运输问题。

9、一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型?

作业题

1、求解下列产销平衡的运输问题,下表中列出的为产地到销地之间的运价。 (1) 用西北角法、最小元素法求初始基本可行解;

(2) 由上面所得的初始方案出发,应用表上作业法求最优方案,并比较初始方案

2、用表上作业法求下列产销平衡的运输问题的最优解:(表上数字为产地到销地的运价,M 为任意大的正数,表示不可能有运输通道)

(1

(2)

3、用表上作业法求下列产销不平衡的运输问题的最优解:(表上数字为产地到销地的里程,

M 为任意大的正数,表示不可能有运输通道)。

(1)

(2)

4、某农民承包了5块土地共206亩,打算小麦、玉米和蔬菜三种农作物,各种农作物的计划播种面积(亩)以及每块土地种植各种不同的农作物的亩产数量(公斤)见

1200)减去每一个亩产量,得到新的求最小的运输表,再进行计算。得到求解的结果后,再通过逆运算得到原问题的解。(想一想为什么?)

第五章动态规划

思考题

主要概念及内容:

多阶段决策过程;阶段及阶段变量;状态、状态变量及可能的状态集合;决策、决策变量及允许的决策集合;策略、策略集合及最优策略;状态转移方程;K-子过程;阶段指标函数、过程指标函数及最优值函数;边界条件、递推方程及动态规划基本方程;最优性原理;逆序法、顺序法。

复习思考题:

1、试述动态规划的“最优化原理”及它同动态规划基本方程之间的关系。

2、动态规划的阶段如何划分?

3、试述用动态规划求解最短路问题的方法和步骤。

4、试解释状态、决策、策略、最优策略、状态转移方程、指标函数、最优值函数、边界条件等概念。

5、试述建立动态规划模型的基本方法。

6、试述动态规划方法的基本思想、动态规划的基本方程的结构及正确写出动态规划基本方程的关键步骤。

作业题

1、用动态规划求解以下网络从A到G的最短路径。

A

B

B

B

C

C

D

D

D

E

E

F 1

2

3

1

2

1

2

3

1

2

5

2

1

6

4

3

7

3

3

3

2

5

4

2

7

10

8

9

7

11

9

12

13

2、某公司有5台设备,分配给所属A,B,C 三个工厂。各工厂获得不同的设备台数所能产生效益(万元)的情况如下表。求最优分配方案,使总效益最大。

3、用动态规划求解以下非线性规划问题: max z = x 1 ? 2 x 2 ·3 x 3 s.t. x 1+3x 2+2x 3 ≤12 x 1 , x 2 , x 3 ≥0

4、某企业生产某种产品,每月月初按订货单发货,生产的产品随时入库,由于空间的限制,仓库最多能够贮存产品90000件。在上半年(1至6月)其生产成本(万元/千件)和产品订单的需求数量情况如下表:

已知上一年底库存量为40千件,要求6月底库存量仍能够保持40千件。

问:如何安排这6个月的生产量,使既能满足各月的定单需求,同时生产成本最低。

第六章 排队论

复习思考题

1、排队论主要研究的问题是什么?

2、试述排队模型的种类及各部分的特征;

3、Kendall 符号C B A Z Y X /////中的各字母分别代表什么意义;

4、理解平均到达率、平均离去率、平均服务时间和顾客到达间隔时间等概念;

5、分别写出泊松分布、负指数分布的密度函数,说明这些分布的主要性质;

6、试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。

7、讨论求解排队论问题的过程?

8、熟悉状态转移速度图的绘制;掌握利用状态转移速度图寻找各状态发生概率之间的关系,导出各状态发生概率与P 0的关系的方法,进而计算有关的各个量。

9、如何对排队系统进行优化(服务率,服务台数量)?

作业题

1、某修理店只有一个修理工,来修理的顾客到达的人数服从Poisson分布,平均每小时4人;修理时间服从负指数分布,每次服务平均需要6分钟。求:(1)修理店空闲的概率;

(2)店内有三个顾客的概率;

(3)店内至少有一个顾客的概率;

(4)在店内平均顾客数;

(5)顾客在店内的平均逗留时间;

(6)等待服务的平均顾客数;

(7)平均等待修理的时间;

2、一个理发店有3名理发员,顾客到达服从Poisson分布,平均到达时间间隔为15秒钟;理发时间服从负指数分布,平均理发时间为0.5分钟。求:

(1)理发店内无顾客的概率;

(2)有n个顾客在理发店内的概率;

(3)理发店内顾客的平均数和排队等待的平均顾客数;

(4)顾客在理发店内的平均逗留时间和平均等待时间;

3、某修理部有一名电视修理工,来此修理电视的顾客到达为泊松流,平均间隔时间为20分钟,修理时间服从负指数分布,平均时间为15分钟。求:

(1)顾客不需要等待的概率;

(2)修理部内要求维修电视的平均顾客数;

(3)要求维修电视的顾客的平均逗留时间;

(4)如果顾客逗留时间超过1.5小时,则需要增加维修人员或设备。问顾客到达率超过多少时,需要考虑此问题?

4、某公用电话亭只有一台电话机,来打电话的顾客为泊松流,平均每小时到达20人。当电话亭中已有n 人时,新到来打电话的顾客将有n/4 人不愿等待而自动离去。已知顾客打电话的时间服从负指数分布,平均用时3分钟。

(1)画出此排队系统的状态转移速度图;

(2)导出此排队系统各状态发生概率之间的关系式,并求出各状态发生的概率;

(3)求打电话顾客的平均逗留时间。

5、某工厂有大量同一型号的机床,其损坏率是服从泊松分布的随机变量,平均每天损坏2 台,机床损坏时每台每天的损失费用为400 元。已知机修车间的修理时间服从负指数分布,平均每台损坏机床的维修时间为1/μ天。又知μ与车间的年开支费用K (K>1900元)的关系如下:

μ( K ) = 0.1 + 0.001 K ;

试决定是该厂生产最经济的K 及μ的值。

作业题的参考解: 第二章

1、把以下线性规划问题化为标准形式:

(1) max z = x 1 -2x 2 +x 3

s.t. x 1 +x 2 +x 3 +x 4 =12

2x 1 +x 2 -x 3 -x 5 = 6 -x 1 +3x 2

= 9

x 1, x 2, x 3, x 4, x 5 ≥ 0

(2) Max f= 2x 1 +x 2 -3x’3 +3x”3 +5x 4

s.t x 1 +2x 2 +4x’3 -4x”3 -x 4 -x 5 = 6 2x 1 +3x 2 -x’3 +x”3 +x 4 =12 x 1

+x’3 -x”3 +x 4 +x 6 = 4

x 1, x 2,

x'3,

x"3, x 4,

x 5, x 6 ≥ 0

(3) max z= x 1 +3x’2 -3x”2 +4x 3

s.t. 3x 1 +2x’2 -2x”2 +x 4 =13

x'2 -x”2 +3x 3

+x 5 =17

2x 1 +x’2 -x”2 +x 3 =13

x 1, x'2, x"2, x 3

x 4,

x 5

≥0

2、(1) x* = (2, 8)T , z* = 26;(2) x* = (0, 5)T , z* = -15 。

3、在以下问题中,列出所有的基,指出其中的可行基,基础可行解以及最优解。

max z= 2x 1 +x 2 -x 3

s.t. x 1 + x 2 +2x 3 ≤6

x 1 +4x 2 -x 3 ≤4

x 1,

x 2,

x 3 ≥0

[

]

A a a a a a 1

234

5==-?????

