当前位置:文档之家› 苏州市2018届高三上学期期中考试数学试题

苏州市2018届高三上学期期中考试数学试题

苏州市2018届高三第一学期期中调研试卷

数 学

一、填空题(本大题共14小题,每小题5分,共70分,请把答案直接填写在答卷纸...相应的位置) 1.已知集合{1,2,3,4,5},{1,3},{2,3}U A B ===,则()U A B = ▲ . 2.函数1

ln(1)

y x =

-的定义域为 ▲ .

3.设命题:4p x >;命题2:540q x x -+≥,那么p 是q 的 ▲ 条件(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”).

4.已知幂函数2

2*()m m y x m -=∈N 在(0,)+∞是增函数,则实数m 的值是 ▲ . 5.已知曲线3()ln f x ax x =+在(1,(1))f 处的切线的斜率为2,则实数a 的值是 ▲ . 6.已知等比数列{}n a 中,32a =,4616a a =,则

79

35

a a a a -=- ▲ .

7.函数sin(2)(0)2

y x ??π

=+<<图象的一条对称轴是12

x π

=

,则?的值是 ▲ . 8.已知奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,则不等式()

01

f x x >-的解集为 ▲ .

9.已知tan()24

απ

-=,则cos2α的值是 ▲ .

10.若函数8,2

()log 5,2a

x x f x x x -+?=?

+>?≤(01)a a >≠且的值域为[6,)+∞,则实数a 的取值范围是 ▲ . 11.已知数列{},{}n n a b 满足1111

,1,(*)21

n n n n a a b b n a +=+==∈+N ,则122017b b b ??

= ▲ .

12.设ABC △的内角,,A B C 的对边分别是,,a b c ,D 为AB 的中点,若cos sin b a C c A =+

且CD =,

则ABC △面积的最大值是 ▲ .

13.已知函数()sin()6

f x x π=-,若对任意的实数5[,]62

αππ

∈-

-,都存在唯一的实数[0,]m β∈,使()()0f f αβ+=,则实数m 的最小值是 ▲ .

14.已知函数ln ,0

()21,0x x f x x x >?=?+?

≤,若直线y ax =与()y f x =交于三个不同的点(,()),(,()),A m f m B n f n

(,())C t f t (其中m n t <<),则1

2n m

+

+的取值范围是 ▲ . 二、解答题(本大题共6个小题,共90分,请在答题卷区域内作答,解答时应写出文字说明、证明过程或

演算步骤)

已知函数

21 ()sin(2)(

0,0)

42

f x ax b a b

π

=-+++>>的图象与x轴相切,且图象上相邻两个最高点之

间的距离为

2

π

(1)求,a b的值;

(2)求()

f x在[0,]

4

π

上的最大值和最小值.

16.(本题满分14分)

在ABC

△中,角A,B,C所对的边分别是a,b,c,已知sin sin sin()

B C m A m

+=∈R,且240

a bc

-=.(1)当

5

2,

4

a m

==时,求,b c的值;

(2)若角A为锐角,求m的取值范围.

17.(本题满分15分)

已知数列{}

n

a的前n项和是

n

S,且满足

1

1

a=,*

1

31()

n n

S S n

+

=+∈N.

(1)求数列{}

n

a的通项公式;

(2)在数列{}

n

b中,

1

3

b=,*

1

1

()

n

n n

n

a

b b n

a

+

+

-=∈N,若不等式2

n n

a b n

λ+≤对*

n∈N有解,求实数λ的取值范围.

18.(本题满分15分)

如图所示的自动通风设施.该设施的下部ABCD是等腰梯形,其中AB为2米,梯形的高为1米,CD 为3米,上部CmD是个半圆,固定点E为CD的中点.MN是由电脑控制可以上下滑动的伸缩横杆(横杆面积可忽略不计),且滑动过程中始终保持和CD平行.当MN位于CD下方和上方时,通风窗的形状均为矩形MNGH(阴影部分均不通风).

(1)设MN与AB之间的距离为

5

(0

2

x x<

≤且1)

x≠米,试将通风窗的通风面积S(平方米)表示成关于x的函数()

y S x

=;

(2)当MN与AB之间的距离为多少米时,通风窗的通风面积S取得最大值?

