当前位置:文档之家› 新型60GHz毫米波通信系统的有效性与可靠性分析

新型60GHz毫米波通信系统的有效性与可靠性分析

新型60GHz毫米波通信系统的有效性与可靠性分析
新型60GHz毫米波通信系统的有效性与可靠性分析

电力通信传输网络可靠性分析

电力通信传输网络可靠性分析 摘要:根据智能电网的要求,通信传输网的可靠性分析对电力系统很重要。传输网作为电力通信网的核心,它承载着大量的生产和管理业务,是业务正常运行的保证,其可靠性高低直接影响着电力系统安全生产和稳定运行。本文对电力通信传输网络可靠性进行了简要的分析。 关键词:电力通信传输网;可靠性;分析 abstract: according to the requirement of intelligent power grid, the reliability of the transmission network communication of power system analysis is very important. as the core of the electric power communication network transmission, it carries with a lot of production and management business, it is the business that the normal operation of the guarantee, the reliability of the power system directly influence the safety production and stable operation. in this paper, the electric power transmission network reliability briefly analysed. key words: electric power transmission network communication; reliability; analysis 中图分类号:f407.61 文献标识码:a 文章编号 1.电力通信网可靠性研究现状

可靠性设计的主要内容

可靠性设计的主要内容 1、研究产品的故障物理和故障模型 搜集、分析与掌握该类产品在使用过程中零件材料的老化、损伤和故障失效等(均为受许多复杂随机因素影响的随机过程)的有关数据及材料的初始性能(强度、冲击韧性等)对其平均值的偏离数据,揭示影响老化、损伤这一复杂物理化学过程最本质的因素,追寻故障的真正原因。研究以时间函数形式表达的材料老化、损伤的规律,从而较确切的估计产品在使用条件下的状态和寿命。用统计分析的方法使故障(失效)机理模型化,建立计算用的可靠度模型或故障模型,为可靠性设计奠定物理数学基础,故障模型的建立,往往以可靠性试验结果为依据。 2、确定产品的可靠性指标及其等级 选取何种可靠性指标取决于产品的类型、设计要求以及习惯和方便性等。而产品可靠性指标的等级或量值,则应依据设计要求或已有的试验,使用和修理的统计数据、设计经验、产品的重要程度、技术发展趋势及市场需求等来确定。例如,对于汽车,可选用可靠度、首次故障里程、平局故障间隔里程等作为可靠性指标,对于工程机械则常采用有效度。 3、合理分配产品的可靠性指标值

将确定的产品可靠性指标的量值合理分配给零部件,以确定每个零部件的可靠性指标值,后者与该零部件的功能、重要性、复杂程度、体积、重量、设计要求与经验、已有的可靠性数据及费用等有关,这些构成对可靠性指标值的约束条件。采用优化设计方法将产品(系统、设备)的可靠性指标值分配给各个零部件,以求得最大经济效益下的各零部件可靠性指标值最合理的匹配。 4、以规定的可靠性指标值为依据对零件进行可靠性设计 即把规定的可靠性指标值直接设计到零件中去,使它们能够保证可靠性指标值的实现。

关于通信网可靠性定义的探讨(精)

1997年 6月北京邮电大学学报 Jun . 1997第 20卷第 2期 Journal of Beijing U niversity of Po sts and T elecomm unicati ons V o l . 20N o . 2 关于通信网可靠性定义的探讨 3 张学渊梁雄健 (北京邮电大学管理工程系 , 北京 100088; 第一作者 26岁 , 男 , 博士生 摘要根据一般可靠性的定义和通信网的特点 , 在剖析几种已有定义的基础上提出了一个通信网可靠性的新定义 , 并对其变动特性进行了分析 . 进一步开展 . 关键词电信网 ; 可靠性 ; 定义 分类号 TN 913. 2 : 力 [1]. 、规定时间、规定功能和概率 (即测度等 5项要素 . , 可靠性的研究范围和研究内容都在不断扩展 . 在研究过程中 , 人 , 从研究任务出发提出了基本可靠性和任务可靠性 [2]; 从研究内容出发提出了固有可靠性和使用可靠性 , 二者共同组成工作可靠性 ; 从研究范围出发提出了狭义可靠性和广义可靠性 . 后来 , 人们又提出了人员可靠性和软件可靠性的定义 , 将可靠性的研究从硬件向软件延伸 . 详细内容可参见文献 [3~6]. 由于可靠性是一门综合性的边缘学科 , 它涉及到基础学科、技术学科和管理学科中的许多领域 . 因此 , 在应用可靠性理论解决某一具体问题时 , 就需要对其所属学科的某些理论问题和技术问题有一基本了解 , 这有助于明确问题的研究内容和研究方向 . 而一个概念的定义是对其内涵和外延的确切而简要的说明 , 是研究问题的依据 . 为了对通信网的可靠性进行深入研究 , 我们认为有必要首先在一般可靠性定义的基础上明确通信网可靠性的定义 .