?1121014101

(1)[

]

B a a B 1

2

1==??????=--?????

?-11144313131311

,//// X B b X B N x x x x x =??????==--????????????=-??????=??????????=??????

????-1211

345431313136420323000//////,

B 1不是可行基,X X B N x x x x x =??????=-??????=??????????=??????

?

?

??1234520323000//,不是基础可行解。

(2)[

]

B a a B 1

2==-??????=-?????

?-3

21121113231313,//// X B b X B N

x x x x x =??????==-????????????=??????=??????????=??????

?

???-1321

245132313136414323000//////, B 2是可行基,X X B N x x x x x =??????=??????

=??????

?

?

??=??????

?

?

??1324514323000//,是基础可行解,目标函数值为: [

][]

z c c x x B T

==??????=-?????

?=-C B b 2

11

3132114323263///

(3)[

]

B a a B 1

3==??????=-?????

?

-4

31

11100111,

B 3是基础可行解,X X B N x x x x x =????

??=

????

?

?=??????????=???????

?

??1423542000,是基础可行解,目标函数值为: [

][]

z c c x x B T

==??????=?????

?=-C B b 3

11

41420428 (4)[

]

B a a B 4==??????=-????

?

?-1

54110111011,

X B b X B N x x x x x =??????==-????????????=-??????=??????????=??????

????-1541

23410116462000,

B 4不是可行基,X X B N x x x x x =????

?

?=

-??????=??????????=??????

?

???1523462000,不是基础可行解。 (5)[

]

B a a B 5==-??????=-????

?

?-2

3

51124119294919,////

X B b X B N x x x x x =??????==-????????????=??????

=??????

????=??????

?

???-2351

1451929491964149209000//////, B 5是可行基,X X B N x x x x x =?????

?=

??????=??????

?

?

??=

??????

?

?

??23145149209000//,是基础可行解,目标函数值为: [

][]

z c c x x B T ==??????=-????

?

?=-=--C B b 51

2

323111492096923////

(6)[

]

B a a B 6==??????=-????

?

?-2

4

611140014114,// X B b X B N x x x x x =??????==-????????????=??????=??????????=??????

?

???-2461

1350141146415000//,

B 6是可行基,X X B N x x x x x =??????=??????=??????????=??????

?

?

??2413515000,是基础可行解,目标函数值为:

[

][]

z c c x x B T ==??????=????

?

?=-C B b 61

2

42410151 (7)[

]

B a a B 7==??????=-????

?

?-2

5

7110411041,

B 7不是可行基,X X B N x x x x x =??????=-??????=??????

?

?

??=

??????

?

?

??2513462000,不是基础可行解。 (8)[

]

B a a B 8==-??????=-????

?

?-3

4

8121100112, X B b X B N x x x x x =??????==-????????????=-??????=??????????=??????

?

???-3481

125011264414000,

B 8

(9)[

]

B a a B 9==-??????=?????

?-3

5

912011120121,// X B b X B N x x x x x =??????==????????????

=??????=??????

????=??????

?

???-3591

1241201216437000//, B 9是可行基,X X B N x x x x x =?????

?=

??????=??????

?

???=??????

?

?

??3512437000,是基础可行解,目标函数值为: [

][]

z c c x x B T ==??????=-????

?

?=--C B b 91

3

53510373 (10

X B b X B N

x x x x x =??????==????????????=??????=??????????=???????

???-45101

12310016464000, B 10是基础可行解,X X B N x x x x x =????

?

?=

????

?

?=???????

???=??????

?

?

??4512364000,目标函数值为: [

][]

z c c x x B T

==??????=?????

?=-C B b 10

14

54500640 在可行基B 2、B 3、B 5、B 6、B 9、B 10中,最优基为B 2,最优解为:

X B b X B N x x x x x =??????==-????????????=??????

=??????????=??????

?

???-1321

245132313136414323000//////, 是基础可行解,目标函数值为:

4、(1) x* =(0, 0, 12, 0, 18, 9 )T , z* = 12;

或 x* =(6, 0, 6, 0, 0, 15 )T , z* = 12 。

(2) x* = (0, 8/3, 0, 4, 14/3, 0, 0)T , z* = -68/3

5、(1) 原问题的最优解:x* = (3, 2, 5 )T , z * = 29

(2) 原问题的最优解:x* = (0, 3, 5, 15, 0, 0)T , z* = 2。

6、解:设五种饲料分别选取54321,,,,x x x x x 公斤,则得下面的数学模型:

543218.03.04.07.02.0min x x x x x Z ++++=

???

????=≥≥++++≥++++≥++++)5,4,3,2,1(01008.022.05.0305.022.05.070012623543215

432154321j x x x x x x x x x x x x x x x x j ;

7、解:设)4,3,2,1(=j x j 为第j 种产品的生产数量,则有

43214321256.295.325.2752385549max x x x x x x x x Z ----+++=

?????????≥≤+≤++≤++0

,,,7015

1012010102015020201043213

24314

21x x x x x x x

x x x x x

其中:49=65-16 ;27.5=200/20 + 150/10 ,依次类推。

第三章

1、写出以下问题的对偶问题

(1) min z= 2x 1 +3x 2 +5x 3 +6x 4

s.t.

