当前位置:文档之家› 流体力学背诵吐血总结保90分

流体力学背诵吐血总结保90分

流体力学背诵吐血总结保90分
流体力学背诵吐血总结保90分

流体力学背诵总库

第一章

名词解释

1.流体

能够流动的物体叫流体,如果按照力学的术语进行定义,则在任何微小的剪切力的作用下都能够发生连续变形的物质称为流体。所以气体、液体统称为流体。

2.自由液面

液体和气体的交界称为自由液面。

3.流体的压缩性系数

在一定温度下,单位压强增量引起的体积变化率,用以衡量流体压缩性的大小。

4.分离体

在运动的流体中取一体积为V 的一团流体作为研究对象,在此称为分离体。

5.表面力

在分离体的表面必然存在分离体以外的其他物体对分离体内的流体的作用力,这个力称为表面力。

6.质量力

质量力是某种力场作用在全部流体质点上的力,其大小和流体的质量和体积成正比,故称为质量力或体积力。

7.流体的密度

单位体积内流体所具有的质量,表征流体在空间的密集程度。

8.相对密度

标准大气压下流体的密度与4℃时纯水的密度的比值(

w f d ρρ=,为流体的密度,w ρ为4℃时纯水的密度) 9.比体积 单位质量流体所占的体积,即密度的倒数(

ρ

1==m v v ) 10.混合气体密度的计算式 ∑==+++=n i i i n n 1

2211αραραραρρ (其中i ρ为混合气体中各组分气体的密度;i α为混合气体中各组分气体所占体积的百分比)

11.表面张力

表面张力是使液体表面张紧的力,存在液体自由面上,以长度单位边界线上的拉应力来度量,因此也称为线力。

12.毛细现象

毛细现象(又称毛细管作用)是指液体在细管状物体内侧,由于内聚力与附着力的差异上升或下降的现象。

13.内聚力

液体分子间相互制约,形成一体的吸引力称为内聚力。

14.附着力

当液体同固体壁面接触时,液体分子和固体分子之间的吸引力称为附着力。

15.流体质点

在连续性的假设中,认为构成流体的基本单位是流体质点。包含有足够多流体分子的微团,在宏观上流体微团的尺度和流动所涉及的物体的特征长度相比充分的小,小到在数学上可以作为一个点来处理。而在微观上,微团的尺度和分子的平均自由行程相比又要足够大。

16.流体的粘性

流体流动时产生内摩擦力的性质称为流体的粘性。

17.流体运动粘度

将流体动力粘度与密度的比值定义为运动粘度。

简答题

1.流体力学的基本任务?

建立以及求解描述流体运动和平衡的基本方程

2.一般流体力学的研究对象?

气体和液体

3.流体力学的研究内容?

静力学和动力学

静力学:流体的平衡规律,及在平衡状态下流体和固体的作用力问题。

动力学:流体的运动规律,及在运动状态下流体和固体的作用力问题。

4.什么是连续介质模型?其适用条件是什么?

答:在流体力学研究中将流体作为由无穷多稠密、没有间隙的流体质点构成的连续介质这就是连续介质模型。当研究所涉及的物体的特征长度与分子的平均自由行程相比足够大时才适用。

5.简述影响粘性的因素。

一、液体分子间的引力,当流体微团发生相对运动时,必须克服相邻分子间的引力;二、流体分子的热运动,当流体层之间作相对运动时,由于分子的热运动,使流体层之间产生质量交换。

6.简述固体和流体特征差异

(1)静止状态下,固体能同时承受剪切应力和法向应力,而流体仅能承受法向应力。(2)在力的作用下发生变形,固体的变形量和作用力的大小成正比,而流体则是角变形速度和剪切应力有关。(3)当作用力停止作用时,固体可以恢复原来的形状,而流体只能停止变形,而不能返回原来的位置。

7.什么是流体的压缩性和膨胀性?

答 流体在一定的温度下压强增大,体积减少;在压强一定时,温度变化体积也要发生相应的变化。所有流体都具有这种特性,流体的这种性质称为流体的压缩性和膨胀性。

8.举例说明怎么样确定流体是可压缩的或是不可压缩的。

答 流体的可压缩性要是具体情况而定。例如在研究水下爆炸、普通中的水击和柴油机高压油管中柴油的流动过程时,由于压强变化比较大,而且过程变化非常迅速,必须考虑压强对密度的影响,即要把液体作为可压缩流体来处理。又如,用管道输送煤气时,由于流动过程中压强对温度的变化都很小,其密度变化很小,可作为不可压缩流体来处理。

9.简述连续介质模型内容

将流体作为由无穷多稠密,没有间隙的流体质点构成的连续介质。

10.简述流体粘性的含义

流体在流动时产生内摩擦力的性质称为流体的粘性

11.影响粘性的因素

流体分子间的引力,流体分子的热运动

12.流体粘性所产生的两种效应

流体内部各流体微团之间会产生粘滞力;流体将粘附于它所接触的固体表面。

第二章

名词解释

1.流体静力学基本方程及适用条件

z+p /ρg=c 适用于不可压缩重力流体平衡状态。

2.总势能

p /ρg 单位重力作用下流体的压强势能,位势能和压强势能之和称为总势能。

3.流体静力学基本方程的物理意义

当连续不可压缩的重力流体处于平衡状态时,在流体中的任意点上,单位重力下流体的总势能为常数。

4.流体静力学基本方程的几何意义

不可压缩的重力流体处于平衡状态时,静水头线或者计示静水头线为平行于基准面的水平线。

5.流体静压强的传递现象(帕斯卡原理)

均值不可压缩的重力流体处于平衡状态时,自由液面上的压强p 0对内部任意点上的影响是同样的,即施加于自由液面的压强,将以同样的大小传递到液体内部任意点上。

6.绝对压强

以绝对真空为基准度量的压强称为绝对压强,用p 表示。

7.计示压强

以大气压为基准度量的压强称为计示压强或相对压强,用p a 表示。

8.真空状态和真空

当被测流体的绝对压强低于大气压时,测得的计示压强为负值,此时,称该流体处于真空状态。负的表压强称为真空,用p v 表示。

9.静压强

当流体处于平衡或相对平衡状态时,作用在流体上的应力只有法向应力而没有切向应力,此时,流体作用面上负的法向应力就是静压强p

,即:

10.浮体

流体力学中将部分沉浸在液体中的物体称为浮体。

11.潜体

全部沉浸在液体中的物体称为潜体。

12.沉体

沉入液体底部固体表面的物体称为沉体。

简答题

1.欧拉平衡微分方程

2.写出流体静力学基本方程的几种表达式,说明流体静力学基本方程的适用范围以及物理意义、几何意义。

z+p /ρg=c z 1+p 1/ρg=z 2+p 2/ρg

适用范围:适用于不可压缩重力流体平衡状态。

物理意义:当连续不可压缩的重力流体处于平衡状态时,在流体中的任意点上,单位重力下流体的总势能为常数。

几何意义:不可压缩的重力流体处于平衡状态时,静水头线或者计示静水头线为平行于基准面的水平线。

3.什么是绝对压强、计示压强和真空?他们之间有什么关系?