《通信网》作业答案

思考题一 1(ok)构成现代通信网的结构和要素有哪些?它们各自完成的功能有哪些? 它们之间的相互协调通信通过什么机制来实现? 现代通信网络的三大组成部分:传输、交换和终端设备,其发展是和这些通信设备、电子器件、计算机技术的发展紧密相关的。 通信网构成要素 实际的通信网是由软件和硬件按特定的方式构成的通信系统,从硬件构成来看:通信网由终端节点、交换节点、业务节点和传输系统构成,完成接入、交换和传输;软件设施包括了信令、协议、控制、管理、计费等,完成网络的控制、管理、运营和维护、实现通信网的智能化。 上述的网络在传输信息的类型、方式、所提供的服务的种类等方面各不相同,但它们在网络结构、基本功能、实现原理上都是相似的,它们都实现了以下四种功能: (1)信息传送 它是通信网的基本任务,传送的信息有三大类:用户信息、信令信息、管理信息,信息传输主要由交换节点、传输系统来完成。 (2)信息处理 网络对信息的处理方式对最终用户是不可见的,主要目的是增强通信的有效性、可靠性和安全性。 (3)信令机制 它是通信网上任意两个通信实体间为实现某一通信任务,进行控制信息交换的机制,如NO.7信令、TCP/IP协议等。 (4)网络管理 它负责网络的运营管理、维护管理、资源管理,以保证网络在正常和故障情况下的服务质量。是整个网络中最具有智能的部分,已形成的网络管理标准有:电信管理网标准TMN系列,计算机网络管理标准SNMP等。

2(ok)在通信网中,交换节点主要完成哪些功能?分组交换与电路交换的各自方式和特点? (1)电路交换(Circuit Switching) ITU定义为:“根据请求,从一套入口和出口中,建立起一条为传输信息而从指定入口到指定出口的连接”。电路交换是一种电路间的实时交换,所谓实时,是指任意用户呼叫另一用户时,应立即在两用户之间建立通信电路的连接,这时通信网内的相关设备和线路都被这一对用户占用着,不能再为其他用户服务,这种在一次呼叫中由通信网根据用户要求在指定的呼叫路由上固定分配设备的交换方式,称之为电路交换方式。 电路交换的主要特点:话音或数据的传输时延小且无抖动,“透明”传输。无需存储、分析和处理、传输效率比较高;但是,电路的接续时间较长,电路资源被通信双方独占,电路利用率低。 (2)分组交换(Packet Switching) 分组交换也称包交换,它将用户的一整份报文分割成若干数据块,即分组。 分组交换是一种综合电路交换和报文交换的优点而又尽量避免两者的缺点的第三种交换方式。它的基本原理是“存储——转发”,是以更短的、被规格化了的“分组”为单位进行交换、传输。 分组交换相对于电路交换的方式来说,具有高效、灵活、迅速、可靠等特点。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

电力通信网可靠性分析评估方法研究

电力通信网可靠性分析评估方法研究 发表时间:2020-04-08T08:24:06.037Z 来源:《防护工程》2020年1期作者:路阳 [导读] 本文首先介绍了电力通信网可靠性的基本概念,并对通信网可靠性的分类进行了对比分析,之后对电力系统各类业务对通信网络可靠性的要求进行了分析,并对电力通信网络可靠性的几个方面进行分析,最后指出了通信网络可靠性管理中存在的问题。 国网太原供电公司山西太原 030000 摘要:本文首先介绍了电力通信网可靠性的基本概念,并对通信网可靠性的分类进行了对比分析,之后对电力系统各类业务对通信网络可靠性的要求进行了分析,并对电力通信网络可靠性的几个方面进行分析,最后指出了通信网络可靠性管理中存在的问题。 关键词:电力通信网;可靠性;分析;评估; 1电力通信网络可靠性的基本概念和分类 国标GB3187-1994对于产品可靠性的定义是:“产品在规定条件下的规定的时间内,完成规定功能的能力”。但是通信网不同于一般商品,对其可靠性没有统一的定义。有的学者认为通信网可靠性的定义是当遭受自然或者人为破坏力时,电力通信网在规定时间和规定条件下实现规定功能的能力;有的学者认为通信网可靠性的定义是系统在规定的时间内和满足规定实现的功能要求的前提下,运行过程中实现通信功能的概率;有的学者认为电力通信网可靠性的定义为以规定的业务需求和服务标准为前提,电力通信网对电力系统提供不间断通信连接能力的量度;还有的学者为通信网可靠性的定义应为当通信网持续运行过程时,实际完成规定的通信功能的能力。 电力通信网络的可靠性分类包括通信网的可用性、通信网的生存性以及通信网的抗毁性。 1.1通信网的可用性 可用的定义是无论何时需要通信系统工作时,系统均处于可使用的状态。可用性主要是说在通信网的某个网路部件无效的情况下可以实现既定功能要求的概率,综合了网络系统的维修性和可靠性,是基于业务性能的一种可靠性测度。在通信网的可用性方面的一些研究方法是将网络比作流程图,基于通信网的生存性和抗毁性,同时考虑通信业务的性能方面,将通信网在任何时候都可用的概率当做评价通信网可靠性的一个指标;还有一部分是以电力通信网运行的历史数据作为依据,对电力通信网络在实际运行过程中的可靠性进行评估。这两种方法都对通信网的可靠性方面以可用性的方式进行了描述。可用度是通信系统可用性常用的衡量方式,可以较好地对通信网的业务能力进行描述。 在业务性能方面,Barberis等还给出了网络吞吐量超过给定阈值L的概率,即通信网络的可用性指标。在可用性指标方面,还有基于电力通信网络的数据传输时延和路由选择策略对业务性能的影响等方面的研究,使得该项研究变得更有意义。 在电力通信网络可用性中,对于一年中停机时间的计算常用可用性的百分数来表示。对于一年中停机时间的定义是在一年之内,电力通信网络系统由于各类故障而进行维修导致的无法正常工作的时间总和。以分钟为计量单位,计算公式如下: 其中,T停为年停机时间,T为一年的总分钟数,λ为可用性百分比 还有一种是使用百万小时故障时间数来表示通信网络的可用性,其定义为以一百万个小时的运行时间为标准,统计在这段时间里通信网络发生故障的时间数。百万小时故障时间数主要应用于现成的通信网络系统,可以解决年停机时间方式无法查到的可用性问题,还可以测出整个通信网络的停机时间和在这一百万小时内通信网络的运行状态。 1.2 通信网的生存性 通信网络的生存性是指在考虑网络部件可靠性的同时,通信网络当遭受随机破坏导致网络链路或者网络节点存在一定概率失效时仍可完成预先设定的功能的概率,是一种考虑通信网络部件存在随机失效时的可靠性[19],主要是以整体网络连通性为研究对象,分析网络拓扑结构和随机破坏对电力通信网络可靠性的影响。 1.3 通信网的抗毁性 通信网的抗毁性主要是体现当遭受人为外力破坏的情况下通信网络仍可完成预定功能的概率,表示通信网遭到破坏的困难程度,其定义为中断部分节点通信需要破坏的链路最小值。抗毁性概念源于图论,其测度指标用连通度和粘聚度来表示。 2 电力通信网络可靠性研究方法 对于可靠性的研究始终离不开对影响因素的研究,电力通信网络可靠性对于通信技术服务电网以提升电网可靠性有重要意义。电力通信网关系着电力公司生产调度、数据交换、行政管理、业务承载等各个部门的正常运行,一旦电力通信网络发生长时间故障或破坏,可能