x 1 +2x 2 +3x 3 +x 4 ≥2

-2x 1 -x 2 -x 3 +3x 4 ≤-3

x 1,

x 2,

x 3, x 4 ≥0

对偶问题为

max

y= 2w 1 +3w 2 s.t. w 1 +2w 2 ≤2 2w 1 +w 2 ≤3 3w 1 +w 2 ≤5 w 1 -3w 2 ≤6

w 1≥0

w 2≥0

(2) min z= 2x1+3x2-5x3

s.t. x1+x2-x3+x4≥5

2x1+x3≤4

x2+x3+x4=6

x1≤0, x2≥0, x3≥0, x4无符号限制

对偶问题为

max y= 5w1- 4w2+6w3

s.t. w1- 2w2≥2

w1+w3≤3

-w1- w2+w3≤-5

w1+w3=0

w1≥0 w2≥0 w3无符号限制

2、(1)原问题的最优解x* = (5/2, 0, 5/2)T、最优值z* = 40,

2 0 1/2 0

最优基B = 及其逆B-1 =

1 3 1/3

(2)写出原始问题的对偶问题,并从上表中直接求出对偶问题的最优解。

对偶问题为

Min y= 5w1+10w2

s.t. +2w2≤6

w1- w2≤-2

2w1+w2≤10

w1, w2≥0

它的解为:w* = (4 , 2 )T y* = 40

3、(1) 最优解:x* = (0,3,1)T,z* = 36

(2) 最优解:x* = (3,0)T,z* = 30

4、(1) 使最优基保持不变的c2=1的变化范围:3-δ≥0,δ≤3,即c2≤4。

当c2=5,即δ=4,新的最优解为x* = (0,4,0)T,z* = 20;

(2) 对于c1=2,当δ≥-3/2 时,即c1 ≥1/2 时,最优基保持不变。

当c1 = 4 时,δ = 4-2 = 2,最优基保持不变,最优解的目标函数制为z=16+8δ =32。

(3) 右端项b2 = 4 ,当?b2 ≥-12,即b2 ≥ -8 时,最优基不变。

因此,b2 从4 变为 1 时,最优基不变,而新的最优解也不变。

(4) 新的最优基为p1 ,p6

新的最优解为x* = (4,0,0,0,0,4)T,z* = 24。

(5) 新的最优基为p1,p2

新的最优解为x* = (4,2,0,0,6,0)T,z* = 10。

5、 (1) 利润最大化的线性规划模型为:

max z= 25x 1 +12x 2 +14x 3 +15x 4 s.t. 3x 1 +2x 2

+x 3 +4x 4 ≤2400 2x 1 +2x 3

+3x 4 ≤3200

x 1

+3x 2

+2x 4

≤1800

x 1, x 2, x 3, x 4

≥0 最优解为:x* = (0,400,1600,0,0,0,600)T , z* = 27200。即最优生产计划为:产品A 不生产;产品B 生产400万件;产品C 生产1600万件;产品D 不生产,最大利润:27200万元。 这里,原料甲耗用2400吨没有剩余;原料乙耗用3200吨没有剩余;原料丙耗用了1200吨剩余600吨。

(2) 产品A 利润变化范围:-1-δ≤0,δ≥-1,-c 1’=-c 1+δ≥-25-1=-26,即c 1’≤26(万元/万件); 产品B 利润变化范围:

--≤-+≤-+≤--≤???????102154061204140δδδδ///,δδδδ≥-≤≤≥-??

??

???18451216

/,故 -1≤δ≤12, -13≤-c 2’≤0,即:0≤c 2’≤13; 产品C 利润的变化范围:

--≤-+≤-+≤?????10213204120δδδ//,δδδ≥-≤≤????

?1148,故 -1≤δ≤8, -15≤-c 3’≤-6,即:6≤c 3’≤15; 产品D 的变化范围:-21-δ≤0,δ≥-21,-15+δ≥-36,-c 4’≥-36,即c 4’≤36。

(3)原料甲、乙、丙的影子价格分别为:6万元/吨、4万元/吨、0万元/吨。

(4)在最优解中,原料甲的影子价格(6万元/吨)最大,因此这种原料最紧缺。如果原料A 增加120吨,最优单纯形表的右边常数成为:

B b -'=--??????????+??????????=??????????+-??????????=???????

?

??≥11214001203234124001203200180040016006006000180100016004200/////

因此最优基保持不变,影子价格不变,原料的紧缺程度不变。

第四章

1、求解下列产销平衡的运输问题,下表中列出的为产地到销地之间的运价。 (1) 用西北角法、最小元素法求初始基本可行解;

2、

(2)最优方案:最小费用248 (有多解)

3、

(1)最优方案:最小费用980

(2

运筹学考试练习题(天津大学)

07级工管运筹学期末习题课 一、考虑线性规划问题(P )max 0 z CX AX b X ==?? ≥? (1) 若12,X X 均为(P )的可行解,[0,1]λ∈,证明12(1)X X λλ+-也是(P ) 的可行解; (2) 写出(P )的对偶模型(仍用矩阵式表示)。 二、有三个线性规划: (Ⅰ) [Min] z =CX (Ⅱ) [Min] z =CX (Ⅲ) [Min] z =CX 约束条件AX =b 约束条件AX =b 约束条件AX =b X 0 X 0 X 0 已知 X 是(Ⅰ)的最优解,X 是(Ⅱ)的最优解,X *是(Ⅲ)的最优解,Y 是(Ⅰ)的对偶问题的最优解, 试证:(1)()()'-'-≤**C C X X 0; (2) C X X Y b b ()()***-≤-。 三、已知线性规划问题 ?? ? ??=≥+=++++=++++++++=)5,,1(03.00)(max 2 253232221212 143132121115 43322111Λj x t b x x a x a x a t b x x a x a x a st x x x c x c x t c z j 当1t =2t =0时,用单纯形法求得最终表如下: 要求:1. 确定23222113121121321,,,,,,,,,,a a a a a a b b c c c 的值; 2. 当2t =0时,1t 在什么范围内变化上述最优解不变; 3. 当1t =0时,2t 在什么范围内变化上述最优基不变。 1x 2x 3x 4x 5x 3x 5/2 0 1/2 1 1/2 0 1x 5/2 1 -1/2 0 -1/6 1/3 j j z c - -4 -4 -2

运筹学作业3(第二章部分习题)答案

运筹学作业2(第二章部分习题)答案 2.4 给出线性规划问题 123412341234min 2356232.. 2330,1,2,3,4 j z x x x x x x x x s t x x x x x j =+++?+++≥? -+-+≤-??≥=? (1)写出其对偶问题;(2)用图解法解对偶问题;(3)利用(2)的结果及根据对偶问 题性质写出原问题的最优解。 解:(1)原问题的对偶问题为: 12 12121212 12max 2322 23.. 35 36 0,0 w y y y y y y s t y y y y y y =--≤??+≤?? -≤??+≤??≥≤? 或者等价变形为: 12 12121212 12max 232223..3536 0,0 w y y y y y y s t y y y y y y =++≤??-≤?? +≤??-≤??≥≥? (2)用图解法求解对偶问题 12 12121212 max 2322 23.. 3536 w y y y y y y s t y y y y =++≤??-≤?? +≤??-≤ 如图示,可行区域为四边形OABC ,最优顶点为B 点,即(1.6,0.2)y * =, 3.8w * =

