当前位置:文档之家› 线性代数知识点总结第一章

线性代数知识点总结第一章

线性代数知识点总结第一章
线性代数知识点总结第一章

线性代数知识点总结

第一章 行列式

第一节:二阶与三阶行列式

把表达式11221221a a a a -称为

1112

2122

a a a a 所确定的二阶行列式,并记作

1112

2112

a a a a ,

即1112

112212212122

.a a D a a a a a a =

=-结果为一个数。

同理,把表达式112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++---称为由数

表11

1213

21

222331

32

33a a a a a a a a a 所确定的三阶行列式,记作1112

13

2122

23313233

a a a a a a a a a 。 即111213

2122

23313233

a a a a a a a a a =112233122331132132112332122133132231,a a a a a a a a a a a a a a a a a a ++--- 二三阶行列式的计算:对角线法则

注意:对角线法则只适用于二阶及三阶行列式的计算. 利用行列式计算二元方程组和三元方程组:

对二元方程组1111221

2112222

a x a x

b a x a x b +=??

+=?

设1112

2122

a a D a a =

≠11212

22

b a D b a =

111

2212

.a b D a b =

则1122221111122122

b a b a D

x a a D

a a ==

11

1

2122

211122122

.a b a b D x a a D

a a =

= 对三元方程组111122133121122223323113223333

a x a x a x

b a x a x a x b a x a x a x b ++=??

++=??++=?,

设11

1213

21

222331

32

33

0a a a D a a a a a a =≠,

1

121312

22233

3233b a a D b a a b a a =,1111322122331333a b a D a b a a b a =,11

12

132122231

323

a a

b D a a b a a b =, 则11D x D =

,22D

x D =,33D x D

=。(课本上没有) 注意:以上规律还能推广到n 元线性方程组的求解上.

第二节:全排列及其逆序数

全排列:把n 个不同的元素排成一列,叫做这n 个元素的全排列(或排列)。

n 个不同的元素的所有排列的总数,通常用P n (或A n )表示。(课本P5)

逆序及逆序数:在一个排列中,如果两个数的前后位置与大小顺序相反,即前面的数大于后面的数,那么称它们构成一个逆序,一个排列中,逆序的总数称为这个排列的逆序数。 排列的奇偶性:逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列。(课本P5)

计算排列逆序数的方法: 方法一:分别计算出排在1,2,

,1,n n - 前面比它大的数码之和即分别算出1,2,,1,n n

-这n 个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数。 方法二:分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数.(课本上没有)

第三节:n 阶行列式的定义

定义:n 阶行列式11

12121

22

212

=

n n n n nn

a a a a a a D a a a 等于所有取自不同行、不同列的n 个元素的乘积

12

12n p p np a a a 的代数和,其中p 1 p 2 … p n 是1, 2, … ,n 的一个排列,每一项的符号由其

逆序数决定。()

()

11

1211222211221122010

n t n n nn nn nn

a a a a a D a a a a a a a =

=-=也可简记为

()det ij a ,其中ij a 为行列式D 的(i ,j 元)。

根据定义,有()()

12

1212

11

12121

22

21212

1=

=

-∑

n n n

n t p p p n p p np p p p n n nn

a a a a a a D a a a a a a

说明:

1、行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程

组的需要而定义的;

2、n 阶行列式是!n 项的代数和;

3、n 阶行列式的每项都是位于不同行、不同列n 个元素的乘积;

4、12

12n p p np a a a 的符号为()1t

-,t 的符号等于排列12,,...n p p p 的逆序数

5、一阶行列式a a =不要与绝对值记号相混淆。

推论1:上,下三角行列式的值均等于其主对角线上各元素的乘积 。

即()

()

11

1211222211221122010

n t n n nn nn nn

a a a a a D a a a a a a a =

=-=

推论2:主对角行列式的值等于其对角线上各元的乘积,副对角行列式的值等于()()12

1n n --乘

以其副对角线上各元的乘积。

1

2

12

n n

λλλλλλ=,

()

()1

12

2

121n n n n

λλλλλλ-=-

第四节:行列式的性质

定义

记11

12121

22

212

n n n n nn

a a a a a a D a a a =

,11

2111222212n n T

n

n

nn

a a a a a a D a a a =

,行列式T

D 称为行列式

D 的转置行列式.

性质1 行列式与它的转置行列式相等.

说明 行列式中行与列具有同等地位,因此凡是对行成立的行列式的性质的对列也成立。 性质2 互换行列式的两行()

?i j r r 或列()

?i j c c ,行列式变号。 推论

如果行列式有两行(列)完全相同,则此行列式为零。

性质3 行列式的某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式;

推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D .