北京航空航天大学系统可靠性设计分析期末试卷a

1.判断题(共20分,每题2分,答错倒扣1分) (1)()系统可靠性与维修性决定了系统的可用性和可信性。 (2)()为简化故障树,可将逻辑门之间的中间事件省略。 (3)()在系统寿命周期的各阶段中,可靠性指标是不变的。 (4)()如果规定的系统故障率指标是每单位时间0.16,考虑分配余量,可以按每单位时间0.2 进行可靠性分配。 (5)()MTBF和MFHBF都是基本可靠性参数。 (6)()电子元器件的质量等级愈高,并不一定表示其可靠性愈高。 (7)()事件树的后果事件指由于初因事件及其后续事件的发生或不发生所导致的不良结果。 (8)()对于大多数武器装备,其寿命周期费用中的使用保障费用要比研制和生产费用高。 (9)()所有产品的故障率随时间的变化规律,都要经过浴盆曲线的早期故障阶段、偶然故障 阶段和耗损故障阶段。 (10)()各种产品的可靠度函数曲线随时间的增加都呈下降趋势。 2.填空题(共20分,每空2分) (1)MFHBF的中文含义为。 (2)平均故障前时间MTTF与可靠度R(t)之间的关系式是。 (3)与电子、电器设备构成的系统相比,机械产品可靠性特点一是寿命不服从分 布,二是零部件程度低。 (4)在系统所处的特定条件下,出现的未预期到的通路称为。 (5)最坏情况容差分析法中,当网络函数在工作点附近可微且变化较小、容差分析精度要求不 高、设计参数变化范围较小时,可采用;当网络函数在工作点可微且变化较大,或容差分析精度要求较高,或设计参数变化范围较大时,可采用。 (6)一般地,二维危害性矩阵图的横坐标为严酷度类别,纵坐标根据情况可选下列三项之一: 、 或。

3.简要描述故障树“三早”简化技术的内容。(10分)

