当前位置:文档之家› Local models of Gauge Mediated Supersymmetry Breaking in String Theory

Local models of Gauge Mediated Supersymmetry Breaking in String Theory

Local models of Gauge Mediated Supersymmetry Breaking in String Theory
Local models of Gauge Mediated Supersymmetry Breaking in String Theory

a r X i v :h e p -t h /0605166v 1 17 M a y 2006CERN-PH-TH/2006-091

IFT-UAM/CSIC-06-22

hep-th/0605166

Local models of Gauge Mediated Supersymmetry Breaking in String Theory I?n aki Garc′?a-Etxebarria ?,Fouad Saad ?,Angel M.Uranga ??Instituto de F′?sica Te′o rica,C-XVI Universidad Aut′o noma de Madrid Cantoblanco,28049Madrid,Spain ?TH Unit,CERN,CH-1211Geneve 23,Switzerland innaki.garcia@uam.es,fouad.saad@uam.es,angel.uranga@cern.ch,angel.uranga@uam.es We describe local Calabi-Yau geometries with two isolated singularities at which systems of

D3-and D7-branes are located,leading to chiral sectors corresponding to a semi-realistic visible sector and a hidden sector with dynamical supersymmetry breaking.We provide explicit models with a 3-family MSSM-like visible sector,and a hidden sector breaking supersymmetry at a meta-stable minimum.For singularities separated by a distance smaller than the string scale,this construction leads to a simple realization of gauge mediated supersymmetry breaking in string theory.The models are simple enough to allow the explicit computation of the massive messenger sector,using dimer techniques for branes at singularities.The local character of the con?gurations makes manifest the UV insensitivity of the supersymmetry breaking mediation.

1Introduction

The study of low energy supersymmetry and supersymmetry breaking are the main driving forces in present research in physics beyond the Standard Model.Hence,their description and understanding in terms of an underlying theory is highly desirable.

String theory implements supersymmetry at high energies automatically,and has enough richness to allow for mechanisms of supersymmetry breaking,and its mediation to the Stan-dard Model sector.A nice scenario is supersymmetry breaking in a hidden sector with gravity mediation,and a particularly nice realization is in?ux compacti?cations(see[1,2,3,4],etc), with the moduli acting as hidden sector.In this particular setup,techniques to obtain the soft terms have been devised[5,6,7,8,9,10,11,12,13],(some exploiting earlier model-independent approaches[14,15,16]).

Gauge mediated supersymmetry breaking(GMSB)is a purely?eld theoretical mechanism of supersymmetry breaking mediation,insensitive to UV dynamics(and hence to gravity). Still it is important to understand its realization in a complete theory like string theory.This requires the construction of string theory con?gurations with gauge sectors whose(presum-ably strong)dynamics is under control.Hence we may expect great bene?ts from recent developments in the understanding of gauge theory dynamics in D-brane setups,mainly mo-tivated by the gauge/string correspondence.For instance,the study of con?gurations of D3-branes at singularities,in the presence of fractional branes,has led to the realization of large classes of gauge theories with strong infrared dynamics,giving rise to interesting phenomena like di?erent patterns of con?nement[17,18](by the so-called deformation frac-tional branes),or the removal of the supersymmetric vacuum[19,20,21](by the so-called DSB fractional branes)1.

In fact,the latter con?gurations were explicitly used in[26]in the construction of string compacti?cations with semi-realistic visible sectors and a sector of DSB branes.These are the?rst serious attempts to implement GMSB in string theory.

In this paper we continue along those lines,improving it in several directions.We propose a fairly general framework to discuss models of GMSB in string theory.The construction is based on the use of local(namely non-compact)con?gurations,with two sectors of D-branes describing the visible and supersymmetry breaking sector,decoupled at the massless level, but coupled via a messenger sector whose mass scale is controlled by the distance between the D-brane sectors,which is much smaller than the string scale.In fact,it is this latter fact that motivates considering local con?gurations,since the physics of the mediation is naturally

insensitive to the global structure of the compacti?cation2.We propose explicit realizations of this construction,which is nevertheless quite?exible and allows for many generalizations.