绝对压强:以绝对真空为基准度量的压强称为绝对压强,用p 表示。

计示压强:以大气压为基准度量的压强称为计示压强或相对压强,用p e 表示。

真空:负的表压强称为真空,用p v 表示。

4.流体静压强有哪两个特性?

①流体静压强的作用方向沿作用面的内法线方向。

②在静止流体中的任一点上,来自任意方向上的静压强都是相等的。

5.什么是静压强?它的表达式为?

作用在静止流体单位面积上的力为静压强。Pn=-dF/dA=-Pnn

第三章

名词解释

1.定常流动

将流场中流动参数均不随时间发生变化的流动称为常定流动

2.非常定流动

将流场中流动参数均随时间改变的流动称为非常定流动

3.三维流动

在直角坐标系中,若流动参数是x、y、z三个坐标的函数,称这种流动为三维流动

4.二维流动

在直角坐标系中,若流动参数是x、y两个坐标的函数,称这种流动为二维流动

5.一维流动

在直角坐标系中,若流动参数是x一个坐标的函数,称这种流动为一维流动

简答题

1.能量守恒定律的内容是什么?

系统内的流体能量在流动过程中的时间变化率等于质量力功率、表面力功率和系统在单位时间内与外界交换热量之和。

2.试描述理想流体微元流束伯努利方程中各项的物理意义和几何意义,并说明方程的适用范围。

答:v2/2g+z+p/ρg=H

①适用于理想不可压缩的重力流体作一维定常流动时的一条流线或者一个微元流管上。

②几何意义:理想不可压缩的重力流体作一维定常流动时,沿任意流线或者微元流束,单位重量流体的速度水头、位置水头、压强水头之和为常数,即总水头线为平行于基准面的水平线。

③物理意义:v2/2g:单位质量流体的动能

gz:位置势能

p/ρ:压强势能

3.什么是迹线及其微分方程?

流体质点在流场中运动时,由一点到另一点所描绘出的轨迹称为迹线,迹线是拉格朗日法的研究内容。

4.流线的含义?

流线是流场中某一瞬时的光滑曲线,该曲线上的流体质点的运动方向均和该曲线相切。

5.什么是流束、微元流束?

充满流管的一束流体称为流束,截面积无穷小的流束为微元流束。

6.缓变流和急变流的定义

流束内流线的夹角很小,流线的曲率半径很大,近乎平行直线的流动,称为缓变流,否则为急变流。

流体在直管道内的流动为缓变流,在管道截面积变化剧烈、流动方向发生改变的地方,如突扩管、突缩管、弯管、阀门等处的流动为急变流。

7.什么是湿周、水力半径、当量直径?

在总流的有效截面上,流体与固体壁面的接触长度称为湿周。总流的有效截面积和湿周之比定义为水力半径。与圆形管道相比,非圆形管道的当量直径用4倍的水力半径表示。8.简述流线具有的重要性质:

(1)在定常流动中流线不随时间改变其位置和形状,流线和迹线重合。而在非定常流动中,由于各空间点上速度随时间变化,流线的形状和位置是在不停地变化的;

(2)流线不能彼此相交和折转,只能平滑过渡,在流场中的同一空间点上,只有一条流线通过;

(3)流线密集的地方流体流动的速度大,流线稀疏的地方流动速度小。

9.试分析流线和迹线的区别:

流线是流场中瞬时曲线,描述的是某一瞬时处在该曲线上的众多流体质点的运动方向;迹线则是和时间过程有关的曲线,描述的是一个流体质点在一段时间内由一点运动到另一点的轨迹。

第四章

名词解释

1.重力相似准则

两种流动的重力作用相似,它们的弗劳德数必定相等,即Fr'=Fr,反之亦然。这就是重力相似准则,又称弗劳德准则

2.黏性力相似准则

两种流动的黏性力作用相似,它们的雷诺数必定相等,即Re'=Re,反之亦然。这就是黏性力相似准则,又称雷诺准则。

3.压力相似准则

两种流动的压力作用相似,它们的欧拉数必定相等,即Eu'=Eu,反之亦然,这就是压力相似准则,又称欧拉准则。

4.弹性力相似准则

两种流动的弹性力作用相似,它们的柯西数必定相等,即Ca'=Ca,反之亦然。这就是弹性力相似准则,又称柯西准则。

5.表面张力相似准则

两种流动的表面张力作用相似,它们的韦伯数必定相等,即We'=We,反之亦然。这就是表面张力作用相似准则,又称韦伯准则。

6.非定常性相似准则

两种非定常流动相似,它们的斯特劳哈尔数必定相等,即Sr'=Sr,反之亦然。这就是非定常相似准则,又称斯特劳哈尔准则。

7.几何相似

几何相似是指模型和原型的全部对应线性长度的比值为一定常数。

简答题

1.常用的相似准则数有哪些?分别阐述每个准则数的物理意义。

弗劳德数:其物理意义为惯性力与重力的比值

雷诺数:其物理意义为惯性力与黏性力的比值

欧拉数:其物理意义为总压力与惯性力的比值

柯西数:其物理意义为惯性力与弹性力的比值

韦伯数:其物理意义为惯性力与表面张力的比值

斯特劳哈尔数:其物理意义为当地惯性力与迁移惯性力的比值

2.表征流动过程的物理量按其性质能分几类?哪三类?

答:三类描述几何形状的,如从长度,面积,体积等;描述运动状态的,如速度,加速度,体积流量等;描述动力特征的,如质量力,表面力,动量等。

3.几何相似,流动力学相似,动力相似,运动相似之间有何关联?

答:流动力学相似的前提条件是几何相似,主导因素是动力相似,运动相似则是几何相似和动力相似的表象。

第五章

名词解释

1.边界层

黏性流体流经固体壁面时,在固体壁面法线方向上存在一速度急剧变化的薄层,称为边界层。

2.管道进口段

边界层相交以前的管段称为管道进口段(或称起始段),其长度以L*表示。

3.粘性底层

紧贴壁面有一因壁面限制而脉动消失的层流薄层,其粘滞力使流速使流速急剧下降,速度梯度较大,这一薄层称为粘性底层。

4.串联管道

由不同管径和不同粗糙度的管段串联在一起组成的管道

并联管道:由不用管径、不同粗糙度和不同长度管段并联在一起组成的管道

5.分支管道

工程中将支流或者汇流的管道称为分支管道

6.管网

有若干管段环路相连组成的管道

7.水击现象

当管道中的阀门突然关闭时,以一定压强流动的水由于受阻流速突然降低,压强突然升高。突然升高的压强迅速的向上游传播,并在一定条件下反射回来,产生往复波动而引起管道震动,这就是水击现象。

二、简答题

1.何谓普朗特混合长理论?根据这一理论紊流中的切应力应如何计算?

沿流动方向和垂直于流动方向上的脉动速度都与时均速度的梯度有关。

2.什么是水力光滑管与水力粗糙管?与哪些因素有关?