机械设备可靠性分析论文

机械设备可靠性分析摘要:机械的可靠性设计在机械设计中具有重要的作用,它对机械是否能够稳定的工作起决定性的作用。本文主要介绍了机械可靠性设计的特点,机械可靠性设计的流程,以及在机械可靠性设计中的常用的可靠性分析方法和设计技术,最后结合最近的机械可靠性的发展,介绍了机械可靠性设计的发展趋势,从而对可靠性技术在机械领域的应用和发展有一个全面的、客观的认识。 引言:随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 正文:机械产品的可靠性要受到诸多因素的影响,从产品的设计、制造、试验,到产品使用和维护,都会涉及到可靠性间题,也就是说它贯穿于产品的整个寿命周期之内。如何使产品在整个寿命周期内失效率最小,有效度高,维修性好,经济效益大,经济寿命长,是我们对产品进行可靠性设计的根本目的。机械产品的可靠性设计并不是一种崭新的设计方法, 而是在传统机械设计的基础上引入以概率论和数理统计为基础的可靠性设计方法。这样的设计可以更科学合理地获得较小的零件尺寸、体积和重量, 同时也可使所设计的零件具有可预测的寿命和失效率, 从而使产品的设计更符合工程实际。 目前在机械工程中可靠性设计主要应用在产品的设计、制造、使用和维修等方面。现代生产的经验表明,在设计、制造和使用的三个阶段中,设计决定了产品的可靠性水平,即产品的固有可靠性,而制造和使用的任务是保证产品可靠性指标的实现。可靠性试验数据是可靠性设计的基础,但是试验不能提高产品的可靠性,只有设计才能决定产品的固有可靠性。图1所示为三者的关系。 图1 机械产品与可靠性关系框图 机械产品的设计,它包括整机产品的设计和零部件的设计。整机产品可将其作为一个系统进行设计,设计的方式主要有两种,第一种是根据零部件的可靠性预测结果,计算产品系统的可靠性指标,这就是系统的可靠性预测,其结果满足指标要求即可。如果不能满足要求,就要按第二种方式

机械可靠性设计发展及现状.docx

机械可靠性设计发展及现状 随着科学技术的发展和对产品质量要求的不断提高,产品的可靠性也越来越成为产品竞争的焦点。产品的可靠性是设计出来的,生产出来的,管理出来的。可靠性设计是使产品的可靠性要求在设计中得以落实的技术。可靠性设计决定了产品的固有可靠性。 所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。长期以来,随着电子技术的发展和电子产品可靠性理论的成熟,电子产品可靠性的相对稳定,电子产品的可靠性试验技术已经发展的相对成熟;机械可靠性试验技术则由于存在理论难题而发展相对较慢。为了机械可靠性的切实发展,美国可靠性分析中心一直坚持鼓励其组织机构广泛收集机械产品可靠性数据。同时美国可靠性分析中心在提到的关于将来安全相关技术发展备选课题,在可靠性领域中把机械可靠性作为三大课题( 另外两个是加速试验和软件可靠性) 之一。机械可靠性试验技术是机械可靠性技术中一个关键的问题,因此被广泛关注。 机械可靠性试验的发展 自1946 年Freuenthal在国际上发表“结构的安全度”一文以来,可靠性问题开始引起学术界和工程界的普遍关注与重视。上世纪60 年代,对机械可靠性问题引起了各国广泛重视并开始对其进行了系统研究,其中美国、前苏联、日本、英国等国家对机械产品可靠性进行了深入研究,并在机械产品可靠性理论研究和实际应用方面取得了相当进展: 1.1.20世纪40年代,德国在V-1火箭研制中,提出了火箭系统的可靠性等于所有元器件可靠度乘积的理论,即把小样本问题转化为大样本问题进行研究。 1.2.1957年6月4日,美国的“电子设备可靠性顾问委员会”发布了《军用电子设备可靠性报告》,提出了可靠性是可建立的、可分配的及可验证的,从而为可靠性学科的发展提出了初步框架。 1.3.3.20世纪50年代至60年代,美国、苏联相继把可靠性应用于航天计划,于是机械系统的可靠性研究得到发展,如随机载荷下机械结构和零件的可靠性,机械产品的可靠性设计、试验验证等。 1.4.日本于20世纪50年代后期将可靠性技术推广到民用工业,设立了可靠性研究机构和可靠性工程控制小组,大大提高了日本产品的可靠度。 NASA 在六十年代中期便开始了机械部件的应力验证和利用应力强度干涉模型进行可靠性概率设计的研究。1974年美国和日本成立了结构可靠性分析方法研究组,澳大利亚、瑞典