Some of the nice features of our proposal and explicit models are:

?Being local,they manifestly show the UV insensitivity of the construction.

?As opposed to previous proposals,the computation of the spectrum and interactions of the messenger sector can be explicitly described.

?The construction is simple and?exible enough to allow for many generalizations.

We?nd that these nice features are an important step in improving models of GMSB in string theory.

Our constructions are based on local Calabi-Yau geometries with two isolated singulari-ties,at which sectors of D-branes are located.In the construction of the geometries and the determination of the gauge sector,we invoke important recent developments on D-branes at singularities,especially dimer diagrams(or brane tilings)[27,28,29,30,31,32],which we review in order to make the paper self-contained.The location of the D-branes at singu-larities is a natural way to obtain chiral4d N=1gauge theories,rich and?exible enough to allow for semi-realistic sectors and sectors with supersymmetry breaking dynamics.In particular,we can construct examples where the visible sector is an MSSM like model with the Standard Model gauge factors and3-families of quarks and leptons,introduced in[33], and the supersymmetry breaking sector is provided by the?avored dP1models in[24].Im-plementation of other concrete models in our framework is possible as well,and we mention several possible generalizations(in particular,we discuss how to include in our setup models with visible sectors based on non-abelian orbifold singularities,like C3/?27[33,34,35]).

The paper is organized as follows.In Section2we provide background material on dimer diagrams:Section2.1describes the gauge theories on con?gurations of D3-and D7-branes at singularities using the tools from dimer diagrams.Section2.2reviews the construction of gauge theories with supersymmetry breaking using D-branes.Section2.3describes the con-struction of local CY models with several separated singularities,by using partial resolution.

In Section3these tools are put to work in the construction of a simple local CY with two sectors,corresponding to D3-branes at two separated singularities.One D3-brane stack describes the visible sector(in a toy version given by a3-family SU(3)3trini?cation model) while the other describes the supersymmetry breaking sector(although it actually corresponds to a theory with a runaway behaviour).In Section3.2a more complete model is presented, based on the previous model with the addition of D7-branes.The visible sector is given by a3-family MSSM-like theory,while the hidden sector breaks supersymmetry in a local metastable minimum.Such explicit constructions are amenable to the study of several phenomenological

questions.In Section4we sketch other model building possibilities.Finally in Section5we present some?nal remarks.The computation of the massive messenger sector in this general class of models is presented in Appendix A.

2Background material

2.1D-branes at singularities and dimer diagrams

D3-branes at singularities

Systems of D3-branes at singularities have been under intense study from the viewpoint of the AdS/CFT correspondence(starting with[36],see[37,38,39,40,41,42]for some recent references)and extensions to related non-conformal systems(see e.g.[17,43,44,18,19,20, 21]).

Another useful viewpoint on these systems is to consider them local models of interesting gauge/D-brane dynamics,often illustrating properties of more general con?gurations.In particular,they can be regarded as a local description of a global compacti?cation,in a regime where the relevant D-branes are close to each other,as compared with the compacti?cation scale.This is the viewpoint we take in the present paper,in the spirit of[33].

A recent useful tool in the study of D3-branes at singularities is provided by the dimer diagrams or brane tiling[27,28,29,30],which we review in this Section.

D3-branes located at a singularity in the transverse space lead to4d gauge theories in their world-volume.For Calabi-Yau singularities,these theories are N=1and are characterized by a set of gauge factors,chiral multiplets in bi-fundamental representations,and superpotential interactions among them.This structure is nicely encoded in the so-called dimer diagrams(or brane tilings)[27,28,29,30,31].They correspond to a periodic tiling of R2or equivalently a tiling of the2-torus T2.In order to correspond to a gauge theory on D3-branes at a singularity,there are further constraints on the tiling.The main one is that the graph should be bi-partite,namely the nodes can be colored with two colours(black and white),with edges joining nodes of di?erent color.We skip further discussions,and refer the reader to e.g.[28,29]for details.