性质4 行列式中如果有两行(列)元素成比例,则此行列式为零. 性质5 若行列式的某一列(行)的元素都是两数之和,则

11

1211121

2222212

()()()i i n i i n n n ni ni

nn

a a a a a a a a a a D a a a a a '+'+=

'+11121111121

121222*********

12

i n i n i n i n n n ni

nn

n n ni

nn

a a a a a a a a a a a a a a a a a a a a a a a a ''=+

'

性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

行列式的值不变。

计算行列式常用方法:①利用定义;②利用运算

+i j r kr 把行列式化为上三角形行列式,从而算得行列式的值。

说明 行列式中行与列具有同等的地位,行列式的6个性质凡是对行成立的对列也同样成立。

第五节 行列式按行(列)展开

余子式 在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M . 代数余子式 ()

1i j

ij ij A M +=-记,叫做元素ij a 的代数余子式.

引理

一个n 阶行列式,如果其中第i 行所有元素除(i ,j)(,)i j 元外ij a 都为零,那么这

行列式等于ij a 与它的代数余子式的乘积,即ij ij D a A =。

定理

n 阶行列式 111212122212

=

n n n n nn

a a a a a a D a a a 等于它的任意一行(列)的各元素与其对应

的代数余子式的乘积之和,即

1122i i i i in in D a A a A a A =+++,(1,2,,)i n =1122j j j j nj nj D a A a A a A =+++或,

(1,2,

,)j n =。

扩展

范德蒙德(Vandermonde )行列式122

221

2

1

1

1112

111()≥>≥---==

-∏

n n n i j n i j n n n n

x x x D x x x x x x x x

展开定理推论

n 阶行列式 11

12121

22

212

=

n n n n nn

a a a a a a D a a a 的任意一行(列)的各元素与另一

行(列)对应的代数余子式的乘积之和为零,即

11220()i s i s in sn a A a A a A i s ++

+=≠11220()j t j t nj nt a A a A a A j t ++

+=≠或

线性代数知识点总结

线性代数知识点总结 第一章 行列式 1. n 阶行列式()() 12 1212 11121212221212 1= = -∑ n n n n t p p p n p p np p p p n n nn a a a a a a D a a a a a a 2.特殊行列式 () () 1112 11222211221122010 n t n n nn nn nn a a a a a D a a a a a a a = =-= 1 2 12 n n λλλλλλ=, () ()1 12 2 121n n n n λλλλλλ-=- 3.行列式的性质 定义 记 11121212221 2 n n n n nn a a a a a a D a a a =,11211 1222212n n T n n nn a a a a a a D a a a = ,行列式T D 称为行列式D 的转置行列式。 性质1 行列式与它的转置行列式相等。 性质2 互换行列式的两行() ?i j r r 或列() ?i j c c ,行列式变号。 推论 如果行列式有两行(列)完全相同(成比例),则此行列式为零。 性质3 行列式某一行(列)中所有的元素都乘以同一数()?j k r k ,等于用数k 乘此行列式; 推论1 D 的某一行(列)中所有元素的公因子可以提到D 的外面; 推论2 D 中某一行(列)所有元素为零,则=0D 。 性质4 若行列式的某一列(行)的元素都是两数之和,则 1112111212222212 () ()()i i n i i n n n ni ni nn a a a a a a a a a a D a a a a a '+'+='+11121111121121222221222212 12 i n i n i n i n n n ni nn n n ni nn a a a a a a a a a a a a a a a a a a a a a a a a ''=+ ' 性质6 把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,