电力通信网可靠性分析评估方法研究 秦建滨

电力通信网可靠性分析评估方法研究秦建滨 发表时间:2018-04-19T16:15:32.480Z 来源:《电力设备》2017年第31期作者:秦建滨 [导读] 摘要:电网对通信网的依赖性不断增强,对通信网安全可靠性要求在不断提高;随着电力通信网规模日益庞大、结构日益复杂,承载的电网生产、管理业务信息量飞速增长,电力通信网面临的安全风险也与日俱增,安全生产工作面临着前所未有的压力和挑战。 (国网山西省电力公司临汾供电公司山西临汾 041000) 摘要:电网对通信网的依赖性不断增强,对通信网安全可靠性要求在不断提高;随着电力通信网规模日益庞大、结构日益复杂,承载的电网生产、管理业务信息量飞速增长,电力通信网面临的安全风险也与日俱增,安全生产工作面临着前所未有的压力和挑战。开展通信网可靠性分析评估工作,有助于正确认识通信网的可靠性水平,并能有效地指导通信网规划、建设和优化工作。 关键词:电力通信网;可靠性;评估方法 前言 在我国国民经济实现不断发展的现阶段,电力系统的建设也随之进入到了一个全新的阶段,电网对于通信网的依赖性更是在不断的增强,对于通信网的可靠性因而提出了越来越高的要求。目前,随着电力通信网建设规模的加大,其结构也日趋复杂,使得电力通信网多面临的风险因素也逐渐增多,如何采取科学有效的评估方法对电力通信网的可靠性进行分析,已经成为相关研究人员亟待解决的重要问题,因此要对其予以高度的关注。 1电力通信网可靠性分析评估现状及问题分析 当前开展电力通信网可靠性分析工作主要面临以下问题:①缺乏系统而实用的电力通信网可靠性分析评价及量化评估方法。虽然近年来系统内外对电力通信网可靠性分析方法的研究层出不穷,但难以找到能在系统全面和简单易行两方面同时兼顾的、易于付诸实际使用的评价方法来指导通信专业人员在电力通信网的日常运行管理工作中开展相关工作,并通过开展可靠性评价,找出通信网的薄弱、隐患环节,指导通信网风险评估工作能有的放矢地开展;更难以找到能将通信网络与其所承载的应用业务相结合、形成对应的量化评估方法去综合测算通信网对电网的安全保障能力[1]。②缺乏有针对性的指标体系和连贯一致的运行情况统计数据支持可靠性分析工作。“从运行中取数据、从数据中看问题”是确保通信网安全运行的重要手段。目前南方电网内实行的通信指标体系侧重于反映网络及所承载业务的总体、平均水平,但还不能完全满足通信网系统可靠性分析及风险预警的要求。③缺乏对应的智能化辅助分析手段。需要以智能化手段解决目前人手短缺、工作量不断增长、工作压力大等问题,提高工作效率。 2电力通信网可靠性分析评估方法研究 电力通信网作为服务于电力系统的通信专网,是由多个通信子系统构成的一个复杂系统。各个子系统之间关系复杂、网络单元类型多样,因此需要将多态的单元和复杂的交互关系结合起来。传统的可靠性研究方法已经不能解决问题,需要从系统的角度综合考虑可靠性影响因素,明确可靠性研究目标,从而对通信网的可靠性进行综合评估[2]。 2.1建立评估指标体系 在对影响电力通信网可靠性因素进行综合分析的基础上,筛选出能够反映电力通信网运行中不同系统、不同层面的统计信息。通过归纳整理,得到各种影响指标,进一步形成评估指标体系。评估指标体系是实现从定性评估到定量评估转换的重要环节,它对于评估结果的正确性和客观性具有非常重要的意义。根据各个指标之间的影响因素及其内在关系,将这些指标按支配关系分组,从而形成有序的递阶层次结构。 2.2确定指标权重 指标权重的确定是评价过程中的核心工作。指标的权重表明了该指标对于可靠性综合评估目标的相对重要程度。指标权重的确定是一个主观评估的过程,评估专家的经验和知识水平对评估结果影响很大,直接影响到评估结果的客观性和可信性。因此,指标权重具有一定的主观性[3]。 2.3收集相关基础数据 从电力企业的年度运行方式、工作现场的运行数据、业务支撑系统的统计数据、设备厂家的产品数据等方面获取相应的基础指标数据。根据指标体系的各个层级进行分类,整理后的数据就可以进入下一个步骤。 2.4指标指数化 指标指数化就是对基本指标数据进行无量纲化处理,取其相对值。根据问题的性质不同可以采用不同的无量纲化方法。 2.5计算目标值 计算可靠性综合评估的目标值相当于将各项指标的指数化数值,利用各指标的权重值进行集结,最终获得可靠性综合评估的目标值。 2.6管控能力分析 系统管控能力分析也就是从现有运行监控手段、资源管理手段、有效性角度,分析有效支撑系统运行的能力。分析要点如下:①运行监控手段:实现对系统(含所有光传输设备)进行故障管理、性能监视、配置管理、安全管理等功能。②资源管理手段:具备资源管理系统,数据录入完整、准确,并能提供多方位数据查询和统计等功能。③智能化系统分析手段:以智能化手段快速、准确分析系统存在隐患、检修情况下的运行方式变化与影响等情况,并提供应急恢复方案等功能。 2.7量化评估 量化评估也就是基于上述分析方法,通过细化各环节分析要点和要求,并确定评估分值标准,达到量化评估、易于呈现整体可靠性水平的目的。以某地区通信网的光传输网中设备构成合理性环节的量化评估为例,标准分为25分。评分方法:①220kV及以上厂站中存在单光缆站点的,减5分;且每高1.00%减1分;②110kV厂站存在单光缆站点的,减2分,且每增加5.00%减10%标准分;③省、地调度机构节点不具备2条及以上独立光缆路由,减10分;④任一条光缆中断或光纤网中任一节点中断,引发220kV及以上线路无主保护运行,控制主站-控制子站、控制子站至所带执行站的稳控通道A、B全断或3个及以上厂站调度通信系统中断,减10分;⑤一条高电压等级线路两侧站点的光传输通道,因缺乏随线光缆,造成无法开通或需要经过多段(≥4)低于该电压等级线路光缆或管道光缆跳接开通,每缺乏一条减5%标准分;⑥一条组网光缆中断,造成通信网主干光传输通道中断,无应急恢复的备用路由及资源,每缺乏一条减2%标准分。评分为20.5分,