已知函数2()ln ,()f x x g x x x m ==--. (1)求过点(0,1)P -的()f x 的切线方程;

(2)当0=m 时,求函数()()()F x f x g x =-在],0(a 的最大值;

(3)证明:当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1[,1]2

x ∈均成立(其中e 为自然对数的底数,e 2.718...=).

20.(本题满分16分)

已知数列{}n a 各项均为正数,11a =,22a =,且312n n n n a a a a +++=对任意*n ∈N 恒成立,记{}n a 的前n 项和为n S .

(1)若33a =,求5a 的值;

(2)证明:对任意正实数p ,221{}n n a pa -+成等比数列;

(3)是否存在正实数t ,使得数列{}n S t +为等比数列.若存在,求出此时n a 和n S 的表达式;若不存在,说明理由.

2017—2018学年第一学期高三期中调研试卷

数学(附加题部分)

21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)(本小题满分10分)

如图,AB 为圆O 的直径,C 在圆O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交圆O 于

E ,030AEC ∠=.

(1)求证:AF FO =;

(2

)若CF =,求AD AE ?的值.

B .(矩阵与变换)(本小题满分10分)

已知矩阵1221??=????A ,42α??

=??

??

,求49αA 的值.

C .(极坐标与参数方程)(本小题满分10分)

在平面直角坐标系中,直线l 的参数方程为425

25x t y t ?

=-+????=??

(t 为参数),以原点O 为极点,x 轴正半轴为

极轴建立极坐标系,圆C

的极坐标方程为cos()(0)4

a ρθπ

-≠. (1)求直线l 和圆C 的直角坐标方程;

(2)若圆C 任意一条直径的两个端点到直线l

a 的值.

D .(不等式选讲)(本小题满分10分)

设,x y 均为正数,且x y >,求证:22

1

2232x y x xy y

++-+≥.

B

【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)

在小明的婚礼上,为了活跃气氛,主持人邀请10位客人做一个游戏.第一轮游戏中,主持人将标有数字1,2,…,10的十张相同的卡片放入一个不透明箱子中,让客人依次去摸,摸到数字6,7,…,10的客人留下,其余的淘汰,第二轮放入1,2,…,5五张卡片,让留下的客人依次去摸,摸到数字3,4,5的客人留下,第三轮放入1,2,3三张卡片,让留下的客人依次去摸,摸到数字2,3的客人留下,同样第四轮淘汰一位,最后留下的客人获得小明准备的礼物.已知客人甲参加了该游戏. (1)求甲拿到礼物的概率;

(2)设ξ表示甲参加游戏的轮数..,求ξ的概率分布和数学期望()E ξ.

23.(本小题满分10分)

(1)若不等式(1)ln(1)x x ax ++≥对任意[0,)x ∈+∞恒成立,求实数a 的取值范围; (2)设*n ∈N ,试比较11

1

23

1

n +++

+与ln(1)n +的大小,并证明你的结论.

2017—2018学年第一学期高三期中调研试卷

数 学 参 考 答 案

一、填空题(本大题共14小题,每小题5分,共70分)

1.{1} 2.(1,2)

(2,)+∞ 3.充分不必要 4.1 5.1

3

6.4 7.3

π

8.(2,0)(1,2)- 9.45- 10.(1,2]

11.12018 12

1 13.2

π

14.1(1,e )e +

二、解答题(本大题共6个小题,共90分) 15.(本题满分14分)

解:(1)∵()f x 图象上相邻两个最高点之间的距离为

2

π

, ∴()f x 的周期为

2

π,∴202||2a a ππ=>且,·

·····································································2分 ∴2a =,··················································································································4分

此时1

())42

f x x b π=+++, 又∵()f x 的图象与x 轴相切,

∴1||02b b +=>,·

······················································6分

∴1

22

b =-;

··········································································································8分 (2)由(1

)可得())242

f x x π=-++

, ∵[0,]4x π∈,∴4[,]444

x ππ5π

+∈,

∴当444x π5π+

=

,即4

x π

=时,()f x

;·················································11分 当442x ππ+=,即16

x π

=时,()f x 有最小值为0.························································14分

16.(本题满分14分)

解:由题意得b c ma +=,240a bc -=.···············································································2分

(1)当52,4a m ==

时,5

,12

b c bc +==, 解得212b c =???=??或122

b c ?

=??