(3)利用互补松紧定理及(2)的结果求解原问题: 设原问题的最优解为( )1 23 4x x x x x ** ***=。 由于121.60, 0.20y y * * =>=>,故在最优解()12 3 4x x x x x ** * **=处有: 1234 1234232 2330,1,2,3,4j x x x x x x x x x j ******** * ?+++=??-+-+=-??≥=?? 又因对偶问题第4个约束方程为:1.6-0.6=1<6,故40x * =,代入上式得到: 123 123232 230,1,2,3,4j x x x x x x x j ****** * ?++=??-+-=-??≥=?? 原问题有无穷多个最优解。令30x *=得到解为1 1.6x *=,20.2x *= 即()1.60.200x * =, 3.8z * = 2.8题解答见课堂讲解。 2.9 用对偶单纯形法求解下列线性规划问题: (2) 123 123123123min 524324 .. 63510,,0z x x x x x x s t x x x x x x =++++≥?? ++≥??≥? , 解:先将原问题进行标准形化: 1231234123512345max()524324 .. 63510,,,,0 z x x x x x x x s t x x x x x x x x x -=---++-=?? ++-=??≥? 选45,x x 为基变量,并将问题化为: 1231234123512345max()524324 .. 63510,,,,0z x x x x x x x s t x x x x x x x x x -=------+=-?? ---+=-??≥? 列表计算如下:

运筹学试题答案

运筹学试卷 一、(10分) 某咨询公司,受厂商委托,对新上市的一种新产品进行消费者反映的调查。该公司采用了挨户调查的方法,委托他们调查的厂商以及该公司的市场研究专家对该调查提出下列几点要求: (1)必须调查2000户人家; (2)在晚上调查的户数和白天调查的户数相等; (3)至少应调查700户有孩子的家庭; (4)至少应调查450户无孩子的家庭。 每会见一户家庭,进行调查所需费用为 家庭白天会见晚上会见 有孩子25元30元 无孩子20元24元 问为使总调查费用最少,应调查各类家庭的户数是多少(只建立模型) 二、(10分) 某公司受委托,准备把120万元投资两种基金A和B,其中A基金的每单位投资额为50元,年回报率为10%,B基金的每单位投资额为100元,年回报率为4%。委托人要求在每年的年回报金额至少达到6万元的基础上要求投资风险最小。据测定每单位A基金的投资风险指数为8,每单位B基金的投资风险指数为3,投资风险指数越大表明投资风险越大。委托人要求在B基金中的投资额不少于30万元。为了使总的投资风险最小,该公司应该在基金A和基金B中各投资多少单位这时每年的回报金额是多少 为求该解问题,设 可以建立下面的线性规划模型 使用《管理运筹学》软件,求得计算机解如下图所示, 最优解 目标函数值= 变量值相差值 x1 x2 3 约束松驰/剩余变量对偶价格 1 2 3 目标系数范围 变量下限当前值上限 x1 无上限 x2 无下限 常数项范围 变量下限当前值上限 1 2

3 无下限 根据图回答问题: a.最优解是什么,最小风险是多少 b.投资的年收入是多少 c.每个约束条件的对偶价格是多少 d.当每单位基金A的风险指数从8降为6,而每单位基金B的风险指数从3上升为5时,用百分之一百法则能否断定,其最优解变或不变为什么 e.对图中的右边值范围的上、下限给予具体解释,并阐述如何使用这些信息。 三、(10分) 某造船厂根据合同从当年起连续三年末各提供五条规格型号相同的大型客货轮。已知该厂这三年内生产大型客货轮的能力及每艘客货轮的成本如下表所示。 已知加班生产时,每艘客货轮成本比正常高出10%,又知造出来的客货轮如当年不交货,每艘每积压一年所造成的积压损失为60万元。在签合同时,该厂已积压了两艘未交货的客货轮,而该厂希望在第三年末完成合同后还能储存一艘备用。问该厂应如何安排每年客货轮生产量,使在满足上述各项要求的情况下,总的生产费用为最少建立上述运输问题模型。年度正常生产时间内 可完成的客货轮数加班生产时间内 可完成的客货轮数正常生产时每艘成本 (万元) 1 2 3 3 4 2 3 2 3 600 700 650 四、(10分) 某畜产品公司计划在市区的东、西、南、北四区建立销售门市部,拟议中有10个位置Ai (i=1,2,3,…,10)可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定:在东区由A1,A2,A3三个点中至少选择两个; 在西区由A4,A5两个点中至少选一个; 在南区由A6,A7两个点中至少选一个; 在北区由A8,A9,A10三个点中至多选两个。 Ai各点的设备投资及每年可获利润由于地点不同都是不一样的,预测情况见下表(单位:万元)所示。 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 投资额110 130 160 90 80 100 90 150 170 190 利润31 35 45 17 15 25 20 43 53 56 但投资总额不能超过820万元,问应选择哪几个销售点,可使年利润为最大建立上述问题的整数规划模型。 五、(10分) 某公司拟将某种设备4台,分配给所属的甲、乙、丙三个工厂。各工厂获得此设备后,

(整理)《运筹学》期末考试试题与参考答案

《运筹学》试题参考答案 一、填空题(每空2分,共10分) 1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。 2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。 3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。 4、在图论中,称 无圈的 连通图为树。 5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。 二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2 ?????? ?≥≤≤+≤+0 7810 22122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。 2)min z =-3x 1+2x 2 ????? ????≥≤-≤-≤+-≤+0 ,1 37210 42242212 1212121x x x x x x x x x x 解: ⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺ ⑴ ⑵ ⑶ ⑷ ⑸、⑹

可行解域为abcda ,最优解为b 点。 由方程组? ??==+022 42221x x x 解出x 1=11,x 2=0 ∴X *=???? ??21x x =(11,0)T ∴min z =-3×11+2×0=-33 三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示: A B C 甲 9 4 3 70 乙 4 6 10 120 360 200 300 1)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)