profinet通讯实时性、可靠性

一、简介: PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。作为一项战略性的技术创新,PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。 PROFINET是适用于不同需求的完整解决方案,其功能包括8个主要的模块,依次为实时通信、分布式现场设备、运动控制、分布式自动化、网络安装、IT标准和信息安全、故障安全和过程自动化。PROFINET的实时性,需要了解PROFINET的协议和工作机制。PROFINET具有RT和IRT两种等级的实时通讯。PROFINET区分两类不同性能的实时周期通讯,一种是实时(RT)通讯,主要用于工厂自动化,这一类没有时间同步要求,一般只要求响应时间为5-10ms。另一种是等时同步实时(IRT),主要用于有苛刻时间同步要求的场合例如运动控制,电子齿轮。与此对应,PROFINET提供两类实时通讯通道具体分为RT实时通道和IRT实时通道。另外还包括一个标准通讯通道,标准通道是使用TCP/IP协议的非实时通讯通道,主要用于设备参数化、组态和读取诊断数据。 1、 PROFINET实时通信

根据响应时间的不同,PROFINET支持下列三种通讯方式: 1. 1TCP/IP标准通讯 PROFINET基于工业以太网技术,使用TCP/IP和IT标准。TCP/IP 是IT 领域关于通信协议方面事实上的标准,尽管其响应时间大概在100 ms的量级,不过,对于工厂控制级的应用来说,这个响应时间就足够了。 2. 2. 实时(RT)通讯 对于RT,通讯双方,按照Step7组态的各自的时钟周期内,向对方发送一次数据,实现实时的数据交换。时钟周期设置越短,实时性就越强。被发送出来的数据,交换机保证其实时性的唯一方式,就是根据PROFINET数据的QoS来转发该数据,正如胶片所描述的,PROFINET的数据可能会被延迟,延迟的最主要原因就是NRT的报文和交换机的S&F。这时PROFINET的实行性的保证就主要依赖您,工程师去考虑实际的网络拓扑结构,防止类似的情况发生。必要时,调整Update time和看门狗时间。对于交换机,其工作方式,如胶片所

软件可靠性设计与分析

软件可靠性分析与设计 软件可靠性分析与设计 软件可靠性分析与设计的原因?软件在使用中发生失效(不可靠会导致任务的失败,甚至导致灾难性的后果。因此,应在软件设计过程中,对可能发生的失效进行分析,采取必要的措施避免将引起失效的缺陷引入软件,为失效纠正措施的制定提供依据,同时为避免类似问题的发生提供借鉴。 ?这些工作将会大大提高使用中软件的可靠 性,减少由于软件失效带来的各种损失。 Myers 设计原则 Myers 专家提出了在可靠性设计中必须遵循的两个原则: ?控制程序的复杂程度

–使系统中的各个模块具有最大的独立性 –使程序具有合理的层次结构 –当模块或单元之间的相互作用无法避免时,务必使其联系尽量简单, 以防止在模块和单元之间产生未知的边际效应 ?是与用户保持紧密联系 软件可靠性设计 ?软件可靠性设计的实质是在常规的软件设计中,应用各种必须的 方法和技术,使程序设计在兼顾用户的各种需求时, 全面满足软件的可靠性要求。 ?软件的可靠性设计应和软件的常规设计紧密地结合,贯穿于常规 设计过程的始终。?这里所指的设计是广义的设计, 它包括了从需求分析开始, 直至实现的全过程。 软件可靠性设计的四种类型

软件避错设计 ?避错设计是使软件产品在设计过程中,不发生错误或少发生错误的一种设计方法。的设计原则是控制和减少程序的复杂性。 ?体现了以预防为主的思想,软件可靠性设计的首要方法 ?各个阶段都要进行避错 ?从开发方法、工具等多处着手 –避免需求错误 ?深入研究用户的需求(用户申明的和未申明的 ?用户早期介入, 如采用原型技术 –选择好的开发方法

?结构化方法:包括分析、设计、实现 ?面向对象的方法:包括分析、设计、实现 ?基于部件的开发方法(COMPONENT BASED ?快速原型法 软件避错设计准则 ? (1模块化与模块独立 –假设函数C(X定义了问题X 的复杂性, 函数E(X定义了求解问题X 需要花费的工作量(按时间计,对于问题P1和问题P2, 如果C(P1>C(P2,则有 E(P1> E(P2。 –人类求解问题的实践同时又揭示了另一个有趣的性质:(P1+P2>C(P1 +C(P2 –由上面三个式子可得:E(P1+ P2> E(P1+E(P2?这个结论导致所谓的“分治法” ----将一个复杂问题分割成若干个可管理的小问题后更易于求解,模块化正是以此为据。 ?模块的独立程序可以由两个定性标准度量,这两个标准分别称为内聚和耦合。耦合衡量不同模块彼此间互相依赖的紧密程度。内聚衡量一个模块内部各个元素彼此结合的紧密程度。 软件避错设计准则 ? (2抽象和逐步求精 –抽象是抽出事物的本质特性而暂时不考虑它们的细节 ?举例