第一章知识点总结

第一章走进细胞 考点1 细胞是最基本的生命系统 1.两条重要的结论: (1)细胞是生物体结构和功能的基本单位 (2)生命活动离不开细胞(说明了细胞的重要性) 2.生命系统的结构层次 细胞—组织—器官—系统—个体—种群—群落—生态系统—生物圈(从小到大共9个层次) 总结 1.病毒没有细胞结构,必须寄生在活细胞中才能繁殖生存。(病毒无独立性) 2.“细胞是生物体结构和功能的基本单位”这个结论是[正确的] ,但是“一切生物体都是由细胞构成的”这句话是[错误的] ,因为病毒是没有细胞结构的 3.核酸、蛋白质不是生物,但它们是有生物活性的物质 4.不是每种生物都有9个结构层次,一般来说生物越高级,结构层次越多,越复杂。具体问题要具体分析5.高等植物的结构层次中,没有“系统”这个层次。 6.对于单细胞生物,如细菌,一般可以把它归入“细胞”层次,也可以归入“个体”层次 7.最基本的生命系统是细胞,最大的生命系统是生物圈 8.导管、木纤维是死细胞;筛管是活细胞 9.种群,强调所有同一种生物;群落,强调某特定区域的所有生物,包括所有的动物、植物、微生物;生态系统,强调所有生物+无机环境 考点2原核细胞与真核细胞 1.科学家根据细胞内有无以核膜为界限的细胞核 ............,把细胞分为真核细胞 ....和原核细胞 ....两大类 2.原核细胞与真核细胞的区别 类别原核细胞真核细胞 细胞大小较小较大 细胞核 无成形的细胞核,无核膜,无核仁, 无染色体(DNA部和蛋白质结合) 有成形的真正的细胞核,有核膜、核 仁和染色体 细胞质有核糖体 有核糖体、线粒体等,植物细胞还有叶绿体和液泡等 生物类群细菌、蓝藻真菌、植物、动物原核细胞与真核细胞的共性:都有细胞膜,细胞质,核糖体。遗传物质都是DNA. 3蓝藻

人教版数学七年级上册第一章知识点总结

第一章有理数知识点总结 正数:大于的数叫做正数。0 1.概念负数:在正数前面加上负号“—”的数叫做负数。 注:0既不是正数也不是负数,是正数和负数的分界线,是整数,一、正数和负数自然数,有理数。 (不是带“—”号的数都是负数,而是在正数前加“—”的数。) 2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。 有理数:整数和分数统称有理数。 1.概念整数:正整数、0、负整数统称为整数。 分数:正分数、负分数统称分数。 (有限小数与无限循环小数都是有理数。) 注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。π是正数但不是有理数! 2.分类:两种 二、有理数⑴按正、负性质分类:⑵按整数、分数分类: 正有理数正整数正整数 有理数正分数整数0

零有理数负整数 负有理数负整数分数正分数 负分数负分数 3.数集内容了解 1.概念:规定了原点、正方向、单位长度的直线叫做数轴。 三要素:原点、正方向、单位长度 2.对应关系:数轴上的点和有理数是一一对应的。 三、数轴 比较大小:在数轴上,右边的数总比左边的数大。 3.应用 求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。 “—”号)(注意不带“+” 代数:只有符号不同的两个数叫做相反数。 1.概念(0的相反数是0) 几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。 2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之, 若a+b=0,则a与b互为相反数。 四、相反数 两个符号:符号相同是正数,符号不同是负数。 3.多重符号的化简 多个符号:三个或三个以上的符号的化简,看负号的个数,当“—”号的个数是偶数个时,结果取正号 当“—”号的个数是奇数个时,结果取负号 1.概念:乘积为1的两个数互为倒数。 (倒数是它本身的数是±1;0没有倒数) 五、倒数 2.性质若a与b互为倒数,则a·b=1;反之,若a·b=1,则a与b互为倒数。 若a与b互为负倒数,则a·b=-1;反之,若a·b= -1则a与b互为负倒数。

线性代数总结归纳

行列式 1.为何要学习《线性代数》?学习《线性代数》的重要性和意义。 答:《线性代数》是理、工、医各专业的基础课程,它是初等代数理论的继续和发展, 它的理论和方法在各个学科中得到了广泛的应用。 2.《线性代数》的前导课程。 答:初等代数。 3.《线性代数》的后继课程。 答:高等代数,线性规划,运筹学,经济学等。 4.如何学习《线性代数》? 答:掌握各章节的基本概念和解决问题的基本方法,多多体会例子的方法和技巧,多做 练习,在练习中要紧扣问题涉及的概念,不要随意扩大概念的范围,练习要自己做才能理解所学的知识。在学完一章后自己要做一个小结,理清该章内容及前后概念之间的联 系。在学完本课程后,将各章的内容做一个总结,想想各章内容之间的联系,易混淆的 概念要着重加深理解及区分它们之间的差异。 第一章行列式 5.什么是一个n阶全排列?【知识点】:n阶全排列。 答:由n个数1,2,…,n组成的一个有序数组。 6.什么是标准排列?【知识点】:n阶全排列。 答:按数字由小到大的自然顺序排列的n阶排列123, n。 7.什么是n阶全排列的逆序?【知识点】:n阶全排列的逆序。 答:在一个n阶排列中,若某个较大的数排在某个较小的数前面,则称这两个数构成一个逆序。例如:排列45312中,数4与3 ,数4与1,数4与2 ,数5与3,数5与1 ,数5与2, 数3与1,数3与2都构成逆序。数4与5,数1与2不构成逆序。 & 什么是n阶排列的逆序数?【知识点】:n阶排列的逆序数。 答:在一个n阶排列中,所有逆序的总数就是排列的逆序数。例如:上问中的排列45312 的逆序数为8。 9.什么是奇排列和偶排列?【知识点】:排列的奇偶性。