?=?;································································································6分

(2)2

2

222222

22

()()22cos 23222

a ma a

b

c a b c bc a A m a bc bc

--+-+--====-,····························8分 ∵A 为锐角,∴2cos 23(0,1)A m =-∈,∴

23

22

m <<,·

···················································11分 又由b c ma +=可得0m >,·························································································13分

6

22

m <<·

····································································································14分 17.(本题满分15分)

解:(1)∵*131()n n S S n +=+∈N ,∴*131(,2)n n S S n n -=+∈N ≥,

∴*13(,2)n n a a n n +=∈N ≥,·························································································2分 又当1n =时,由2131S S =+得23a =符合213a a =,∴*13()n n a a n +=∈N ,······························3分 ∴数列{}n a 是以1为首项,3为公比的等比数列,通项公式为1*3()n n a n -=∈N ;·····················5分 (2)∵*1

13()n n n n

a b b n a ++-=

=∈N ,∴{}n b 是以3为首项,3为公差的等差数列,·

···················7分 ∴*33(1)3()n b n n n =+-=∈N ,·····················································································9分 ∴2

n n a b n λ+≤,即1

2

3

3n n n λ-?+≤,即2133

n n n

λ--≤对*n ∈N 有解,·

·································10分 设2*

1

3()()3

n n n f n n --=∈N , ∵2221(1)3(1)32(41)

(1)()333n n n

n n n n n n f n f n -+-+---++-=-=

, ∴当4n ≥时,(1)()f n f n +<,当4n <时,(1)()f n f n +>, ∴(1)(2)(3)(4)(5)(6)f f f f f f <<<>>>,

∴max 4

[()](4)27

f n f ==,···························································································14分 ∴427

λ≤

.·············································································································15分 18.(本题满分15分)

解:(1)当01x <≤时,过A 作AK CD ⊥于K (如上图),

则1AK =,1

22

CD AB DK -==,1HM x =-, 由2AK MH DK DH ==,得122

HM x DH -==, ∴322HG DH x =-=+,

∴2()(1)(2)2S x HM HG x x x x =?=-+=--+;·······························································4分

当5

12

x <<

时,过E 作ET MN ⊥于T ,连结EN (如下图), 则1ET x =-,2

2239(1)(1)224MN TN x x ??

==---- ???

∴29

2

(1)4

MN x =-- ∴29

()2

(1)(1)4

S x MN ET x x =?=---,

······································································8分 综上:22

2,01()952(1)(1)142x x x S x x x x ?--+

=?---<

≤;·································································9分 (2)当01x <≤时,221

9

()2()24

S x x x x =--+=-++

在[0,1)上递减, ∴max ()(0)2S x S ==;································································································11分

2?当5

12

x <<时,22

29

(1)(1)994()2(1)(1)2424

x x S x x x -+

--=---?

=≤,

当且仅当29(1)(1)4x x -=

--325

1(1,)42

x =+∈时取“=”, ∴max 9()4S x =

,此时max 9

()24

S x =>,∴()S x 的最大值为94,············································14分 答:当MN 与AB 之间的距离为32

14

+米时,通风窗的通风面积S 取得最大值.·

···················15分 19.(本题满分16分)

解:(1)设切点坐标为00(,ln )x x ,则切线方程为000

1

ln ()y x x x x -=

-, 将(0,1)P -代入上式,得0ln 0x =,01x =,

∴切线方程为1y x =-;·······························································································2分 (2)当0m =时,2()ln ,(0,)F x x x x x =-+∈+∞, ∴(21)(1)

(),(0,)x x F x x x

+-'=-

∈+∞,

············································································3分 当01x <<时,()0F x '>,当1x >时,()0F x '<,

∴()F x 在(0,1)递增,在(1,)+∞递减,·············································································5分 ∴当01a <≤时,()F x 的最大值为2()ln F a a a a =-+;

当1a >时,()F x 的最大值为(1)0F =;········································································7分 (3)2()()(2)e x f x g x x x +<--可化为(2)e ln x m x x x >-+-,

设1

()(2)e ln ,[,1]2x h x x x x x =-+-∈,要证3m ≥-时()m h x >对任意1[,1]2

x ∈均成立, 只要证max ()3h x <-,下证此结论成立.