当粘性底层厚度大于管壁的粗糙突出部分时,粘性底层完全淹没了管壁的粗糙突出部分。这时紊流完全感受不到管壁粗糙度的影响,流体好像在完全光滑的管子中流动一样。这种情况的管内流动称作“水力光滑”。

当粘性底层厚度小于管壁的粗糙突出部分时,管壁的粗糙突出部分有一部分或大部分暴露在紊流区中,当流体流过突出部分时,将产生漩涡,造成新的能量损失,管壁粗糙度将对紊流产生影响。这种情况的管内紊流称作“水力粗糙”。

对于同样的管子,其流动处于水力光滑或水力粗糙取要看雷诺数的大小。

3.黏性流体总体的伯努利方程及适用条件?

黏性流体总体的伯努利方程:

适用条件:

⑴流动为定常流动;

⑵流体为黏性不可压缩的重力流体;

⑶列方程的两过流断面必须是缓变流截面,而不必顾及两截面间是否有急变流。 4.什么是沿程损失和局部损失?分别怎么计算?

沿程损失是发生在缓变流整个流程中的能量损失,是由流体的粘滞力造成的损失。单位重力作用下流体的沿程损失可用达西—魏斯巴赫公式计算,即hf=λlv2/d2g 局部损失发生在流动状态急剧变化的急变流中,单位重力作用下流体流过某个局部件时,产生的能量损失hj=ξv2/2g

5.简述雷诺数公式

Recr=vcrd/v 注:Recr 下临界雷诺数,vcr 临界速度,d 管子直径,v 流体运动黏度对于非原形截面管道,可用下式计算雷诺数:Re=vL/v1式中,L 为过流断面的特征长度,该数值应采用当量直径de

6.试从流动特征、速度分布、切应分布以及水头损失等方面来比较圆管中的层流和紊流特性。

流动特征:层流流动:微通道和速度低、黏性大。紊流流动具体三个特征:流体质点相互掺混,做无定向、无规则的运动,运动要素具有随机性;紊流质点间的相互碰撞,导致流体质点间进行剧烈的质量、动量、热量等物理量的输运、交换、混合等;除黏性消耗一部分能量外,紊流附加切应力会引起更大的耗能。

速度分布:()gh p dl d r r v l ρμ+--=4220 圆管中的层流流动,其流速的分布规律为旋转抛物面。紊流流动由于流动机制不同于层流,其速度分布和层流有根本的

不同。在靠近管轴的大部分区域内,流体质点的横向脉动使层流间进行的动量交换较为剧烈,速度趋为均匀,速度梯度较小,该区域称为紊流充分发展区或紊流核区。由于紧贴壁面有一因壁面限制而脉动消失的层流薄层,其粘滞力使流速急剧下降,速度梯度较大,这一薄层称为黏性底层。

切应力分布:()gh p dl

d r ρτ+-=2 黏性流体在圆管中作层流流动时,同一截面上的切向应力的大小与半径成正比,同样适用于圆管中的紊流流动。 7.尼古拉兹实验曲线分为哪几个区?

层流去、过渡区、紊流光滑管区、紊流粗糙管过渡区、紊流粗糙管平方阻力区。

8.局部损失产生的原因?

答:流体经过阀门、弯管、突扩和突缩登管件时,由于通流截面、流动方向的急剧变化,引起速度场的迅速改变,增大流体间的摩擦、碰撞以及形成漩涡等原因,从而产生局部损失。

9.流体在弯管中流动的损失:

1由切向应力产生的沿程损失

2漩涡产生的损失

3有二次流形成的双螺旋流动所产生的流动损失

10.管网的水力计算遵循以下原则:

1在每个结点上,流入、流出的流量相等,流入为负、流出为正。

2在任一封闭的环路中,若设逆时针方向流动的损失为正,顺时针方向流动的损失为负,则能量损失的代数和等于零。

11.如何预防和减轻水击的危害

在管道上安装安全阀、调压塔或者缓慢关闭阀门等。

12.什么叫水利光滑管和水利粗糙管? 与哪些因素有关?

水力光滑管:粗糙度对管道阻力几乎无影响,阻力与雷诺数有关; 水力粗糙管:粗糙度对管道阻力影响很大,阻力与雷诺数和粗糙度有关;水力光滑(粗糙)是描述粗糙度对流动影响的,不仅与雷诺数有关,还与粗糙度大小直接关系。

13.水击现象的本质是什么

水击现象实质上是由于管道内水体流速的改变,导致水体的动量发生急剧改变而引起作用力变化的结果。

工程流体力学复习知识总结

一、 是非题。 1. 流体静止或相对静止状态的等压面一定是水平面。 (错误) 2. 平面无旋流动既存在流函数又存在势函数。 (正确) 3. 附面层分离只能发生在增压减速区。 (正确) 4. 等温管流摩阻随管长增加而增加,速度和压力都减少。 (错误) 5. 相对静止状态的等压面一定也是水平面。 (错误) 6. 平面流只存在流函数,无旋流动存在势函数。 (正确) 7. 流体的静压是指流体的点静压。 (正确) 8. 流线和等势线一定正交。 (正确) 9. 附面层内的流体流动是粘性有旋流动。 (正确) 10. 亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11. 相对静止状态的等压面可以是斜面或曲面。 (正确) 12. 超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13. 壁面静压力的压力中心总是低于受压壁面的形心。 (正确) 14. 相邻两流线的函数值之差,是此两流线间的单宽流量。 (正确) 15. 附面层外的流体流动时理想无旋流动。 (正确) 16. 处于静止或相对平衡液体的水平面是等压面。 (错误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 (错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。 (错误) 二、 填空题。 1、1mmH 2O= 9.807 Pa 2、描述流体运动的方法有 欧拉法 和 拉格朗日法 。 3、流体的主要力学模型是指 连续介质 、 无粘性 和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 惯性力 与 粘性力 的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q 为 , 总阻抗S 为 。串联后总管路的流量Q 为 ,总阻抗S 为 。 6、流体紊流运动的特征是 脉动现像 ,处理方法是 时均法 。 7、流体在管道中流动时,流动阻力包括 沿程阻力 和 局部阻力 。 8、流体微团的基本运动形式有: 平移运动 、 旋转流动 和 变形 运动 。 9、马赫数气体动力学中一个重要的无因次数,他反映了 惯性力 与 弹性力 的相对比值。 10、稳定流动的流线与迹线 重合 。 11、理想流体伯努力方程=++g 2u r p z 2常数中,其中r p z +称为 测压管 水头。 12、一切平面流动的流场,无论是有旋流动或是无旋流动都存在 流线 ,因而 一切平面流动都存在 流函数 ,但是,只有无旋流动才存在 势函数 。 13、雷诺数之所以能判别 流态 ,是因为它反映了 惯性力