线性代数知识点总结归纳

线性代数知识点总结归纳 第一章行列式 知识点1:行列式、逆序数 知识点2:余子式、代数余子式 知识点3:行列式的性质 知识点4:行列式按一行(列)展开公式 知识点5:计算行列式的方法 知识点6:克拉默法则 第二章矩阵 知识点7:矩阵的概念、线性运算及运算律 知识点8:矩阵的乘法运算及运算律 知识点9:计算方阵的幂 知识点10:转置矩阵及运算律 知识点11:伴随矩阵及其性质 知识点12:逆矩阵及运算律 知识点13:矩阵可逆的判断 知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解 知识点16:初等变换的概念及其应用 知识点17:初等方阵的概念 知识点18:初等变换与初等方阵的关系

知识点19:等价矩阵的概念与判断 知识点20:矩阵的子式与最高阶非零子式 知识点21:矩阵的秩的概念与判断 知识点22:矩阵的秩的性质与定理 知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例 第三章向量 知识点25:向量的概念及运算 知识点26:向量的线性组合与线性表示 知识点27:向量组之间的线性表示及等价 知识点28:向量组线性相关与线性无关的概念 知识点29:线性表示与线性相关性的关系 知识点30:线性相关性的判别法 知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系 知识点33:求向量组的最大无关组 知识点34:有关向量组的定理的综合运用 知识点35:内积的概念及性质 知识点36:正交向量组、正交阵及其性质 知识点37:向量组的正交规范化、施密特正交化方法 知识点38:向量空间(数一) 知识点39:基变换与过渡矩阵(数一)

线性代数知识点归纳

线性代数复习要点 第一部分 行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 1.行列式的计算: ① (定义法)1212121112121222() 1212()n n n n n j j j n j j nj j j j n n nn a a a a a a D a a a a a a τ= = -∑ L L L L L M M M L 1 ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. ③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④ 若A B 与都是方阵(不必同阶),则 ==()mn A O A A O A B O B O B B O A A A B B O B O *==* *=-1 ⑤ 关 于 副 对角线: (1)2 1121 21 1211 1 () n n n n n n n n n n n a O a a a a a a a O a O ---* ==-K N N 1

⑥ 范德蒙德行列式:()1 22 22 12111112 n i j n j i n n n n n x x x x x x x x x x x ≤<≤---=-∏L L L M M M L 111 ⑦ a b -型公式:1 [(1)]()n a b b b b a b b a n b a b b b a b b b b a -=+--L L L M M M O M L ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法) 2. 对于n 阶行列式A ,恒有:1 (1)n n k n k k k E A S λλ λ-=-=+-∑,其中k S 为k 阶主子式; 3. 证明 0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 第二部分 矩阵 1.矩阵的运算性质 2.矩阵求逆

线性代数知识点总结

线性代数知识点总结 第一章行列式 (一)要点 1、 二阶、三阶行列式 2、 全排列和逆序数,奇偶排列(可以不介绍对换及有关定理) ,n 阶行列式的定义 3、 行列式的性质 4、 n 阶行列式 ^a i j ,元素a j 的余子式和代数余子式,行列式按行(列)展开定理 5、 克莱姆法则 (二)基本要求 1 、理解n 阶行列式的定义 2、掌握n 阶行列式的性质 3 、会用定义判定行列式中项的符号 4、理解和掌握行列式按行(列)展开的计算方法,即 a 1i A Ij ' a 2i A 2 j ' a ni A nj ^ 5、会用行列式的性质简化行列式的计算,并掌握几个基本方法: 归化为上三角或下三角行列式, 各行(列)元素之和等于同一个常数的行列式, 利用展开式计算 6、 掌握应用克莱姆法则的条件及结论 会用克莱姆法则解低阶的线性方程组 7、 了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件 第二章矩阵 (一)要点 1、 矩阵的概念 m n 矩阵A =(a j )mn 是一个矩阵表。当 m =n 时,称A 为n 阶矩阵,此时由 A 的 元素按原来排列的形式构成的 n 阶行列式,称为矩阵 A 的行列式,记为 A . 注:矩阵和行列式是两个完全不同的两个概念。 2、 几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵 a i 1A j 1 ■ a i2A j 2 ? a in A jn = 〔 D '