∵1()(1)(e )x h x x x

'=--,∴当1

12x <<时,10x -<,·

······················································8分 设1()e x u x x =-,则21()e 0x u x x '=+>,∴()u x 在1

(,1)2

递增,

又∵()u x 在区间1[,1]2

上的图象是一条不间断的曲线,且1

()202

u <,(1)e 10u =->,

∴01(,1)2

x ?∈使得0()0u x =,即00

1

e x x =

,00ln x x =-,····················································11分 当01(,)2

x x ∈时,()0u x <,()0h x '>;当0(,1)x x ∈时,()0u x >,()0h x '<; ∴函数()h x 在01[,]2

x 递增,在0[,1]x 递减, ∴0max 000000000

12

()()(2)e ln (2)212x h x h x x x x x x x x x ==-+-=-?

-=--,

····························14分 ∵212y x x =-

-在1

(,1)2

x ∈递增,∴0002()121223h x x x =--<--=-,即max ()3h x <-,

∴当3m ≥-时,不等式2()()(2)e x f x g x x x +<--对任意1

[,1]2

x ∈均成立.··························16分 20.(本题满分16分)

解:(1)∵1423a a a a =,∴46a =,又∵2534a a a a =,∴543

92

a a ==;·

······································2分

(2)由312

1423

n n n n n n n n a a a a a a a a +++++++=??=?,两式相乘得2134123n n n n n n n a a a a a a a ++++++=,

∵0n a >,∴2*42()n n n a a a n ++=∈N ,

从而{}n a 的奇数项和偶数项均构成等比数列,···································································4分 设公比分别为12,q q ,则1122222n n n a a q q --==,1121111n n n a a q q ---==,······································5分 又∵

312=

n n n n a a a a +++,∴422311

22a a q

a a q ===,即12q q =,···························································6分 设12q q q ==,则2212223()n n n n a pa q a pa ---+=+,且2210n n a pa -+>恒成立,

数列221{}n n a pa -+是首项为2p +,公比为q 的等比数列,问题得证;····································8分 (3)法一:在(2)中令1p =,则数列221{}n n a a -+是首项为3,公比为q 的等比数列,

∴22212223213 ,1

()()()3(1),11k k k k k k k q S a a a a a a q q q

---=??

=++++

++=-?≠?-?

, 121221

32 ,13(1)2,11k k k k k k k q q S S a q q q q ---?-=?

=-=?--≠?-?

,·····································································10分 且12341,3,3,33S S S q S q ===+=+,

∵数列{}n S t +为等比数列,∴2

2132

324()()(),

()()(),S t S t S t S t S t S t ?+=++??+=++?? 即2

2(3)(1)(3),(3)(3)(33),

t t q t q t t q t ?+=+++??++=+++??,即26(1),3,t q t t q +=+??=-? 解得14t q =??=?

(3t =-舍去), (13)

∴224121k k k S =-=-,212121k k S --=-, 从而对任意*n ∈N 有21n n S =-, 此时2n n S t +=,

12n n S t

S t

-+=+为常数,满足{}n S t +成等比数列,

当2n ≥时,1

11222n n n n n n a S S ---=-=-=,又11a =,∴1*2()n n a n -=∈N ,

综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分 法二:由(2)知,则122n n a q -=,121n n a q --=,且12341,3,3,33S S S q S q ===+=+,

∵数列{}n S t +为等比数列,∴2

2132

324()()(),

()()(),S t S t S t S t S t S t ?+=++??+=++?? 即2

2

(3)(1)(3),(3)(3)(33),

t t q t q t t q t ?+=+++??++=+++??,即26(1),3,t q t t q +=+??=-? 解得1

4t q =??=?

(3t =-舍去), (11)

∴121222n n n a q --==,22212n n a --=,从而对任意*n ∈N 有12n n a -=,····································13分 ∴0

1

2

1

122222

2112

n

n n n S --=++++==--, 此时2n n S t +=,

12n n S t

S t

-+=+为常数,满足{}n S t +成等比数列,

综上,存在1t =使数列{}n S t +为等比数列,此时1*2,21()n n n n a S n -==-∈N .······················16分 21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲,本小题满分10分)

解:(1)证明 :连接,OC AC ,∵030AEC ∠=,∴0260AOC AEC ∠=∠=,

又OA OC =,∴AOC ?为等边三角形,

∵CF AB ⊥,∴CF 为AOC ?中AO 边上的中线,

∴AF FO =;······································································5分 (2)解:连接BE ,