流体力学知识点大全-吐血整理讲解学习

流体力学知识点大全- 吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张 力。 2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。即τ=μ*du/dy 。 当n<1时,属假塑性体。当n=1时,流动属于牛顿型。当n>1时,属胀塑性体。 3. 流场: 流体运动所占据的空间。 流动分类 时间变化特性: 稳态与非稳态 空间变化特性: 一维,二维和三维 流体内部流动结构: 层流和湍流 流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩 流体运动特征: 有旋和无旋; 引发流动的力学因素: 压差流动,重力流动,剪切流动 4. 描述流动的两种方法:拉格朗日法和欧拉法 拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动 5. 迹线:流体质点的运动轨迹曲线 流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与 该曲线的速度方向一致 性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱 c .流线的形状和位置随时间而变化,稳态流动时不变 迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线; 迹线是同一质点在不同时刻经过的空间点构成的轨迹 线。 稳态流动下,流线与迹线是重合的。 6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线 构成的管状曲面。 性质:①流管表面流体不能穿过。②流管形状和位 置是否变化与流动状态有关。 7.涡量是一个描写旋涡运动常用的物理量。流体速度的旋度▽xV 为流场的涡 量。 有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。无旋运动:流 场中速度旋度或涡量处处为零。 涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方 向一致。 8. 静止流体:对选定的坐标系无相对运动的流体。 不可压缩静止流体质量力满足 ▽x f=0 9. 匀速旋转容器中的压强分布p=ρ(gz -22r2 ω)+c 10. 系统:就是确定不变的物质集合。特点 质量不变而边界形状不断变化 控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。其表 面称为控制面。特点 边界形状不变而内部质量可变 运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。

工程流体力学复习知识总结

一、 二、 三、是非题。 1.流体静止或相对静止状态的等压面一定是水平面。(错误) 2.平面无旋流动既存在流函数又存在势函数。(正 确) 3.附面层分离只能发生在增压减速区。 (正确) 4.等温管流摩阻随管长增加而增加,速度和压力都减少。(错误) 5.相对静止状态的等压面一定也是水平面。(错 误) 6.平面流只存在流函数,无旋流动存在势函数。(正 确) 7.流体的静压是指流体的点静压。 (正确) 8.流线和等势线一定正交。 (正确) 9.附面层内的流体流动是粘性有旋流动。(正 确) 10.亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11.相对静止状态的等压面可以是斜面或曲面。(正 确) 12.超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13.壁面静压力的压力中心总是低于受压壁面的形心。(正确) 14.相邻两流线的函数值之差,是此两流线间的单宽流量。(正确) 15.附面层外的流体流动时理想无旋流动。(正 确) 16.处于静止或相对平衡液体的水平面是等压面。(错 误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。(错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。(错误) 四、填空题。 1、1mmH2O= 9.807 Pa 2、描述流体运动的方法有欧拉法和拉格朗日法。 3、流体的主要力学模型是指连续介质、无粘性和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时惯性力 与粘性力的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量 Q为,总阻抗S为。串联后总管路的流量Q 为,总阻抗S为。

《流体力学》复习参考答案(年整理)

流体力学 习题解答

选择题: 1、恒定流是: (a) 流动随时间按一定规律变化;(b)流场中任意空间点上的运动要素不随时间变化;(c) 各过流断面的速度分布相同。(b) 2、粘性流体总水头线沿程的变化是:(a) 沿程下降 (a) 沿程下降;(b) 沿程上升;(c) 保持水平;(d) 前三种情况都可能; 3、均匀流是:(b)迁移加速度(位变)为零; (a) 当地加速度(时变)为零;(b)迁移加速度(位变)为零; (c)向心加速度为零;(d)合速度为零处; 4、一元流动是:(c) 运动参数是一个空间坐标和时间变量的函数; (a) 均匀流;(b) 速度分布按直线变化;(c) 运动参数是一个空间坐标和时间变量的函数; 5、伯努利方程中各项水头表示:(a) 单位重量液体具有的机械能; (a) 单位重量液体具有的机械能;(b)单位质量液体具有的机械能; (c)单位体积液体具有的机械;(d)通过过流断面流体的总机械能。 6、圆管层流,实测管轴线上流速为4m/s,则断面平均流速为::(c)2m;(a) 4m;(b)3.2m;(c)2m; 7、半圆形明渠,半径r=4m,其水力半径为:(a) 4m;(b)3m;(c) 2m;(d) 1m。 8、静止液体中存在:(a) 压应力;(b)压应力和拉应力;(c) 压应力和剪应力;(d) 压应力、拉应力和剪应力。 (1)在水力学中,单位质量力是指(c、) a、单位面积液体受到的质量力; b、单位体积液体受到的质量力; c、单位质量液体受到的质量力; d、单位重量液体受到的质量力。 答案:c (2)在平衡液体中,质量力与等压面() a、重合; b、平行 c、斜交; d、正交。

流体力学知识点总结

流体力学知识点总结 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力:重力、惯性力、非惯性力、离心力) Δ Δ ΔT A ΔA V τ 法向应力周围流体作 切向应力 A P p ??=为A 点压应力,即A 点的压强 为A 点的剪应力 应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。 B F f m =

单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 3 /1000m kg =ρdu T A dy μ=? h u u+du U z y dy x ρ μν=

流体力学知识点总结55410

流体力学知识点总结 第一章 绪论 1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。 2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。 3 流体力学的研究方法:理论、数值、实验。 4 作用于流体上面的力 (1)表面力:通过直接接触,作用于所取流体表面的力。 作用于A 上的平均压应力 作用于A 上的平均剪应力 应力 法向应力 切向应力 (2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。(常见的质量力:重力、惯性力、非惯性力、离心力) ΔF ΔP ΔT A ΔA V τ 法向应力 周围流体作用 的表面力 切向应力 A P p ??=A T ??=τA A ??=→?lim 0δA P p A A ??=→?lim 0为A 点压应力,即A 点的压强 A T A ??=→?lim 0τ 为A 点的剪应力 应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。 B F f m =2m s

单位为 5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。质量越大,惯性越大,运动状态越难改变。 常见的密度(在一个标准大气压下): 4℃时的水 20℃时的空气 (2) 粘性 牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。即 以应力表示 τ—粘性切应力,是单位面积上的内摩擦力。由图可知 —— 速度梯度,剪切应变率(剪切变形速度) 粘度 μ是比例系数,称为动力黏度,单位“pa ·s ”。动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。 运动粘度 单位:m2/s 同加速度的单位 说明: 1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。 2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 3 /1000m kg =ρ3 /2 .1m kg =ρdu T A dy μ=? h u u+du U y dy x dt dr dy du ?=?=μμτdu u dy h =ρμ ν=

《流体力学考》考点重点知识归纳(最全)