3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法 (1矩阵的乘法不满足交换律和消去律,两个非零矩阵相乘可能是零矩阵。如果两矩阵A与B相乘,有AB = BA ,则称矩阵A与B可换。注:矩阵乘积不一定符合交换 (2)方阵的幕:对于n阶矩阵A及自然数k, A k=A A A , 1 k个 规定A° = I ,其中I为单位阵. (3) 设多项式函数(J^a^ k?a1?k^l Z-心律??a k,A为方阵,矩阵A的 多项式(A) = a0A k?a1A k' …-?-a k jA ■ a k I ,其中I 为单位阵。 (4)n阶矩阵A和B ,贝U AB=IAB . (5)n 阶矩阵A ,则∣∕Λ =λn A 4、分块矩阵及其运算 5、逆矩阵:可逆矩阵(若矩阵A可逆,则其逆矩阵是唯一的);矩阵A的伴随矩阵记 * 为A , AA* = A*A = AE 矩阵可逆的充要条件;逆矩阵的性质。 6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价 意义下的标准形;矩阵A可逆的又一充分必要条件:A可以表示成一些初等矩阵的乘积; 用初等变换求逆矩阵。 7、矩阵的秩:矩阵的k阶子式;矩阵秩的概念;用初等变换求矩阵的秩 8、矩阵的等价 (二)要求 1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等 2、了解几种特殊的矩阵及其性质 3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质 4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时,会用伴随矩阵求逆矩阵 5、了解分块矩阵及其运算的方法 (1)在对矩阵的分法符合分块矩阵运算规则的条件下,其分块矩阵的运算在形式上与不分块矩阵的运算是一致的。 (2)特殊分法的分块矩阵的乘法,例如A m n, B nl,将矩

人教版高中政治必修一第一章知识点总结

第一单元、生活与消费 第一课、神奇的货币 考点一:货币的本质 知识点1:商品的基本属性 (1)商品的含义:用于交换的劳动产品(2)商品的基本属性:价值和使用价值。 ①价值是指凝结在商品中无差别的人类劳动。使用价值是指商品能够满足人们某种需要的属性。 ②使用价值和价值是商品的两个基本属性。(前者是自然属性,后者是社会属性) ③劳动产品不一定有价值,因为价值是商品特有的属性。第二,有使用价值的东西不一定有价值,因为有使用价值的东西不一定是商品。

备注补充: ④两者的关系:对立统一 统一:同时存在商品中,商品是两者的统一体。 对立:任何人都不能同时拥有两个属性。 A、使用价值是价值的物质承担者,作为商品,必然具有使用价值和价值,二者缺一不可,这是两者统一的表现。 B、对立表现在:商品生产者和购买者,对于商品的使用价值和价值二者不可兼得。商品生产者要想实现商品的价值,他必须把使用价值让渡给购买者,而购买者为了得到使用价值,也必须支付出相应的价值给生产者,当商品的使用价值和价值分离时,意味着交换实现。

知识点2:货币的产生与本质 ①货币的含义:从商品中分离出来固定地充当一般等价物的商品。 ②货币产生:物物交换—扩大的物物交换—一般等价物—金银固定充当一般等价物—货币产生。 ③货币的本质:是一般等价物。(其作用是表现其他一切商品的价值,充当商品交换的媒介) 知识点3:货币的基本职能——价值尺度和流通手段。 (1)、基本职能: ①价值尺度

A、含义:货币具有的表现和衡量其他一切商品价值大小的职能。 B、价格:通过一定数量的货币表现出来的商品价值叫做价格。 C、要求:执行这个职能只需要观念上的货币。 ②流通手段 A、含义:货币充当商品交换的媒介的职能就叫流通手段。 B、表现形式:商品—货币—商品。货币出现以后,商品交换包括了买和卖两个先后衔接的阶段。而以货币为媒介的商品交换叫做商品流通。 C、要求:货币执行这个职能必须用现实的货币。

线性代数知识点归纳,超详细

线性代数复习要点 第一部分行列式 1. 排列的逆序数 2. 行列式按行(列)展开法则 3. 行列式的性质及行列式的计算 行列式的定义 1.行列式的计算: ①(定义法) ②(降阶法)行列式按行(列)展开定理: 行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.