∵CF ,AOC ?是等边三角形, ∴可求得1AF =,4AB =,

∵AB 为圆O 的直径,∴90AEB ∠=,∴AEB AFD ∠=∠, 又∵BAE DFA ∠=∠,∴AEB ?∽AFD ?,∴

AD AF

AB AE

=

, 即414AD AE AB AF ?=?=?=.··················································································10分 B .(矩阵与变换,本小题满分10分) 解:矩阵A 的特征多项式为21

2

()2321

f λλλλλ--=

=----, 令()0f λ=,解得矩阵A 的特征值121,3λλ=-=,····························································2分

当11λ=-时特征向量为111α??=??-??,当23λ=时特征向量为211α??=????,·····································6分

又∵12432ααα??

==+????

,······························································································8分

∴5049

49

49

1

1225031331αλαλα??

-=+=??+??

A .···········································································10分

C .(极坐标与参数方程,本小题满分10分)

解:(1)直线l 的普通方程为220x y +-=; (3)

B

圆C 的直角坐标方程为2

22()()222

a a a x y -+-=;·······························································6分

(2)∵圆C 任意一条直径的两个端点到直线l

∴圆心C 到直线l

|

2|

2a

a +-=,·······················································8分 解得3a =或1

3

a =-.·······························································································10分

D .(不等式选讲,本小题满分10分) 证:∵0,0,0x y x y >>->,

∴222

11

222()2()

x y x y x xy y x y +

-=-+-+-

21()()3()x y x y x y =-+-+

=-≥, ∴22

1

2232x y x xy y +

+-+≥.

····················································································10分 22.(本题满分10分)

解:(1)甲拿到礼物的事件为A ,

在每一轮游戏中,甲留下的概率和他摸卡片的顺序无关,

则13211()253210

P A =

???=, 答:甲拿到礼物的概率为1

10

;·······················································································3分 (2)随机变量ξ的所有可能取值是1,2,3,4.·

····································································4分 ()1

12

P ξ==,

()121

2255P ξ==?=,

()1311

325310P ξ==??=,

()1321

42535

P ξ==??=,

随机变量ξ的概率分布列为:

ξ

1 2 3 4

P

12 15 110 15 所以1111

()1234225105

E ξ=?+?+?+?=.

····································································10分 ·············································8分

23.(本题满分10分)

解:(1)原问题等价于ln(1)01

ax

x x +-

+≥对任意[0,)x ∈+∞恒成立, 令()ln(1)1

ax

g x x x =+-+,则21'()(1)x a g x x +-=+,

当1a ≤时,2

1'()0(1)

x a

g x x +-=

+≥恒成立,即()g x 在[0,)+∞上单调递增, ∴()(0)0g x g =≥恒成立;

当1a >时,令'()0g x =,则10x a =->,

∴()g x 在(0,1)a -上单调递减,在(1,)a -+∞上单调递增, ∴(1)(0)0g a g -<=,即存在0x >使得()0g x <,不合题意;

综上所述,a 的取值范围是(,1]-∞.················································································4分 (2)法一:在(1)中取1a =,得ln(1)((0,))1

x

x x x +>∈+∞+, 令*1()x n n =

∈N ,上式即为11

ln()1

n n n +>

+, 即1

ln(1)ln 1n n n +->+,·····························································································7分

∴1ln 2ln1,21ln 3ln 2,31ln(1)ln ,1n n n ?

->??

?->????

?+->?+?

上述各式相加可得

111

ln(1)231n n +++<++*()n ∈N .

····················································10分 法二:注意到1ln 22<,11

ln323+<,……,

故猜想111

ln(1)231

n n +++<++*()n ∈N ,·

···································································5分 下面用数学归纳法证明该猜想成立.

证明:①当1n =时,1

ln 22

<,成立;·············································································6分

②假设当n k =时结论成立,即111ln(1)231k k +++<++, 在(1)中取1a =,得ln(1)((0,))1x

x x x +>∈+∞+,

令*1

()1

x k k =∈+N ,有

12ln()21k k k +<++,·······································································8分 那么,当1n k =+时,

11

111ln(1)ln(1)23

122ln()ln(2)21

k k k k k k k k +++

+<++<++++++=++,也成立;

由①②可知,111

ln(1)23

1

n n +++

<++.·

····································································10分

相关主题
文本预览
相关文档 最新文档