运筹学作业习题

线性规划建模及单纯形法 思考题 主要概念及内容: 线性规划模型结构(决策变量,约束不等式、等式,目标函数);线性规划标准形式; 可行解、可行集(可行域、约束集),最优解;基、基变量、非基变量、基向量、非基 向量;基本解、基本可行解、可行基、最优基。 复习思考题: 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,哪种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基本解、基本可行解、最优解、最优基本解的概念及它 们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个 最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什 么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情 况下,继续第二阶段? 作业习题 1、将下列线性规划问题化为标准型 (1)???????≥=--+-≥-+-≤+-++-+=0,,953413223183622453max 4214321432143214321x x x x x x x x x x x x x x x x x x x z (2)???????≤≥=+-+-≥-+--≤--++++=0 ,0,15 2342722351232243min 4214321432143214 321x x x x x x x x x x x x x x x x x x x f 2、(1)求出下列不等式组所定义的多面体的所有基本解和基本可行解(极点): ?????≥≤++-≤++0,,1243263323 21321321x x x x x x x x x (2)对下述线性规划问题找出所有基本解,指出哪些是基本可行解,并确定最优解. ??? ????≥=-=+-+=+++++=)6,,1(00 31024893631223max 61532143213 21K K j x x x x x x x x x x x x x x z j 3、用图解法求解下列线性规划问题

运筹学各章的作业题答案解析

《管理运筹学》各章的作业 ----复习思考题及作业题 第一章绪论 复习思考题 1、从运筹学产生的背景认识本学科研究的内容和意义。 2、了解运筹学的内容和特点,结合自己的理解思考学习的方法和途径。 3、体会运筹学的学习特征和应用领域。 第二章线性规划建模及单纯形法 复习思考题 1、线性规划问题的一般形式有何特征? 2、建立一个实际问题的数学模型一般要几步? 3、两个变量的线性规划问题的图解法的一般步骤是什么? 4、求解线性规划问题时可能出现几种结果,那种结果反映建模时有错误? 5、什么是线性规划的标准型,如何把一个非标准形式的线性规划问题转化成标准形式。 6、试述线性规划问题的可行解、基础解、基础可行解、最优解、最优基础解的概念及它们之间的相互关系。 7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯一最优解、有无穷多个最优解、无界解或无可行解。 8、在什么样的情况下采用人工变量法,人工变量法包括哪两种解法? 9、大M 法中,M 的作用是什么?对最小化问题,在目标函数中人工变量的系数取什么?最大化问题呢? 10、什么是单纯形法的两阶段法?两阶段法的第一段是为了解决什么问题?在怎样的情况下,继续第二阶段? 作业题: 1、把以下线性规划问题化为标准形式: (1) max z= x1-2x2+x3 s.t. x1+x2+x3≤12 2x1+x2-x3≥ 6 -x1+3x2=9 x1, x2, x3≥0 (2) min z= -2x1-x2+3x3-5x4 s.t x1+2x2+4x3-x4≥ 6 2x1+3x2-x3+x4=12 x1+x3+x4≤ 4 x1, x2, x4≥0

自学考试运筹学基础历年试题和答案

第1章导论 【真题演练】 1、(12年4月)借助于某些正规的计量方法而做出的决策,称为( A ) A.定量决策 B.定性决策 C.混合性决策 D.满意决策 2、(12年4月)利用直观材料,依靠个人经验的主观判断和分析能力,对未来的发展进行预测属于( c ) A.经济预测 B.科技预测 C.定性预测 D.定量预测 3、(11年7月)根据决策人员的主观经验或知识而制定的决策,称之为( B ) A.定量决策 B.定性决策 C.混合性决策 D.满意决策 4、(12年4月)对于管理领域,运筹学也是对管理决策工作进行决策的___计量___方法。 5、(11年7月)运筹学应用多种分析方法,对各种可供选择的方案进行比较评价,为制定最优的管理决策提供___数量___上的依据。 6、(11年4月)作为运筹学应用者,接受管理部门的要求,收集和阐明数据,建立和试验_数学模型_,预言未来作业,然后制定方案,并推荐给经理部门。 7、(10年7月)运筹学把复杂的功能关系表示成_数学模型_,以便通过定量分析为决策提供数量依据。 8、(10年4月)在当今信息时代,运筹学和信息技术方法的分界线将会____消失____,并将脱离各自原来的领域,组合成更通用更广泛的管理科学的形式。 9、(09年7月)决策方法一般分为定性决策、定量决策、___混合型决策___三类。 10、(09年4月)运筹学是一门研究如何有效地组织和管理____人机系统____的科学。 11、(09年4月)名词解释:定性预测 12、(11年7月)名词解释:定量预测 【同步练习】 1、运筹学研究和运用的模型,不只限于数学模型,还有用___符号___表示的模型和___抽象___的模型。 2、在某公司的预算模型中,__收益表__是显示公司效能的模型,___平衡表__是显示公司财务情况的模型。 3、运筹学工作者观察待决策问题所处的环境应包括___部___环境和___外部___环境。 4、企业领导的主要职责是___作出决策___,首先确定问题,然后__制定目标___,确认约束

《运筹学》期末考试试卷A答案

《运筹学》试题样卷(一) 一、判断题(共计10分,每小题1分,对的打√,错的打X ) 1. 无孤立点的图一定是连通图。 2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3. 如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0 >j σ对应的变量 都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如下表所示: 试决定该农场的经营方案,使年净收入为最大。

三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为 (1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分) 3212max x x x Z +-= s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0 五、求解下面运输问题。 (18分) 某公司从三个产地A 1、A 2、A 3 将物品运往四个销地B 1、B 2、B 3、B 4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小? 六、灵敏度分析(共8分) 线性规划max z = 10x 1 + 6x 2 + 4x 3 s.t. x 1 + x 2 + x 3 ≤ 100 10x 1 +4 x 2 + 5 x 3 ≤ 600 2x 1 +2 x 2 + 6 x 3 ≤ 300 x 1 , x 2 , x 3 ≥ 0