《流体力学考》考点重点知识归纳 1.流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构成的微小单元。 2.流体质点:(流体力学研究流体在外力作用下的宏观运动规律) (1)流体质点无线尺度,只做平移运动 (2)流体质点不做随即热运动,只有在外力的作用下作宏观运动; (3)将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的物理属性; 3.连续性介质模型的内容:根据流体指点概念和连续介质模型,每个流体质点具有确定的宏观物理量,当流体质点位于某空间点时,若将流体质点的物理量,可以建立物理的空间连续分布函数,根据物理学基本定律,可以建立物理量满足的微分方程,用数学连续函数理论求解这些方程,可获得该物理量随空间位置和时间的连续变化规律。 4.连续介质假设:假设流体是有连续分布的流体质点组成的介质。 5.牛顿的粘性定律表明:牛顿流体的粘性切应力与流体的切变率成正比,还表明对一定的流体,作用于流体上的粘性切应力由相邻两层流体之间的速度梯度决定的,而不是由速度决定的: 6.牛顿流体:动力粘度为常数的流体称为牛顿流体。 7.分子的内聚力:当两层液体做相对运动时,两层液体的分子的平均距离加大,分子间的作用力变现为吸引力,这就是分子的内聚力。 液体快速流层通过分子内聚力带动慢流层,漫流层通过分子的内聚力阻滞快流层的运动,表现为内摩擦力。、 流体在固体表面的不滑移条件:分子之间的内聚力将流体粘附在固体表面,随固体一起运动或静止。 8.温度对粘度的影响:温度对流体的粘度影响很大。液体的粘度随温度升高而减小,气体的粘度则相反,随温度的升高而增大。 压强对粘性的影响:压强的变化对粘度几乎没有什么影响,只有发生几百个大气压的变化时,粘度才有明显改变,高压时气体和液体的粘度增大。 9.描述流体运动的两种方法 拉格朗日法:拉格朗日法又称为随体法。它着眼于流体质点,跟随流体质点一起运动,记录流体质点在运动过程中会各种物理量随所到位置和时间的变化规律,跟中所有质点便可了解整个流体运动的全貌。 欧拉法:欧拉法又称当地法。它着眼于空间点,把流体的物理量表示为空间位置和时间的函数。空间点的物理量是指,某个时刻占据空间点的。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 10.速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间分布,还可描述这种分布随时间的变化。 11.毛细现象:玻璃管内的液体在表面张力的作用下液面升高或降低的现象称为毛细现象; 12.迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线就是该流体质点的迹线。 13.定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。 14.流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。

流体力学-总结+复习 4-5章

A16轮机3,流体力学复习资料,4&5章 第四章相似原理和量纲分析 1. 流动的力学相似 1)几何相似:两流场中对应长度成同一比例。 2)运动相似:两流场中对应点上速度成同一比例,方向相同。 3)动力相似:两流场中对应点上各同名力同一比例,方向相同。 4)上述三种相似之间的关系。 基本概念(量纲、基本量纲、导出量纲) 量纲:物理参数度量单位的类别称为量纲或因次。 基本量纲:基本单位的量纲称为基本量纲,基本量纲是彼此独立的,例如用,LMT来表示长度,质量和时间等,基本量纲的个数与流动问题中所包含的物理参数有关,对于不可压缩流体流动一般只需三个即,LMT(长度,质量和时间),其余物理量均可由基本量纲导出。 导出量纲:导出单位的量纲称为导出量纲。 一些常用物理量的导出量纲。 2. 动力相似准则 牛顿数?表达式? 弗劳德数?表达式,意义? 雷诺数?表达式,意义? 欧拉数?柯西数?韦伯数?斯特劳哈尔数? 判断基本模型实验通常要满足的相似准则数。 掌握量纲分析法(瑞利法和π定理)。

第五章黏性流体的一维流动 1. 黏性总流的伯努利方程 应用:黏性不可压缩的重力流体定常流动总流的两个缓变流截面。 该方程的具体形式?几何意义? 2. 黏性流体管内流动的两种损失 沿程损失:产生的原因?影响该损失的因素? 沿程损失的计算公式?达西公式? 局部损失:产生原因? 局部损失计算公式? 3. 黏性流体的两种流动状态 层流和紊流 上临界速度,上临界雷诺数? 下临界速度,下临界雷诺数? 工程实际中,圆管中流动状态判别的雷诺数?2000 4. 管口进口段中黏性流体的流动 边界层的概念? 紊流边界层 层流边界层 层流进口段长度计算经验公式 5. 圆管中的层流流动 速度分布? 切应力分布?

流体力学公式总结

工程流体力学公式总结 第二章 流体的主要物理性质 流体的可压缩性计算、牛顿内摩擦定律的计算、粘 度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系: γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以 υ表示 υ = 1/ ρ = V/m 5.流体的相对密度: d = γ流 /γ水 = ρ流 /ρ 水 6.热膨胀性 1V VT 7.压缩性 . 体积压缩率 κ 1V Vp 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力) (牛顿内摩擦定律) dv dn 11. .动力粘度μ: dv/dn 12.运动粘度 ν :ν = μ /ρ 13.恩氏粘度° E :°E = t 1 / t 2 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学 基本方程意义及其计算、 压强关系换算、 相对静止状态流体的压强计算、流体 静压力的计算(压力体) 。 1.常见的质量力: 重力 ΔW = Δ mg 、 直线运动惯性力 ΔFI = Δm ·a 离心惯性力 ΔFR = Δm ·r ω2 . FA d dn

2.质量力为 F 。:F = m ·am = m(fxi+fyj+fzk) am = F/m = fxi+fyj+ fzk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用, 取 z 轴铅垂向上, xoy 为水平面, 则单位质量力在 x 、y 、 z 轴上的分量为 fx= 0 , fy= 0 , fz= -mg/m = -g 式中负号表示重力加速度 g 与坐 标轴 z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数 得静 压强的全微分为 : p p d p p dx p dy xy 4.欧拉平衡微分方程式 p f y ρdxd ydz dxd ydz 0 y p f z ρdxd ydz dxd ydz 0 z 单位质量流体的力平衡方程为: 1p 1p 0 y ρy 1p 0 ρz 5.压强差公式(欧拉平衡微分方程式综合形式) ρ(f x dx f y dy f z dz) p dx p dy p dz xyz d p ρ( f x dx f y d y f z dz) 6.质量力的势函数 dp ρ( f x dx f y dy f z dz) dU 7.重力场中平衡流体的质量力势函数 UUU dU dx d y dz= f x dx f y dy f z dz xyz gdz 。即:p= p(x,y,z),由此 dz z f x ρdxd ydz p d xdydz 0 x

流体力学公式总结(完整资料).doc

【最新整理,下载后即可编辑】 工程流体力学公式总结 第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: T V V ??=1αp V V ??-=1κV P V K ??- =κ1n A F d d υμ=dn d v μτ±=n v d /d τμ=

12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力: 重力ΔW = Δmg 、 直线运动惯性力ΔFI = Δm ·a 离心惯性力ΔFR = Δm ·rω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即: p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??- =ρ