③(化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积. ④若都是方阵(不必同阶),则 ⑤关于副对角线: ⑥范德蒙德行列式: 证明用从第n行开始,自下而上依次的由下一行减去它上一行的倍,按第一列展开,重复上述操作即可。 ⑦型公式: ⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法. ⑨(递推公式法) 对阶行列式找出与或,之间的一种关系——称为递推公式,其中 ,,等结构相同,再由递推公式求出的方法称为递推公式法. (拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算. ⑩(数学归纳法) 2. 对于阶行列式,恒有:,其中为阶主子式;

3. 证明的方法: ①、; ②、反证法; ③、构造齐次方程组,证明其有非零解; ④、利用秩,证明; ⑤、证明0是其特征值. 4. 代数余子式和余子式的关系: 第二部分矩阵 1.矩阵的运算性质 2.矩阵求逆 3.矩阵的秩的性质 4.矩阵方程的求解 1.矩阵的定义由个数排成的行列的表称为矩阵. 记作:或 ①同型矩阵:两个矩阵的行数相等、列数也相等. ②矩阵相等: 两个矩阵同型,且对应元素相等. ③矩阵运算 a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减). b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为. c. 矩阵与矩阵相乘:设, ,则, 其中 注:矩阵乘法不满足:交换律、消去律, 即公式不成立.

物理必修一第一章知识点总结

物理必修一知识点总结 一、运动的描述 1、机械运动: 物体的空间位置随时间的变化,是自然界中最简单、最基本的运动形态(一个物体相对另一个物体的位置发生变化) 2、质点: ①定义:用来代替物体的有质量的点。质点是一种理想化的模型,是科学的抽象。 ②物体可看做质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。且物体能否 看成质点,要具体问题具体分析。 ③物体可被看做质点的几种情况: (1)平动的物体通常可视为质点. (2)有转动但相对平动而言可以忽略时,也可以把物体视为质点. (3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体 看做质点,反之,则可以. 3、参考系: (1)参考系可以是运动的物体,也可以是静止的物体,但被选为参考系的物体,我们都假定它是静止的。 (2)比较两物体的运动情况时,必须选同一参考系。 (3)选取不同的参考系来观察同一个物体的运动,其运动结果是不同的。通常以地球为参考系。 4、坐标系: 由原点、正方向和单位长度构成,分为一维坐标、二维坐标、三维坐标等 5、时刻和时间间隔

时刻与时间间隔在数轴上的表示举例 6、位移和路程 7、标量和矢量 8、平均速度和瞬时速度 9、平均速度和平均速率

瞬时速率:瞬时速度的大小(简称速率)10、两种打点计时器 11、纸带测速度 v B=X AC AC v AB= X AB AB 12、加速度、速度变化量和速度 13、加速度与速度方向

14、x-t ,v-t 图像 二、匀变速直线运动 1、匀变速直线运动:①轨迹是直线,且加速度不变的运动;②轨迹是直线,且速度均匀变化(均匀增加或减小) 2、

考研线性代数知识点归纳

1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值; 2、矩阵 1. A 是n 阶可逆矩阵: ?0A ≠(是非奇异矩阵); ?()r A n =(是满秩矩阵) ?A 的行(列)向量组线性无关; ?齐次方程组0Ax =有非零解; ?n b R ?∈,Ax b =总有唯一解;

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0(3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数知识点全归纳

线性代数知识点 1、行列式 1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式; 2. 代数余子式的性质: ①、ij A 和ij a 的大小无关; ②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i j i j ij ij ij ij M A A M ++=-=- 4. 设n 行列式D : 将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)2 1(1) n n D D -=-; 将D 顺时针或逆时针旋转90o ,所得行列式为2D ,则(1)2 2(1)n n D D -=-; 将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =; 将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5. 行列式的重要公式: ①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2 (1) n n -? -; ③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2 (1)n n -? -; ⑤、拉普拉斯展开式: A O A C A B C B O B ==、 (1)m n C A O A A B B O B C ==-g ⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值; 6. 对于n 阶行列式A ,恒有:1(1)n n k n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式; 7. 证明0A =的方法: ①、A A =-; ②、反证法; ③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;