上海电机学院运筹学期末考试试题及答案

一、选择题(共20分,每题2分) 1、线性规划模型三个基本要素中不包括( D ) A.决策变量 B.目标函数 C. 约束条件 D.基 2、使用人工变量法求解极大化线性规划问题时,当所有的检验数0≤j σ在基变量中仍含有非零的人工变量,表明该线性规划问题( D ) A .有唯一的最优解 B .有无穷多最优解 C .为无界解 D .无可行解 3、若线性规划的原问题不存在最优解,则对偶问题( B ) A .可能存在最优解 B .不存在最优解 C .一定是无可行解 D .一定是无界解 4、若线性规划问题的某个资源常数发生变化,则在最终单纯形表中这一变化( B ) A .对检验数存在影响 B .对b 列数存在影响 C .对该资源常数所在行的数存在影响 D .对所有数都无影响 5、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基变量个数( C ) A. 不能大于(m+n-1) B. 不能小于(m+n-1) C. 等于(m+n-1) D. 不确定 6、一般讲,对于某一问题的线性规划与该问题的整数规划可行域的关系存在( A ) A.前者大于后者 B.后者大于前者 C.二者相等 D.二者无关 7、如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足( B ) A. 0d + > B. 0d + = C. 0d - = D. 0,0d d -+ >> 8、对于目标规划问题的求解,在满足一个目标时 ( B ) A .必须同时考虑优先级较低的目标 B .不得违背已经得到满足的优先级更高的目标 C .不必顾虑优先级较高的目标 D .无须考虑上述情况 9、关于图论中的图,以下叙述不正确的是( C ) A .图中点表示研究对象,边或有向边表示研究对象之间的特定关系 B .图论中的图,画边时长短曲直无所谓 C .图中的边表示研究对象,点表示研究对象之间的特定关系 D .图论中的图,可以改变点与点的相互位置,只要不改变点与点的连接关系 10、关于最短路,以下叙述正确的有( A ) A. 从起点出发到终点的最短路不一定是唯一的,但其最短路线的长度是确定的 B .从起点出发到终点的最短路是唯一的 C .从起点出发的有向边中的最小权边,一定包含在起点到终点的最短路上 D .从起点出发的有向边中的最大权边,一定不包含在起点到终点的最短路上 二、填空题(共10分,每空1分) 1、线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有某一个非基变量的检验数为 0 。 2、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。 3、线性规划原问题中的变量个数与其对偶问题中的 约束条件 个数相等,因此,当原问题增加一个变量时,对偶问题就增加一个约束条件 ,从而对偶可行域将可能变小 (小还是大)。 4、“如果线性规划原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错。

《运筹学》综合练习题

《 运筹学》综合练习题 第一章 线性规划及单纯形法 1、教材43页——44页1.1题 2、教材44页1.4题 3、教材45页1.8题 4、教材46页1.13题 5、教材46页1.14题 6、补充:判断下述说法是否正确 ● LP 问题的可行域是凸集。 ● LP 问题的基本可行解对应可行域的顶点。 ● LP 问题的最优解一定是可行域的顶点,可行域的顶点也一定是最优解。 ● 若LP 问题有两个最优解,则它一定有无穷多个最优解. ● 求解LP 问题时,对取值无约束的自由变量,通常令 "-'=j j j x x x ,其中∶ ≥"' j j x x ,在用单纯形法求得的最优解中,不可能同时出现 "' j j x x . ● 当用两阶段法求解带有大M 的LP 模型时,若第一阶段的最优目标函数值为零,则可 断言原LP 模型一定有最优解。 7、补充:建立模型 (1)某采油区已建有n 个计量站B 1,B 2…B n ,各站目前尚未被利用的能力为b 1,b 2…b n (吨液量/日)。为适应油田开发的需要,规划在该油区打m 口调整井A 1,A 2…A m ,且这些井的位置已经确定。根据预测,调整井的产量分别为a 1,a 2…a m (吨液量/日)。考虑到原有计量站富余的能力,决定不另建新站,而用原有老站分工管辖调整井。按规划要求,每口井只能属于一个计量站。假定A i 到B j 的距离d ij 已知,试确定各调整井与计量站的关系,使新建集输管线总长度最短。 (2)靠近某河流有两个化工厂(见附图),流经第一个工厂的河流流量是每天500万立方米;在两个工厂之间有一条流量为每天200万立方米的支流。第一个工厂每天排放工业污水2万立方米;第二个工厂每天排放工业污水1.4万立方米 。从第一个工厂排出的污水流到第二个工厂之前,有20%可自然净化。根据环保要求,河流中工业污水的含量不应大于0.2%,若这两个工厂都各自处理一部分污水,第一个工厂的处理成本是1000元/万立方米,第二个工厂的处理成本是800元

2019运筹学期末复习试题(考试范围提纲)

运筹学期末复习范围 第1章 线性规划 1. 线性规划解的分类及判别方法 2. 大M 法求解线性规划目标函数的设法及求解的思想 3. 用单纯形表格求解线性规划 第2章 对偶理论及灵敏度分析 1. 对偶问题的基本性质 2. 已知原问题写出对偶问题 3. 对偶理论:已知对偶问题(原问题)最优解判断原问题(对偶问题)的最优解 4. 灵敏度分析:常数项或者价值系数发生改变时对最优解的影响判别 第3章 运输问题 1. 产销平衡运输问题模型的特点 2. 表上作业法初始基变量的个数的判别 3. 确定初始基可行解的方法:最小元素法(基本思想)和伏格尔法的优缺点比较 最优解的判别方法(检验数的判别) 闭回路法 位势法检验数的求法。 第4章 整数规划 1. 分支定界法如何定界如何分支 2. 0-1整数规划相互排斥的约束条件 3. 最小指派问题 第5章 动态规划 1.动态规划的基本思想(解决哪一类问题) 2.利用动态规划方法求最优解和最优值(顺推法或逆推法) 第6章 图与网络规划 1.图的概念;边和点的关系 2.求最小生成树的方法:破圈法和避圈法的步骤 3.求网络最大流,并找出最小割集。 第7章 无约束极值问题 1.斐波那契法和0.618法两种方法比较的优缺点,以及斐波那契法的区间缩短率。 2.斐波那契法给定两点函数值如何判定保留区间和去掉的区间 3.已知函数,最速下降法求某一点处的搜索方向;共轭梯度法如何确定搜索方向以及迭代终止条件。 第8章 约束极值问题 1.利用K-T 条件求解非线性规划 2.常用的制约函数分类,如何设惩罚函数和障碍函数。 运筹学期末复习试题 1 、内点法求解,构造的障碍函数 ()()3 1212 1,131r r P X r x x x x = +++ +-

2020年运筹学考试复习题及答案

2020年运筹学考试复习题及答案 5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数 第二章线性规划的基本概念 一、填空题 1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。 2.图解法适用于含有两个变量的线性规划问题。 3.线性规划问题的可行解是指满足所有约束条件的解。4.在线性规划问题的基本解中,所有的非基变量等于零。5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关 6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。 7.线性规划问题有可行解,则必有基可行解。 8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。9.满足非负条件的基本解称为基本可行解。 10.在将线性规划问题的一般形式转化为标准形式时,引入的