流体力学概念总结(完整资料).doc

【最新整理,下载后即可编辑】 第一章绪论 1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究 对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。 第二章流体的主要物理性质 1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。 2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。 3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而 把流体看成是: 1)由无数连续分布、彼此无间隙地; 2)占有整个流体空间的流体质点所组成的介质。 4.密度:单位体积的流体所具有的质量称为密度,以ρ表示。 5.重度:单位体积的流体所受的重力称为重度,以γ表示。 6.比体积:密度的倒数称为比体积,以υ表示。它表示单位质量流体所占有的体 积。 7.流体的相对密度:是指流体的重度与标准大气压下4℃纯水的重度的比值,用 d表示。 8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为 流体的热膨胀性。 9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流 体的压缩性。 10.可压缩流体:ρ随T 和p变化量很大,不可视为常量。 11.不可压缩流体:ρ随T 和p变化量很小,可视为常量。 12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流 体的粘性。 13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触 面法线方向的速度变化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。这个关系式称为牛顿内摩擦定律。 14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随

流体力学总结

流体力学总结 第一章 流体及其物理性质 1. 流体:流体是一种受任何微小剪切力作用都能连续变形的物质,只要这种力继续作用, 流体就将继续变形,直到外力停止作用为止。流体一般不能承受拉力,在静止状态下也不能承受切向力,在任何微小切向力的作用下,流体就会变形,产生流动 2. 流体特性:易流动(易变形)性、可压缩性、粘性 3. 流体质点:宏观无穷小、微观无穷大的微量流体。 4. 流体连续性假设:流体可视为由无数连续分布的流体质点组成的连续介质。稀薄空气和 激波情况下不适合。 5. 密度0lim V m m V V δδρδ→== 重度0lim V G G g V V δδγρδ→=== 比体积1v ρ= 6. 相对密度:是指某流体的密度与标准大气压下4C 时纯水的密度(1000)之比 w w S ρ ρρ= 为4C 时纯水的密度 13.6Hg S = 7. 混合气体密度1 n i i i ρρα == ∑ 8. 体积压缩系数:温度不变,单位压强增量引起的流体体积变化率。体积压缩系数的倒数 为体积模量1 P P K β= 1p V p V δβδ=- 1 1 0 1.4p p T Q p p βγβγ→= === 9. 温度膨胀系数:压强不变,单位温升引起的流体体积变化率。 1T V T V δβδ= 1 T p T β→= 10. 不可压缩流体:流体受压体积不减少,受热体积不膨胀,密度保持为常数,液体视为不 可压缩流体。气体流速不高,压强变化小视为不可压缩流体 11. 牛顿内摩擦定律: du dy τμ = 黏度du dy τμ= 流体静止粘性无法表示出来,压强对黏 度影响较小,温度升高,液体黏度降低,气体黏度增加 μ υρ = 。满足牛顿内摩擦定律的流体为牛顿流体。

工程流体力学复习知识总结

一、 是非题。 1. 流体静止或相对静止状态的等压面一定是水平面。 (错误) 2. 平面无旋流动既存在流函数又存在势函数。 (正确) 3. 附面层分离只能发生在增压减速区。 (正确) 4. 等温管流摩阻随管长增加而增加,速度和压力都减少。 (错误) 5. 相对静止状态的等压面一定也是水平面。 (错误) 6. 平面流只存在流函数,无旋流动存在势函数。 (正确) 7. 流体的静压是指流体的点静压。 (正确) 8. 流线和等势线一定正交。 (正确) 9. 附面层内的流体流动是粘性有旋流动。 (正确) 10. 亚音速绝热管流摩阻随管长增加而增加,速度增加,压力减小。(正确) 11. 相对静止状态的等压面可以是斜面或曲面。 (正确) 12. 超音速绝热管流摩阻随管长增加而增加,速度减小,压力增加。(正确) 13. 壁面静压力的压力中心总是低于受压壁面的形心。 (正确) 14. 相邻两流线的函数值之差,是此两流线间的单宽流量。 (正确) 15. 附面层外的流体流动时理想无旋流动。 (正确) 16. 处于静止或相对平衡液体的水平面是等压面。 (错误) 17.流体的粘滞性随温度变化而变化,温度升高粘滞性减少;温度降低粘滞性增大。 (错误 ) 18流体流动时切应力与流体的粘性有关,与其他无关。 (错误) 二、 填空题。 1、1mmH 2O= 9.807 Pa 2、描述流体运动的方法有 欧拉法 和 拉格朗日法 。 3、流体的主要力学模型是指 连续介质 、 无粘性 和不可压缩性。 4、雷诺数是反映流体流动状态的准数,它反映了流体流动时 惯性力 与 粘性力 的对比关系。 5、流量Q1和Q2,阻抗为S1和S2的两管路并联,则并联后总管路的流量Q 为,总阻抗S 为。串联后总管路 的流量Q 为,总阻抗S 为。 6、流体紊流运动的特征是 脉动现像,处理方法是 时均法 。 7、流体在管道中流动时,流动阻力包括沿程阻力和 局部阻力 。 8、流体微团的基本运动形式有: 平移运动 、 旋转流动 和 变形运动 。 9、马赫数气体动力学中一个重要的无因次数,他反映了 惯性力 与 弹性力 的相对比值。 10、稳定流动的流线与迹线 重合 。 11、理想流体伯努力方程=++g 2u r p z 2常数中,其中r p z +称为 测压管 水头。 12、一切平面流动的流场,无论是有旋流动或是无旋流动都存在 流线 ,因而一切平面流动都存在

流体力学知识点总结

流体力学知识点总结 流体力学研究流体在外力作用下的宏观运动规律! 流体质点: 1.流体质点无线尺度,只做平移运动 2.流体质点不做随即热运动,只有在外力的作用下作宏观运动; 3.将以流体质点为中心的周围临街体积的范围内的流体相关特性统计的平均值作为流体质点的 物理属性; 流体元:就有线尺度的流体单元,称为流体“质元”,简称流体元。流体元可看做大量流体质点构 成的微小单元。 流体质点的物理量,不同时刻占据该空间点的流体质点不同。 速度场:速度场是由流体空间各个坐标点的速度矢量构成的场。速度场不仅描述速度矢量的空间 分布,还可描述这种分布随时间的变化。 定常流动:流动参数不随时间变化的流动。反之,流体参数随时间变化的流动称为不定长流动。迹线:流体质点运动的轨迹。在流场中对某一质点作标记,将其在不同时刻的所在位置点连成线 就是该流体质点的迹线。 流线:流线是指示某一时刻流场中各点速度矢量方向的假象曲线。 流面:经过一条非流线的曲线上各点的所有流线构成的面。 对于定常流场,流线也是迹线。 脉线:脉线是相继通过某固定点的流体质点连城的线。