《线性代数》知识点归纳整理-大学线代基础知识.docx

《线性代数》知识点归纳整理诚毅 学生编 01、余子式与代数余子式................................................................... - 2 - 02、主对角线............................................................................. - 2 - 03、转置行列式........................................................................... - 2 - 04、行列式的性质......................................................................... - 3 - 05、计算行列式........................................................................... - 3 - 06、矩阵中未写出的元素................................................................... - 4 - 07、几类特殊的方阵....................................................................... - 4 - 08、矩阵的运算规则....................................................................... - 4 - 09、矩阵多项式........................................................................... - 6 - 10、对称矩阵............................................................................. - 6 - 11、矩阵的分块........................................................................... - 6 - 12、矩阵的初等变换....................................................................... - 6 - 13、矩阵等价............................................................................. - 6 - 14、初等矩阵............................................................................. - 7 - 15、行阶梯形矩阵与行最简形矩阵......................................................... - 7 - 16、逆矩阵............................................................................... - 7 - 17、充分性与必要性的证明题............................................................... - 8 - 18、伴随矩阵............................................................................. - 8 - 19、矩阵的标准形:....................................................................... - 9 - 20、矩阵的秩:........................................................................... - 9 - 21、矩阵的秩的一些定理、推论............................................................. - 9 - 22、线性方程组概念....................................................................... - 10 - 23、齐次线性方程组与非齐次线性方程组(不含向量)......................................... - 10 - 24、行向量、列向量、零向量、负向量的概念................................................. - 11 - 25、线性方程组的向量形式................................................................. - 11 - 26、线性相关与线性无关的概念.......................................................... - 12 - 27、向量个数大于向量维数的向量组必然线性相关............................................ - 12 - 28、线性相关、线性无关;齐次线性方程组的解;矩阵的秩这三者的关系及其例题................. - 12 - 29、线性表示与线性组合的概念.......................................................... - 12 - 30、线性表示;非齐次线性方程组的解;矩阵的秩这三者的关系其例题.......................... - 12 - 31、线性相关(无关)与线性表示的3个定理................................................. - 12 - 32、最大线性无关组与向量组的秩........................................................... - 12 - 33、线性方程组解的结构................................................................... - 12 -

最新初一数学第一章知识点总结

初一数学第一章知识点总结(一) 一、正数和负数 1、以前学过的0以外的数前面加上负号“-”的数叫做负数。 2、以前学过的0以外的数叫做正数。 3、零既不是正数也不是负数,零是正数与负数的分界。 4、在同一个问题中,分别用正数和负数表示的量具有相反的意义。 二、有理数 1、正整数、0、负整数统称整数,正分数和负分数统称分数。 2、整数和分数统称有理数。 3、把一个数放在一起,就组成一个数的集合,简称数集。 三、数轴 1、规定了原点、正方向、单位长度的直线叫做数轴。 2、数轴的作用:所有的有理数都可以用数轴上的点来表达。 3、注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。 ⑵同一根数轴,单位长度不能改变。 4、性质:(1)在数轴上表示的两个数,右边的数总比左边的数大。 (2)正数都大于零,负数都小于零,正数大于负数。 四、相反数 1、只有符号不同的两个数叫做互为相反数。 2、数轴上表示相反数的两个点关于原点对称。 3、零的相反数是零。 五、绝对值 1、一般地,在数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。

2、一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。 六、有理数的大小比较 1、正数大于0,0大于负数,正数大于负数。 2、两个负数,绝对值大的反而小。 七、有理数的加法 1、有理数的加法法则 (1)号两数相加,取相同的符号,并把绝对值相加。 (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 (3)互为相反数的两个数相加得零。 (4)一个数同零相加,仍得这个数。 2、有理数加法的运算律 (1)加法交换律:两个数相加,交换加数的位置,和不变。即a+b=b+a (2)加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。即(a+b)+c=a+(b+c) 八、有理数的减法 1、有理数减法法则 减去一个数,等于加这个数的相反数。即a-b=a+(-b) 九、有理数的乘法 1、有理数的乘法法则 (1)两数相乘,同号得正,异号得负,并把绝对值相乘。 (2)任何数同0相乘,都得0。 (3)乘积是1的两个数互为倒数。 (4)几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。

线性代数知识点总结材料72879

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=) 1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零

特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式: 行列式运算常用方法(主要) 行列式定义法(二三阶或零元素多的) 化零法(比例) 化三角形行列式法、降阶法、升阶法、归纳法、 第二章 矩阵 矩阵的概念:n m A *(零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵) 矩阵的运算:加法(同型矩阵)---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律 乘法 n m l kj ik n l kj l m ik b a b a B A *1 **)()(*)(*∑==注意什么时候有意义 一般AB=BA ,不满足消去律;由AB=0,不能得A=0或B=0 转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)((反序定理)

线性代数知识点总结(第5章)