In this language,each face corresponds to a gauge factor,each edge separating two faces corresponds to a chiral multiplet in the bi-fundamental representation,and each node cor-responds to an interaction term in the superpotential,involving the bi-fundamentals corre-sponding to the edges ending on that node3.Note that the orientation on the edges(e.g. from black to white nodes)must be used to de?ne the bi-fundamentals.Also,superpotential

b)

1Figure 1:(a)The dimer diagram (as a tiling of the T 2upon identifying sides of the paralelogram)and (b)the quiver diagram of the gauge theory on D3-branes at the C 3/Z 3singularity.

terms associated to black or white nodes have opposite signs.

One example,corresponding to D3-branes at the C 3/Z 3singularity (also known as the complex cone over dP 0,hence denoted dP 0singularity in the following),is shown in Figure 1a.The gauge theory corresponding to the dimer diagram in Figure 1a is described in Figure 1b in terms of its quiver diagram,where nodes correspond to gauge factors,arrows correspond to chiral multiplets,and the superpotential needs to be speci?ed explicitly.In this case we have

W =Tr (X 12Y 23Z 31?X 12Z 23Y 31+X 23Y 31Z 12?X 23Z 31Y 12+

+X 31Y 12Z 23?X 31Z 12Y 23)??ijk Tr (X (i )12X (j )23X (k )31)(2.1)

with obvious notation (in the last expression we have written X (i ),i =1,2,3for X ,Y ,Z ,respectively).Traces in superpotential terms will be implicit in what follows.

For completeness and future use,we show another example of a dimer diagram in Figure 2a,corresponding to D3-branes at a singularity given by the complex cone over dP 1(in what follows,dP 1singularity for short).The corresponding gauge theory (denoted dP 1theory)is described by the quiver diagram shown in Figure 2b,with the superpotential given by

W =X 12Y 24X 41?Y 12X 24X 41+X 31Y 12X 23?

?Y 31X 12X 23+Z 12X 24X 43Y 31?Z 12Y 24X 43X 31

??ij X i 12X j 24X 41+?ij X i 31X j 12X 23+?ij Z 12X i 24X 43X j 31(2.2)

where ?elds X i ,i =1,2denote X ,Y .

Dimer diagrams have been shown to encode the string theory geometry in several ways.In the following we provide the most practical description for our purposes.

A toric Calabi-Yau geometry is characterized by its web diagram,see [45,46,47]for a ?rst application in the physical context and e.g.[18]for applications to systems of D3-branes 4.The web diagram for a toric singularity is given by a set of segments in R 2,carrying (p,q )

3

1

b)

Figure 2:The dimer diagram (a)and quiver diagram (b)of the gauge theory on D3-branes at a singularity given by a complex cone over dP 1(the dP 1theory,for

short).

a)

Figure 3:(a)Web diagram for the dP 0singularity.For clarity we show the geometry for a non-zero size of the internal pieces.(b)Dimer diagram and zig-zag paths for the dP 0theory.The (p,q )homology class of the path is related to the (p,q )label of an external leg in the web diagram of the geometry.

labels which de?ne their orientation 5.Segments join at vertices,with the rule that the (p,q )charges of segments at a vertex add up to zero.

The web diagram for the C 3/Z 3(dP 0)and the dP 1singularities are shown in Figures 3a and 4a.The web diagram can be regarded as describing the locus where certain S 1?brations in the toric geometry degenerate.Skipping the details,this description implies that ?nite size segments and faces correspond to 2-cycles and 4-cycles respectively.External legs and non-compact faces correspond to non-compact 2-and 4-cycles.The structure of the singularity is speci?ed by the set of (p,q )charges of the external legs,while the sizes of the internal ?nite size pieces simply corresponds to a choice of Kahler moduli.The singular variety corresponds to shrinking the ?nite pieces to a point.The dimer diagram for the gauge theory on D3-branes at a singularity encodes the (p,q )charges of the external legs in the corresponding web diagram [29,30],in its structure of zig-zag paths.A zig-zag path is a path made of dimer edges,such that it turns maximally

a)b)

Figure4:(a)Web diagram for the dP1singularity.For clarity we show the geometry for a non-zero size of the internal pieces.(b)Dimer diagram and zig-zag paths for the dP1theory.The(p,q) homology class of the path is related to the(p,q)label of an external leg in the web diagram of the geometry.

to the left at e.g.black vertices and maximally to the right at white vertices.Each zig-zag path de?nes a closed loop on T2,and carries a non-trivial(p,q)homology charge.Each zig-zag path corresponds to an external leg in the web diagram,with the(p,q)label of the leg given by the(p,q)charge of the path.It is easy to recover the web diagrams of di?erent singularities from the zig-zag paths of the dimer diagram,as the reader can check in our examples.The structure of zig-zag paths for the dP0and dP1dimer diagrams are shown in Figures3b and4b.