流体线:在流场中某时刻标记的一串首尾相连接的流体质点的连线,称为该时刻的流体线。由于这一串流体质点由同一时刻的标记,每一个质点到达下一时刻的流体线位置时间相同,因此又称 为时间线。 流管:在流场中由通过任意非流线的封闭曲线上每一点流线所围成的管状面称为流管。 流束:流管内的流体称为流束。 总流:工程上还将管道和管道壁所围成的流体看做无数微元流束的总和,称为总流。 恒定流:以时间为标准,若各空间点上的流动参数(速度、压强、密度等)皆不随时间变化,这 样的流动是恒定流,反之为非恒定流。 均匀流:若质点的迁移加速度为零,即流动是均匀流,反之为非均匀流。 内流:被限制在固体避免之间的粘性流动称为内流。 (质 空蚀的两种破坏形式: 1.当空泡离壁面较近时,空泡在溃灭是形成的一股微射流连续打击壁面,造成直接损伤; 2.空泡溃灭形成冲击波的同时冲击壁面,无数空泡溃灭造成连续冲击将引起壁面材料的疲劳破 坏; 边界层:当Re》1时,粘性影响区域缩小到壁面区域狭窄的区域内称为边界层。 边界层特点:1.厚度很小;2.随着沿平板流的深入,边界层的厚度不断增长; 边界层分离:边界层分离又称流动分离,是指原来紧贴壁面流动的边界层脱离壁面的现象。 声速:声速是弹性介质中微弱扰动传播速度的总称。其传播速度金和仅和戒指的弹性和质量之比 有关。 激波:理论分析和实验都表明,当一个强烈的压缩扰动在超声速流场中传播是,在一定条件下降

流体力学公式总结

工程流体力学公式总结 第二章流体得主要物理性质 ?流体得可压缩性计算、牛顿内摩擦定律得计算、粘度得三种表示方法。1.密度ρ= m/V 2.重度γ= G /V 3.流体得密度与重度有以下得关系:γ= ρg或ρ= γ/ g 4.密度得倒数称为比体积,以υ表示υ= 1/ ρ= V/m 5.流体得相对密度:d = γ流/γ水= ρ流/ρ水 6.热膨胀性 7.压缩性、体积压缩率κ 8.体积模量 9.流体层接触面上得内摩擦力 10.单位面积上得内摩擦力(切应力)(牛顿内摩擦定律) 11.、动力粘度μ: 12.运动粘度ν:ν=μ/ρ 13.恩氏粘度°E:°E = t 1 /t 2 第三章流体静力学 ?重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体得压强计算、流体静压力得计算(压力体)。 1.常见得质量力: 重力ΔW = Δmg、 直线运动惯性力ΔFI =Δm·a 离心惯性力ΔFR =Δm·rω2、 2.质量力为F。:F= m·am= m(fxi+f yj+fzk) am =F/m = f xi+f yj+fzk为单位质量力,在数值上就等于加速度 实例:重力场中得流体只受到地球引力得作用,取z轴铅垂向上,xoy为水平面,则单位质量力在x、y、z轴上得分量为 fx= 0,fy=0 , fz=-mg/m= -g式中负号表示重力加速度g与坐标轴z方向相反 3流体静压强不就是矢量,而就是标量,仅就是坐标得连续函数。即:p=p(x,y,z),由此得静压强得全微分为: 4.欧拉平衡微分方程式 单位质量流体得力平衡方程为:

流体力学-总结+复习

流体力学 总结+复习 第一章 绪论 一、流体力学与专业的关系 流体力学——是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。 研究对象:研究得最多的流体是液体和气体。 基础知识:牛顿运动定律、质量守恒定律、动量(矩)定律等物理学和高等数学的基础知识。 后续课程:船舶静力学、船舶阻力、船舶推进、船舶操纵等都是以它为基础的。 二、连续介质模型 连续介质:质点连续地充满所占空间的流体。 流体质点(或称流体微团) :忽略尺寸效应但包含无数分子的流体最小单元。 连续介质模型:流体由流体质点组成,流体质点连续的、无间隙的分布于整个流场中。 三、流体性质 密度:单位体积流体的质量。以 ρ 表示,单位:kg/m 3重度:单位体积流体的重量。以 γ 表示,单位:N/m 3密度和重度之间的关系为:g γρ= 流体的粘性:流体在运动的状态下,产生内摩擦力以抵抗流体变形的性质。 ,其中μ为粘性系数,单位:N ·s /m 2=Pa ·s m 2/s

粘性产生的原因:是由流动流体的内聚力和分子的动量交换所引起的。 牛顿流体:内摩擦力按粘性定律变化的流体。 非牛顿流体:内摩擦力不按粘性定律变化的流体。 四、作用于流体上的力 质量力(体积力):其大小与流体质量(或体积)成正比的力,称为质量力。例如重000 lim ,lim , lim y x z m m m F F F Y Z m m m →→→=== 表面力:作用于M点处单位面积上的法向力和切向力,lim , n dF 五、流体静压特性 特性一:静止流体的压力沿作用面的内法线方向 特性二:静止流体中任意一点的压力大小与作用面的方向无关,只是该点的坐标函数。 六、压力的表示方法和单位 绝对压力p abs :以绝对真空为基准计算的压力。 相对压力p :以大气压p a 为基准计算计的压力,其值即为绝对压力超过当地大气压的数值。 p=p abs - p a 真空度p v :p v =p a - p abs = - p 国际单位制(SI ):N /m 2 或 Pa 。1 Pa = 1N /m 2 液柱高:长度单位,如水银柱、水柱等。 大气压:包括标准大气压和工程大气压。 1标准大气压 P atm =1.013×105 P a =760mm汞柱=10.33m水柱 1工程大气压 P ata =1kgf/cm 2 =0.981×105P a =0.968 atm 第二章 流体静力学 研究内容:研究静止流体的压力、密度、温度分布,以及流体对器壁或物体的作用

流体力学知识点大全吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张力。 2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。即τ=μ*du/dy 。 当n<1时,属假塑性体。当n=1时,流动属于牛顿型。当n>1时,属胀塑性体。 3. 流场: 流体运动所占据的空间。 流动分类 时间变化特性: 稳态与非稳态 空间变化特性: 一维,二维和三维 流体内部流动结构: 层流和湍流 流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩 流体运动特征: 有旋和无旋; 引发流动的力学因素: 压差流动,重力流动,剪切流动 4. 描述流动的两种方法:拉格朗日法和欧拉法 拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动 5. 迹线:流体质点的运动轨迹曲线 流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与该曲线的速 度方向一致 性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱 c .流线的形状和位置随时间而变化,稳态流动时不变 迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线; 迹线是同一质点在不同时刻经过的空间点构成的轨迹线。 稳态流动下,流线与迹线是重合的。 6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线构成的管状 曲面。 性质:①流管表面流体不能穿过。②流管形状和位置是否变化与流动状态有关。 7.涡量是一个描写旋涡运动常用的物理量。流体速度的旋度▽xV 为流场的涡量。 有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。无旋运动:流场中速度旋 度或涡量处处为零。 涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方向一致。 8. 静止流体:对选定的坐标系无相对运动的流体。 不可压缩静止流体质量力满足 ▽x f =0 9. 匀速旋转容器中的压强分布p=ρ(gz -22r2 ω)+c 10. 系统:就是确定不变的物质集合。特点 质量不变而边界形状不断变化 控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。其表面称为控制面。 特点 边界形状不变而内部质量可变 运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。 含义:任一瞬时系统内物理量(如质量、动量和能量等)随时间的变化率等 于该瞬时其控制体内物理量的变化率与通过控制体表面的净通量之和。 11. 伯努力方程 g v g p z g v g p z 222 2222111αραρ++=++ 12. 常见边界条件:1、固壁—流体边界2、液体—液体边界3、液体—气体边界