松驰数量在目标函数中的系数为零。 11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。 13.线性规划问题可分为目标函数求极大值和极小_值两类。14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。 15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解 16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。 18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。 19.如果某个变量X j为自由变量,则应引进两个非负变量X j′,X j〞,同时令X j=X j′-X j。 20.表达线性规划的简式中目标函数为max(min)Z=∑c ij x ij。 21..(2.1 P5))线性规划一般表达式中,a ij表示该元素位置在i 行j列。 二、单选题 1.如果一个线性规划问题有n个变量,m个约束方程(m

最全的运筹学复习题及答案78213

最全的运筹学复习题及 答案78213

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250 ,280和120件。问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋 90根,长度为4米的 钢筋60根,问怎样下料,才能使所使用的原材料最省? 1.某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示:起运时间服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相 当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 X l X2X3X4 —10 b -1 f g X3 2 C O 1 1/5 X l a d e 0 1 (1)求表中a~g的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2)表中给出的解为最优解 第四章线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

运筹学 各章习题

思考题、主要概念及内容 1、了解运筹学的分支,运筹学产生的背景、研究的内容和意义。 2、了解运筹学在工商管理中的应用。 3、体会管理运筹学使用相应的计算机软件,注重学以致用的原则。 第二章 思考题、主要概念及内容 图解法、图解法的灵敏度分析 复习题 1. 考虑下面的线性规划问题: max z=2x1+3x2; 约束条件: x1+2x2≤6, 5x1+3x2≤15, x1,x2≥0. (1) 画出其可行域. (2) 当z=6时,画出等值线2x1+3x2=6. (3) 用图解法求出其最优解以及最优目标函数值. 2. 用图解法求解下列线性规划问题,并指出哪个问题具有惟一最优解、无穷多最优解、无界解或无可行解.(1) min f=6x1+4x2; 约束条件: 2x1+x2≥1, 3x1+4x2≥3, x1,x2≥0. (2) max z=4x1+8x2; 约束条件: 2x1+2x2≤10, -x1+x2≥8, x1,x2≥0. (3) max z=3x1-2x2; 约束条件:

2x1+2x2≥4, x1,x2≥0. (4) max z=3x1+9x2; 约束条件: x1+3x2≤22, -x1+x2≤4, x2≤6, 2x1-5x2≤0, x1,x2≥0 3. 将下述线性规划问题化成标准形式: (1) max f=3x1+2x2; 约束条件: 9x1+2x2≤30, 3x1+2x2≤13, 2x1+2x2≤9, x1,x2≥0. (2) min f=4x1+6x2; 约束条件: 3x1-x2≥6, x1+2x2≤10, 7x1-6x2=4, x1,x2≥0. (3) min f=-x1-2x2; 约束条件: 3x1+5x2≤70, -2x1-5x2=50, -3x1+2x2≥30, x1≤0,-∞≤x2≤∞. (提示:可以令x′1=-x1,这样可得x′1≥0.同样可以令x′2-x″2=x2,其中x′2,x″2≥0.可见当x′2≥x″2时,x2≥0;当x′2≤x″2时,x2≤0,即-∞≤x2≤∞.这样原线性规划问题可以化为含有决策变量x′1,x′2,x″2的线性规划问题,这里决策变量x′1,x′2,x″2≥0.) 4. 考虑下面的线性规划问题: min f=11x1+8x2; 约束条件: 10x1+2x2≥20, 3x1+3x2≥18, 4x1+9x2≥36, x1,x2≥0. (1) 用图解法求解. (2) 写出此线性规划问题的标准形式. (3) 求出此线性规划问题的三个剩余变量的值.

(完整版)运筹学》习题答案运筹学答案

《运筹学》习题答案 一、单选题 1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解()B A.任意网络 B.无回路有向网络 C.混合网络 D.容量网络 2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?()B A.非线性问题的线性化技巧 B.静态问题的动态处理 C.引入虚拟产地或者销地 D.引入人工变量 3.静态问题的动态处理最常用的方法是?B A.非线性问题的线性化技巧 B.人为的引入时段 C.引入虚拟产地或者销地 D.网络建模 4.串联系统可靠性问题动态规划模型的特点是()D A.状态变量的选取 B.决策变量的选取 C.有虚拟产地或者销地 D.目标函数取乘积形式 5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。C A.降低的 B.不增不减的 C.增加的 D.难以估计的 6.最小枝权树算法是从已接接点出发,把( )的接点连接上C A.最远 B.较远 C.最近 D.较近 7.在箭线式网络固中,( )的说法是错误的。D A.结点不占用时间也不消耗资源 B.结点表示前接活动的完成和后续活动的开始 C.箭线代表活动 D.结点的最早出现时间和最迟出现时间是同一个时间 8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。C A.1200 B.1400 C.1300 D.1700 9.在求最短路线问题中,已知起点到A,B,C三相邻结点的距离分别为15km,20km,25km,则()。D A.最短路线—定通过A点 B.最短路线一定通过B点 C.最短路线一定通过C点 D.不能判断最短路线通过哪一点 10.在一棵树中,如果在某两点间加上条边,则图一定( )A A.存在一个圈 B.存在两个圈 C.存在三个圈 D.不含圈 11.网络图关键线路的长度( )工程完工期。C A.大于 B.小于 C.等于 D.不一定等于

运筹学练习题

《运筹学》--- 数据、模型与决策练习题 2010年9月 一、线性规划:基本概念 1、下面的表格总结了两种产品A和B的关键信息以及生产所需的资源Q, R, S: 满足所有线性规划假设。 (1)在电子表格上为这一问题建立线性规划模型; (2)用代数方法建立一个相同的模型; (3)用图解法求解这个模型。 2、今天是幸运的一天,你得到了10000美元的奖金。除了将4000美元用于交税和请客之外,你决定将剩余的6000美元用于投资。两个朋友听到这个消息后邀请你成为两家不同公司的合伙人,每一个朋友介绍了一家。这两个选择的每一个都将会花去你明年夏天的一些时间并且要花费一些资金。在第一个朋友的公司中成为一个独资人要求投资5000美元并花费400小时,估计利润(不考虑时间价值)是4500美元。第二个朋友的公司的相应数据为4000美元和500小时,估计利润为4500美元。然而每一个朋友都允许你根据所好以任意比例投资。如果你选择投资一定比例,上面所有给出的独资人的数据(资金投资、时间投资和利润)都将乘以一个相同的比例。 因为你正在寻找一个有意义的夏季工作(最多600小时),你决定以能够带来最大总估计利润的组合参与到一个或全部朋友的公司中。你需要解决这个问题,找到最佳组合。 (1)为这一问题建立电子表格模型。找出数据单元格、可变单元格、目标单元格,并且用SUMPRODUCT函数表示每一个输出单元格中的Excel等式。 (2)用代数方法建立一个同样的模型。 (3)分别用模型的代数形式和电子表格形式确定决策变量、目标函数、非负约束、函数约束和参数。 (4)使用图解法求解这个模型。你的总期望利润是多少 3、伟特制窗(Whitt Window)公司是一个只有三个雇员的公司,生产两种手工窗户:木框窗户和铝框窗户。公司每生产一个木框窗户可以获利60美元,一个铝框窗户可以获利30