We would like to mention a more advanced concept,the mirror Riemann surfaceΣand its relation to the dimer.This is useful in the derivation of some results,although we will always provide the?nal answers in a language not involving it,so that the reader can safely skip them(we refer to[30]for further details).The web diagram of a toric singularity can also be regarded as a skeleton for a Riemann surfaceΣwith punctures,which is obtained by‘thickening’the segments to tubes.Punctures inΣcorrespond to external legs in the web diagram.This Riemann surface plays a prominent role in the description of the mirror geometry,and all relevant D-branes are described as wrapped on1-cycles on it.In particular, the D3-brane gauge factors correspond to non-trivial compact1-cycles inΣ.The number of intersections(counted with orientation)between two such1-cycles gives the number of bi-fundamentals between the corresponding gauge factors.Finally,the superpotential terms correspond to disks inΣbounded by pieces of di?erent1-cycles.Although this picture underlies the derivation of our tools,we rephrase the results directly in terms of the dimer diagram

Adding D7-branes

For certain applications,it is desirable to introduce D7-branes passing through a system of D3-branes at a https://www.doczj.com/doc/b118933694.html,ly,one introduces D7-branes wrapped on holomorphic4-cycles of the singular CY.From the viewpoint of the4d gauge theory,this implies the introduction

of a set of?avours for the di?erent D3-brane gauge factors(from the open strings between the D3-and D7-branes)and interactions(e.g.from73-33-37interactions).Notice that the gauge group on the D7-branes behaves as a global symmetry from the viewpoint of the4d gauge theory in this non-compact setup.

It turns out that the introduction of such D7-branes can be easily described in the language of dimer diagrams,in a manner that allows reading o?the D3-D7spectrum and interactions. This has been described in appendix B of[24],whose results we brie?y https://www.doczj.com/doc/b118933694.html,ing the mirror Riemann surfaceΣmentioned above,D7-branes are represented as non-compact1-cycles inΣthat stretch between two punctures.The intersections of the D7-brane1-cycle with the1-cycle corresponding to the D3-branes gives rise to chiral multiplets in bi-fundamentals of the D3-and D7-brane symmetry groups,thus providing the D3-D7spectrum.Finally, disks inΣbounded by one D7-brane1-cycle and two D3-brane1-cycles lead to a cubic superpotential term of the form73-33-37.This more detailed description underlies our above recipe,which we nevertheless can state directly in terms of the dimer diagram.

As described in[24],for each33bi-fundamental in the D3-brane sector,there exists one kind of D7-brane leading to37,73chiral multiplets coupling to the33state.Hence,a simple representation of a D7-brane in the dimer diagram is as a segment stretching across an edge,joining the mid-points of adjacent faces.One such segment stretching across an edge associated with an(2;

N D7represent the D7-brane global symmetries.Heuristically,the D7-brane segment touches the faces at its endpoints,leading to the D7-D3and D3-D7sectors according to orientation.There is a superpotential coupling33-37-73involving these states. The representation as a segment facilitates an easy identi?cation of the gauge theory matter content and interactions corresponding to a system of D3-and D7-branes at singularities.In Figure5we show one particular example of this kind of diagram,which we denote extended dimer diagram.Notice that there are other possible D7-brane choices,namely one for each 33bi-fundamental,and that for di?erent33bi-fundamentals with the same gauge quantum numbers,the corresponding D7-branes lead to the same37,73spectrum,but di?erent33-37-73interactions.