工程流体力学复习要点总结

工程流体力学复习要点总结 流体力学 一:绪论 1,流体, 宏观,流体是容易变形的物体,没有固定的形状。 微观,在静力平衡时,不能承受拉力或者剪力的物体就是流体。 2.流体分类, 液体,气体。 3.流体力学的研究方法,? 理论方法 ?实验法 ?计算法 4.流体介质,是指流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理 实体。 5.连续介质,无穷多个、无穷小的、紧密相邻、连绵不断的流体质点组成的一 中绝无间隙的介质。 提出连续介质的目的,?符合实际情况 ?便于使用数学工具。 6.流体的主要物 理性质,a,流体的密度与重度 b,黏性 c,压缩性和膨胀性 d,表面张力。 7.黏性:流体运动时,其内部质点沿接触面相对运动,产生内摩擦力以阻止流体 变形的性质,就是流体的黏性。 8.根据牛顿内摩擦定律,流体分为两种:牛顿流体、非牛顿流体。非牛顿流体分为:塑性流体、假塑性流体、胀塑性流体。 9.μ和ν的单位。 10.黏度变化规律 : 液体温度升高,黏性降低,气体温度升高,黏性增加。原因,液体黏性是分子间作用力产生,气体黏性是分子间碰撞产生。 11.流体的压缩性:温度一定时,流体的体积随压强的增加而缩小的特性。 流体的膨胀性:压强一定时,流体的体积随温度的升高而增大的特性。 2 弹性模量E=1/βN/m ββ pp t

12.不可压缩流体:将流体的压缩系数和膨胀系数都看作零的流体。 二,流体静力学 1.静止流体上的作用力,质量力、表面力。 质量力,指与流体微团质量大小有关并且集中作用在微团质量中心上的力。表面力:指大小与流体表面积有关并且分布作用在流体表面上的力。 2.欧拉平衡微分方程: 欧拉平衡微分方程的综合形式也叫压强微分公式, 3.等压面:流体中压强相等的各点所组成的平面或曲面。 其性质,?等压面也是等势面 ?等压面与单位质量力垂直 ?两种不相混合液体的交界面是等压面。 4.绝对压强,以绝对真空为基准计算的压强。P 相对压强:以大气压强为基准计算的压强。P’ 真空度,某点的压强小于大气压强时,该点压强小于大气压强的数值。 Pv 5.静压强的单位:,1,应力单位 ,2,液柱高单位 ,3,大气压单位 6.平面壁上的总压力,公式及作用点位置,, ,平面,曲面壁作用力不考计算题, 7.液体在曲面上方叫实压力体或正压力体,下方的叫虚压力体或负压力体。 三,流体动力学基础 ,看看作业题, 1.研究流体运动的两种方法,?拉格朗日法 ?欧拉法 2.迹线,指流体质点的运动轨迹,它表示了流体质点在一段时间内的运动情况。 流线,流体流速场内反映瞬时流速方向的曲线。 ,流线特征,同一时刻,不同流线互不相交, 3.定常流动:流体质点的运动要素只是坐标的函数而与时间无关。

流体力学知识点总结56270

流体力学 流体的基本性质 1)压缩性 流体是液体与气体的总称。从宏观上看,流体也可看成一种连续媒质。 与弹性 体相似,流体也可发生形状的改变,所不同的是静止流体内部不存在 剪切应力,这是因为如果流体内部有剪应力的话流体必定会流动,而对静止的流 体来说流动是不存在的。如前所述,作用在静止流体表面的压应力的变化会引起 流体的体积应变,其大小可由胡克定律 v v k p ?-=? 描述。大量的实验表明,无论气体还是液体都是可以压缩的,但液体的可压 缩量通常很小。例如在500个大气压下,每增加一个大气压,水的体积减少量不 到原体积的两万分之一。同样的条件下,水银的体积减少量不到原体积的百万分 之四。因为液体的压缩量很小,通常可以不计液体的压缩性。气体的可压缩性表 现的十分明显,例如用不大的力推动活塞就可使气缸内的气体明显压缩。但在可 流动的情况下,有时也把气体视为不可压缩的,这是因为气体密度小在受压时体 积还未来得及改变就已快速地流动并迅速达到密度均匀。物理上常用 马赫数M 来判定可流动气体的压缩性,其定义为M=流速/声速,若M 2<<1,可视气体为不 可压缩的。由此看出,当气流速度比声速小许多时可将空气视为不可压缩的,而 当气流速度接近或超过声速时气体应视为可压缩的。总之在实际问题中若不考虑 流体的可压缩性时,可将流体抽象成不可压缩流体这一理想模型。 2)粘滞性 为了解流动时流体内部的力学性 质,设想如图10.1.1所示的实验。在 两个靠得很近的大平板之间放入流 体,下板固定,在上板面施加一个沿 流体表面切向的力F 。此时上板面下

的流体将受到一个平均剪应力F/A 的作用,式中A 是上板的面积。 实验表明,无论力F 多么小都能引起两板间的流体以某个速度流动,这正是流 体的特征,当受到剪应力时会发生连续形变并开始流动。通过观察可以发现,在 流体与板面直接接触处的流体与板有相同的速度。若图10.1.1中的上板以速度u 沿x 方向运动下板静止,那么中间各层流体的速度是从0(下板)到u (上板)的 一种分布,流体内各层之间形成流速差或速度梯度。实验结果表明,作用在流体 上的切向力F 正比与板的面积和流体上表面的速度u 反比与板间流体的厚度l ,所 以F 可写成 l u A F μ=, 因而流体上表面的剪应力可以写成 l u ?μ=τ。 式中l u 是线段ab 绕a 点的角速度或者说是单位时间内流体的角形变。若用微 分形式表示更具有普遍性,这时上式可以改写成 dl du ?μ=τ, 或 dA dl du dF ?μ=。 上式就是剪应力所引起的一维流体角形变关系式,比例系数称为流体的粘滞 系数,上式叫做牛顿粘滞性定律。为常数的流体称为牛顿流体,它反映了切应力 与角形变是线性关系,不是常数的流体称为非牛顿流体。 流体的粘滞系数是反映流体粘滞性的大小的物理量,在国际单位制中,粘滞 系数的单位是牛顿秒/米2。所谓粘滞性是指当流体流动时,由于流体内各流动层 之间的流速不同,引起各流动层之间有障碍相对运动的内“摩擦”,而这个内摩擦 力就是上式中的切向力,物理学中把它称为粘滞阻力。因此上式实际上是流体内 部各流动层之间的粘滞阻力。 实验表明,任何流体流动时其内部或多或少的存在粘滞阻力。例如河流中心的

相关主题
文本预览
相关文档 最新文档