系统的可靠性设计 和 数据容灾与备份

论系统可靠性设计 摘要:随着计算机网络应用的逐步普及和深入,业务处理越来越依赖于计算机网络系统,网络的可靠性必然是建立网络系统首要考虑的问题之一,否则网络故障会造成巨大的经济损失和社会影响。本人有幸作为项目负责人之一参与了某大学二期网络的建设,并负责了校园网络可靠性的设计和实施。该校园网主要分为行政办公大楼,教学楼群,实验楼群,图书馆,信息中心和网络中心机房6个主要区域。本文主要从电缆级别,通信线路,服务器,网络管理,网络中心系统等方面介绍如何建立高可靠性的应用网络系统,以满足实际需求。 正文: 随着计算机网络应用的逐步普及和深入,业务处理越来越依赖于计算机网络系统,网络的可靠性必然是建立网络系统首要考虑的问题之一,否则网络故障的产生会造成巨大的经济损失和社会影响。2007年7月到2008年7月,作为××公司的一名技术骨干,本人参与了××大学二期网络的建设,全程参与了整个网络可靠性的规划设实施,以下是项目在可靠性方面所采取的方案。 第一级容错,网络电缆。无论是光纤,同轴电缆,双绞线还是组合布线,都可能出现各种 各样的故障。首先由于选用的电缆电气指标达不到要求,造成信号衰减过度,引起网络故障;其二,电缆接插头虚接,松落;其三电缆线受到外界老化,朽蚀,机械等原因损坏。若损坏的电缆只是连接在一个独立的设备,则定位和修复容易,而如果是连接多个网络设备的电缆线路或主干电缆线路损坏,则很难定位及修复。本方案在主干线路和其他重要支路上布置双线甚至多线,当主线断路时,自动切换到辅线工作。为了考虑降低电缆线路同时损坏的可能,电缆布置在不同的路途上。(250) 第二级容错,冗余拓扑。首先,本方案采用了三层的网络拓扑结构,并在分布层和核心 层的交换机之间使用冗余路径,防止网络因单点故障而无法运行,以此提升网络拓扑的可靠性。然而,对网络中的交换机和路由器添加多余路径会在网络中引入需要动态管理的通信环路,处理不当将产生不必要的广播风暴,造成网络瘫痪。所以必须启用生成树协议STP。STP 会特地阻塞可能导致环路的冗余路径,以确保网络中所有目的地之间只有一条逻辑路径。一旦网络出现故障,STP会重新计算路径,将必要的端口解除阻塞,使冗余路径进入活动状态。其次,采用端口聚合技术。端口聚合可将多物理连接当成一个单一的逻辑连接来处理。它允许两个交换器之间通过多个端口并行连接同时传输数据以提供更高的带宽,更大的吞吐量和可恢复性技术。一般来说,两个普通的连接器连接的最大带宽取决于媒介的传输速度(比如100BAST-TX为200M),而是用Trunk技术可以将4个200M的端口捆绑后成为一个高达800M的连接。这一技术的优点是以较低的成本通过捆绑多端口提高带宽,从而消除网络访问中的瓶颈。另外,Trunk还具有自动带宽平衡,即使Trunk只有一个连接存在时,仍然会工作,提供了网络的可靠性。(520) 第三级容错,设备冗余。 首先,该网络采用了双核心拓扑结构。核心层采用两台CISCO C6500交换机,两者之间使用双千兆光纤互联,利用链路聚合技术,在两台核心交换机之间扩大通信吞吐量,提高可靠性,实现复杂均衡的冗余连接。当一条交换机出现故障或核心交换机与汇聚层交换机之间的某条链路出现故障,系统会自动将通信业务快速切换到另一台正常的交换机上,从而实现系统的可靠性。(170) 其次,DNS服务器冗余配置。该校园网里有自己的DNS服务器,服务器采用两台,一台主DNS服务器,一台辅助DNS服务器。这样可以实现DNS服务器的容错,也就是当一天DNS