An important point is that there are non-trivial consistency conditions on con?gurations of D3-and D7-branes at singularities.Concretely,the total charge of the D-brane system under RR?elds living at the singular points should vanish.Equivalently[48,49,50],the4d gauge theory should be free of non-abelian anomalies6.In all our forthcoming examples we

Q a,where Q a is the U(1)generator of

N a

the a th gauge factor U(N a).

b)

Figure 5:(a)Extended dimer diagram of the dP 0theory with some examples of D7-branes represented as segments across the edges.(b)Quiver diagram including D7-branes (represented as white nodes).There are 33-37-73couplings involving the 33bi-fundamental across which the corresponding D7-brane stretches.

enforce this property.

One can use these tools to construct interesting gauge theories.As a particular application to phenomenological model building,it is easy to construct con?gurations leading to MSSM like spectra [33].In Figure 6a we show an extended dimer diagram for a system of D3-and D7-branes at a C 3/Z 3singularity studied in [33].As can be easily read out from the picture,it leads to a U (3)×U (2)×U (1)gauge group and 3-families of quarks and leptons (plus additional ?elds,with vector-like quantum numbers under the Standard Model gauge group).The only massless U (1)linear combination (in a convenient normalization)is Q Y =?13Q 3+1

D R ).See [33]for

further details.In later sections,we will use this con?guration as our (toy)model for the visible sector in a truly realistic string compacti?cation.

2.2DSB from D-branes at singularities

An interesting spino?in the study of D-branes at singularities has been the realization of gauge theories whose non-perturbative dynamics removes the supersymmetric vacuum [19,20,21].The prototypical example is provided by the gauge theory on a set of fractional branes on the dP 1singularity.Moreover,the same behaviour is found in many other examples,and can in fact be argued to be generic.Nevertheless let us concentrate on the dP 1case for

concreteness (and for future application to our main examples).

The general gauge theory for D3-branes at a dP 1singularity has been described in Section

2.1.Consider the particular situation where N 4=0,N 1=M ,N 2=2M ,N 3=3M,(2.3)

which corresponds to an anomaly-free,and hence consistent,choice.Recalling that the U (1)gauge factors are massive (see footnote 6),the gauge group is SU (3M )×SU (2M )×SU (M ).The superpotential reads

W =X 23X 31Y 12?X 23Y 31X 12(2.4)

In addition there is the ?eld Z 12,decoupled at this level.As discussed in [19,20,21](see [22]for a detailed discussion),in the regime where the SU (3M )dynamics dominates this gauge factor con?nes and develops an A?eck-Dine-Seiberg (ADS)superpotential for its mesons

M 21=X 23X 31,M ′21=X 23Y 31

.The complete superpotential is W =M 21Y 12?M ′21X 12+M Λ7M 3M

(2.5)

where M =(M 21;M ′21

)is the mesonic 2M ×2M matrix.The theory has no supersymmetric vacuum since the F-term conditions for X 12,Y 12send M 21,M ′21

→0,and then the F-terms conditions for M 21,M ′21send X 12,Y 12→∞.In fact,assuming canonical Kahler potential for

the matter ?elds,one easily shows there is a runaway behaviour towards this minimum ‘at in?nity’[20,22].The runaway direction is parametrized by the gauge-invariant dibaryonic operator

?a 1...a 2M ?b 1...b M ?c 1...c M (X 12)b 1a 1...(X 12)b M a M (Y 12)c 1a M +1...(Y 12)c M a 2M (2.6)

As mentioned above,this pattern is generic for a large class of systems of D-branes at https://www.doczj.com/doc/b118933694.html,ly,for the so-called DSB fractional branes [20],see [23]for the gauge theory analysis in a large set of examples.

b)3

It is useful to mention an equivalent viewpoint on the runaway[20].The U(1)gauge factors can be maintained in the gauge theory,as long as one consistently includes the B∧F couplings(and its supersymmetry related coupling of the NSNS scalarφpartner of B as a Fayet-Iliopoulos(FI)term)in the dynamics,see footnote6.Considering the FIφfor the linear combination Q1?Q2of the U(1)’s in U(M)×U(2M),there is a non-trivial D-term constraint for?xed FIφ,roughly of the form

V D=(|X12|2+|Y12|2+φ)2(2.7)

From this viewpoint,at?xed values ofφthe D-term for the U(1)lifts the runaway direction and leads to a non-supersymmetric minimum.In the complete theory,however,the FI term is actually a dynamical?eldφ,which can decrease the vacuum energy to arbitrarily low values by relaxing to in?nity.Hence the runaway behaviour is recovered,now in terms of the closed string modeφ8.