线性代数知识点总结(第5章) (一)矩阵的特征值与特征向量 1、特征值、特征向量的定义: 设A为n阶矩阵,如果存在数λ及非零列向量α,使得Aα=λα,称α是矩阵A属于特征值λ的特征向量。 2、特征多项式、特征方程的定义: |λE-A|称为矩阵A的特征多项式(λ的n次多项式)。 |λE-A |=0称为矩阵A的特征方程(λ的n次方程)。 注:特征方程可以写为|A-λE|=0 3、重要结论: (1)若α为齐次方程Ax=0的非零解,则Aα=0·α,即α为矩阵A特征值λ=0的特征向量 (2)A的各行元素和为k,则(1,1,…,1)T为特征值为k的特征向量。 (3)上(下)三角或主对角的矩阵的特征值为主对角线各元素。 △4、总结:特征值与特征向量的求法 (1)A为抽象的:由定义或性质凑 (2)A为数字的:由特征方程法求解 5、特征方程法: (1)解特征方程|λE-A|=0,得矩阵A的n个特征值λ1,λ2,…,λn 注:n次方程必须有n个根(可有多重根,写作λ1=λ2=…=λs=实数,不能省略) (2)解齐次方程(λi E-A)=0,得属于特征值λi的线性无关的特征向量,即其基础解系(共n-r(λi E-A)个解) 6、性质: (1)不同特征值的特征向量线性无关 (2)k重特征值最多k个线性无关的特征向量 1≤n-r(λi E-A)≤k i (3)设A的特征值为λ1,λ2,…,λn,则|A|=Πλi,Σλi=Σa ii (4)当r(A)=1,即A=αβT,其中α,β均为n维非零列向量,则A的特征值为λ1=Σa ii=αTβ=βTα,λ2=…=λn=0

(5)设α是矩阵A属于特征值λ的特征向量,则 (二)相似矩阵 7、相似矩阵的定义: 设A、B均为n阶矩阵,如果存在可逆矩阵P使得B=P-1AP,称A与B相似,记作A~B 8、相似矩阵的性质 (1)若A与B相似,则f(A)与f(B)相似 (2)若A与B相似,B与C相似,则A与C相似 (3)相似矩阵有相同的行列式、秩、特征多项式、特征方程、特征值、迹(即主对角线元素之和) 【推广】 (4)若A与B相似,则AB与BA相似,A T与B T相似,A-1与B-1相似,A*与B*也相似 (三)矩阵的相似对角化 9、相似对角化定义: 如果A与对角矩阵相似,即存在可逆矩阵P,使得P-1AP=Λ=,称A可相似对角化。 注:Aαi=λiαi(αi≠0,由于P可逆),故P的每一列均为矩阵A的特征值λi的特征向量10、相似对角化的充要条件 (1)A有n个线性无关的特征向量 (2)A的k重特征值有k个线性无关的特征向量 11、相似对角化的充分条件: (1)A有n个不同的特征值(不同特征值的特征向量线性无关) (2)A为实对称矩阵

线性代数知识点全归纳

1 线性代数知识点 1、行列式 2n1.n行列式共有n个元素,展开后有n!项,可分解为2行列式; 2.代数余子式的性质: ①、A和a的大小无关; ijij②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A; i+ji+j代数余子式和余子式的关系:M=(-1)AA=(-1)M3. ijijijij 4.设n行列式D:n(n-1)将D上、下翻转或左右翻转,所得行列式为D,则D=(-1)2D; 11n(n-1) 将D顺时针或逆时针旋转90,所得行列式为D,则D=(-1)2D; 22将D主对角线翻转后(转置),所得行列式为D,则D=D; 33将D主副角线翻转后,所得行列式为D,则D=D; 44 5.行列式的重要公式: ①、主对角行列式:主对角元素的乘积;n(n-1)②、副对角行列式:副对角元素的乘积? (-1)2; ③、上、下三角行列式( ◥ = ◣ ):主对角元素的乘积; n(n-1)④、 ◤ 和 ◢ :副对角元素的乘积? (-1); 2 AOACCAOA ⑤、拉普拉斯展开式:==m n AB、==(-1)AB CBOBBOBC

⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;n ∑(-1)Sλ,其中S为k阶主子式;nkn-k6.对于n阶行列式A,恒有:λE-A=λ+ k k k=17.证明A=0的方法: ①、A=-A; ②、反证法; ③、构造齐次方程组Ax=0,证明其有非零解; ④、利用秩,证明r(A)

相关主题
文本预览
相关文档 最新文档