《管理运筹学》期末考试试题

《管理运筹学》期末考试试题 一、单项选择题(共5小题,每小题3分,共15分) 1.如果一个线性规划问题有n个变量,m个约束方程(m

3. 写出下面线性规划问题的对偶问题: 123123123123123min z 25, 258, 23 3,.. 4 26, ,,0. x x x x x x x x x s t x x x x x x =++-+≤??++=??-+≤??≥? 四、计算下列各题(每题20分,合计40分) 1. 用单纯形法求解下列线性规划的最优解: 012121212max 2..32250,0x x x s t x x x x x x =+??≤??≤??+≤??≥≥? 2.用割平面法求解整数规划问题。 12 121212 max 7936735,0,z x x x x x x x x =+-+≤??+≤??≥?且为整数

运筹学作业题

1.已知某线性规划问题的初始单纯形表和用单纯形表法迭代后得到的表1,试求括号中未知数a-l的数值。 解: (1)X5是基变量,检验数l=0 (2)x1是基变量,则,g=1,h=0 (3)x4行乘以1/2得到迭代后的x1行 所以,f=6*1/2=3, b=2,c=4,d=-2 (4)x4行乘以1/2加到x5行上,得到迭代后的x5行 所以,c*1/2+3=i,i=5,d*1/2+e=1, e=2 (5)迭代前为初始单纯形表,价值系数为初始表检验数 所以,x2价值系数为-1,x3价值系数为2,x4价值系数为0 则,-7=-1-(2a-0*i),所以a=3 j=2-(-a)=5;k=0-(1/2*a+1/2*0)=-3/2 即,a=3,b=2,c=4,d=-2,e=2, f=3, g=1, h=0, i=5, j=5, k= -3/2, l=0 2.已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯

解:初始单纯形表中的单位矩阵,在最终单纯形表中变化为B -1 (1) ????????????--=-21043041411 h i l B ????? ?????=????????????????????? ?--==-2/54/254/520152********** 'b h i l b B b 在最终表中,x 4是基变量,所以l =1 所以,b=10,i=-1/4,h=-1/2 (2) ????? ?????=??????????????????????----==-0102121210414304141111'1a p B p 则a=2 (3)???? ??????=??????????????????????----==-1001121210414304141121'2c p B p 则c=3 以此类推其它未知数取值。 即,a=2 b=10 c=3 d=1/4 e=5/4 f=-1/2 g=-3/4 h= -1/2 i= -1/4 j= -1/4 k=0 l=1 3.给出线性规划问题 ???? ? ????=≥≤++ ≤+ + ≤+≤+++++=) 4,...,1(09 66283.42max 3 214 3 2 2 1 42 14 321j x x x x x x x x x x x x st x x x x z j 要求:(1)写出其对偶问题;(2)已知原问题最优解为X*=(2,2,4,0),试根据对偶理论,直接写出对偶问题的最优解。 解:(1)其对偶问题为 ???? ?????=≥≥+≥+ ≥++ +≥+++++=) 4,...,1(01 14322.9668min 3 14 3 432 142 1 4321j y y y y y y y y y y y y st y y y y w j (2)根据对偶理论知,4,2,2321===x x x 均绝对大于零,所以其变量对应的对偶问题

运筹学作业2(清华版第二章部分习题)答案

运筹学作业2(第二章部分习题)答案 2.1 题 (P . 77) 写出下列线性规划问题的对偶问题: (1)123123123123123m ax 224..34223343500,z x x x s t x x x x x x x x x x x x =++? ? ++≥??++≤? ? ++≤? ≥≥??无约束,; 解:根据原—对偶关系表,可得原问题的对偶规划问题为: 123123123123123m ax 235..223424334,0,0w y y y s t y y y y y y y y y y y y =++??++≤??++≤? ?++=? ≥≤≤?? (2)111 1 m in ,1,,,1,,0,1,,;1,,m n ij ij i j n ij ij i j n ij ij j j ij z c x c x a i m c x b j n x i m j n ====?=? ? ? ==????==??≥==??∑∑∑∑ 解:根据原—对偶关系表,可得原问题的对偶规划问题为: 11m ax 1,,;1,,m n i i j j i j i j ij i w a u b v u v c i m j n u ==? =+???+≤? ?==? ??∑∑ j 无约束,v 无约束 2.2判断下列说法是否正确,为什么? (1) 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。 因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。但,现实中肯定有一些问题是无最优解的,故本题说法不对。

例如原问题 12 12212m ax 31..30,0z x x x x s t x x x =++≥??≤? ?≥≥?有可行解,但其对偶问题 12 11212m in 33..10,0w y y y s t y y y y =+≥??+ ≥??≤≥?无可行解。 (2) 如果线性规划的对偶问题无可行解,则原问题也一定无可行解; 答:错,如(1)中的例子。 (3) 在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或求极小,原问题可 行解的目标函数值一定不超过其对偶问题可行解的目标函数值。 答:错。正确说法是:在互为对偶的一对原问题与对偶问题中,求极大的问题可行解的目标函数值一定不超过求极小的问题可行解的目标函数值。 (4) 任何线性规划问题具有唯一的对偶问题。 答:正确。 2.5给出线性规划问题 123 123123123123m ax 221.. 22 0,0,0z x x x x x x x x x s t x x x x x x =+++-≤? ?-+=?? ++≥??≥≥≥? 写出其对偶问题;(2)利用对偶问题性质证明原问题目标函数值1z ≤ 解:(1)原问题的对偶问题为: 123 123123123123m in 22212.. 10,,0w y y y y y y y y y s t y y y y y y =++++≥? ?-+≤?? -++=? ?≥≤?无约束 (2)取()011T y =,既1230,1,0y y y ===,经验证,()011T y =是对偶问题的一个可行解,并且1w =。由对偶问题的性质可得1z w ≤= 2.9 用对偶单纯形法求解下列线性规划问题: (2)123 123123 123m in 524324..63510,,0z x x x x x x s t x x x x x x =++++≥??++≥??≥? ,

相关主题
文本预览
相关文档 最新文档