电力通信传输网络可靠性分析

电力通信传输网络可靠性分析 发表时间:2019-04-11T11:20:33.657Z 来源:《基层建设》2019年第3期作者:张硕许玲玲张英杰 [导读] 摘要:根据智能电网的要求,通信传输网的可靠性分析对电力系统很重要。 国网保定供电公司河北省保定市 071000 摘要:根据智能电网的要求,通信传输网的可靠性分析对电力系统很重要。传输网作为电力通信网的核心,它承载着大量的生产和管理业务,是业务正常运行的保证,其可靠性高低直接影响着电力系统安全生产和稳定运行。本文对电力通信传输网络可靠性进行了简要的分析。 关键词:电力通信传输网;可靠性;分析 1.电力通信网可靠性研究现状 针对电力通信网,Martinez等给出了一种远动通道的可靠性模型。在考虑双通道互为备用的前提下,利用贝叶斯网络建立可靠性模型,并应用于电力通信网络可靠性分析。赵子岩等针对电力通信网在可靠性管理方面的特殊性,指出设计可靠性、实施可靠性、运维可靠性、战略可靠性所包含的内容。邢宁哲等对电力通信中运维的影响因素进行分析,从可靠性因果关系和网络分层的角度提出研究电力系统通信的新方法。于晓东[36]通过可靠性框图对SDH环形网建立有效性模型,综合应用概率论与模糊集合论提出对光纤通信网进行有效性分析的模糊有效性评估方法,并利用相应的模糊运算得出网络的模糊有效性指标,综合反映实际系统有效性。 现阶段电力通信网的可靠性计算方法主要是采用可靠性框图法,简称RBD(Reliability Block Diagram,RBD)。在RBD方法中,将电力通信光传输网的光纤和网络单元抽象成独立的模块,通过串并联组合,实现业务电路可靠性分析。RBD两端可靠性就可以通过基于最小路集或最小割集的方法进行分析。然而基于RBD可靠性分析方法仍有不足之处。该方法只能解决两端可靠性问题。该方法以物理连通概率作为可靠性指标并不全面,应当将业务性能加入分析流程。另外,该方法没有考虑实际通信系统的多态性。 综上所述,网络可靠性分析方法应用在电力通信中的应用很少。现有的通信网可靠性分析成果与电力通信网的特点结合,可以更好的解决电力通信可靠性分析中的问题。 2.网络可靠性的基本分析方法 2.1电力通信网可靠性 电力通信是通信专网。与公网相比,电力通信网的业务和网络结构不同,但是分析可靠性采用的技术一样,可以用公网的方法分析解决电力通信可靠性问题。 在电力系统中,通信网肩负着监管安全生产,保障稳定运行,提高自动化水平的重要职责,是系统运行管理的基石。因此,电力通信网的可靠性至关重要,高可靠的通信网才能保证电力系统安全稳定。 造成电力通信网故障的因素有很多种:自然灾害的物理破坏,运行人员操作失误,偶然事件的发生以及人为的破坏。在2006年广东电网公司通信系统业务中断故障次数379次(其中发电企业42次),消缺次数1002次(其中发电企业125次),消缺及时率99.47%(发电企业100%)。通信传输网设备故障的主要原因集中在光缆(108次)和SDH通信设备(64次)。调度管理设备故障主要在调度交换机(5次)、调度台(16次)、行政交换机(19次)。其他设备故障集中在PCM设备(140次)、微波设备(23次)、载波设备(65次)附属设施(93次)、计费设备(1次)、网络设备(58次)、线缆设备(62次)。一般情况下,由于SDH传输网的自愈特性和备用保护,单一的设备故障不会造成重大的事故和经济损失,只会造成局部线路故障和瘫痪,平均维修时间比较短,可靠性水平相对较高。然而一旦发生事故或者多点故障,网络可靠性便会骤降,提供业务的能力也会大打折扣。由此可见,通信网传递和交换处理的信息量越大,电力系统对信息和通信的要求越高,通信故障对电力企业和社会造成的影响和损失就越大。 2.1多态系统的可靠性 随着通信网络规模的迅速增大,网络连接越来越复杂,对通信网络可靠性研究主要有以下三个方面的内容: (1)网络模型的表示; (2)网络模型参数的量化; (3)网络不确定行为的表示和量化。 3.提高通信传输可靠性改进措施 3.21建立完善的通信网络导航系统 根据现有电力通信网络导航系统要求可知,信息系统本身存储大量的信息,在设备处理过程中,考虑到参数和技术指标等要求,要提前做好信息处理工作,以网络性能和技术参数为基础,实现服务体系的升级处理。在通信引导阶段,工作点类型比较多,为了提供智能化的服务方式,要协助相关工作人员对信息进行处理。工作人员要快速、准确地对工作点和故障电路点进行分析和掌握,考虑到工作程序和操作步骤等方面的要求,要做好技术导航工作,按照指导和协助方式实施。通过人机对话的方式,能实现高级操作,包括语音系统、技术导航系统和设备服务系统等。导航系统的有效应用能减轻工作人员的自身压力,保证电力系统工作的落实,进而提升工作效率。 3.2优化电力通信网络设计 随着通信技术的快速发展,在电力通信系统中,原有的通信技术与当前社会经济快速发展背景下的电力通信需求已经无法适应,这就要求必须顺应时代发展的步伐,将更多更先进的通信技术用于电力通信网络中,对原电力通信网络进行优化设计,促使电力通信网络更好的发展。因此,在原电力通信网络设计基础之上,要求电力企业及相关部门必须从电力通信网络设计的流程、方法等方面进行强化,优化网络设计,不断将优化创新的电力通信网络设计理念与设计想法融入到实际设计工作中,促使电力通信网络更加的完善,确保电力通信网络能够安全、稳定的运行。 3.3建立完善的科学管理系统 根据不同区域通信网络规划要求可知,在网络信息处理阶段,需要建立科学、有效的管理系统,实现通信网络的设计和有效规划。以区域性建设要点为基础,要按照可靠性指标、规范要求和系统要求予以落实。以现有的规范案例和模式为基础,需要做好调整工作,按照方案和体系落实。通信系统本身比较特殊,在组织处理过程中要适当进行监督,以严格、有效的规范为前提,根据实施流程和结构实现。可靠性设计和技术等是关键所在,需要对通信网进行评估,在有限的设计系统下落实。对网络系统进行分析和评价对整体管理有重要的影

相关主题
文本预览
相关文档 最新文档