This behaviour is interesting,but in principle it would seem of little phenomenological interest as a mechanism for supersymmetry breaking.However,it has recently been shown in [24]that upon a small modi?cation,the above class of theories(in particular the dP1theory) contain supersymmetry-breaking local minima,which are metastable and long-lived,since they are separated from the runaway behaviour at in?nity by a large potential barrier9.The modi?cation is a remarkably simple generalization of the proposal in[25]for SYM theories. It is provided by the introduction of massive?avours,with masses much smaller than the dynamical scale of the gauge theory.The additional?avours can be easily incorporated by the introduction of D7-branes in the system of D3-branes at singularities.We refer the reader to[24]for details on the string construction and the gauge theory analysis of this theory10.

In Figure7we show the extended dimer diagram corresponding to the system of D3-and D7-branes(with the rank assignment(2.3)and2M D7-branes).Other possible choices of D7-branes can in principle be similarly considered.In coming Sections we will use this con?guration as a basic model of a sector leading to dynamical supersymmetry breaking(in its local non-supersymmetric minimum).

An alternative possibility to obtain stable non-supersymmetric minima from DSB branes, already mentioned in[26]is the following.As mentioned above,the runaway behaviour can be

b)

2M

Figure7:(a)Dimer diagram for a con?guration of D3-and D7-branes in the dP1singularity leading to a gauge theory with meta-stable supersymmetry breaking vacua.(b)Extended quiver diagram for the theory.

regarded as a non-trivial potential for a certain Kahler modulus of the singularity.In global compacti?cations,it is possible that there are other sources of potential for these moduli, which could presumably stabilize its runaway(for instance non-perturbative contributions arising from euclidean D3-brane instantons).This is however di?cult to verify in concrete models including realistic sectors etc.Moreover,the properties of such local minima(includ-ing its very existence)would be strongly sensitive to the details of the global compacti?cation. This goes against our strategy to attempt the construction of a visible plus DSB sector with no UV sensitivity.

In other words,one can rephrase the above by saying that in our speci?c local models, which are UV insensitive by construction,there are no other sources of potential for the Kahler moduli involved in the runaway.Hence,the above proposal to modify the gauge theory by adding slightly massive?avours is a UV independent way to generate supersymmetry breaking minima in these gauge theories,and a natural one to be implemented in local models.

2.3Local CY models with several singularities

Geometrical construction from partial resolution

In this last subsection we would like to describe the construction of the geometries of our interest,namely local Calabi-Yau varieties with two isolated singularities,and the gauge theories for D-branes placed on them.This is based on tools developed in[32].

As mentioned above,non-compact toric Calabi-Yaus can be characterized using web di-agrams.In this language,the construction of local CYs with two isolated singularities is straightforward,by the procedure of partial resolution.We start with a web diagram de-scribing a geometry with a single singular point,namely all?nite segments and faces are collapsed to a point at which all external legs converge.Now we grow one?nite size segment

A B

F

a)b)A C B D F E E C D G G

c)

Figure 8:(a)The web diagram for the double conifold singularity xy =s 2w 2.(b)The partial resolution to a geometry with two conifold singularities.(c)Description in terms of the toric diagram.11out of such a point.The web diagram now has two internal vertices at which external legs converge.This implies that the geometry now has two singular points,separated by a distance controlled by the Kahler modulus of the 2-cycle corresponding to the ?nite segment.The ideas are better illustrated using a concrete example.Hence,we consider an example studied in [32],namely the splitting of the so-called double conifold singularity (studied in

[54,55])to two conifold singularities.The web diagram for this singularity is shown in Figure 8a,and a partial resolution is illustrated in Figure 8b.

The geometry of the two daughter singularities can be studied by considering all legs entering the corresponding vertex (including the ?nite size segment).Namely,by breaking the ?nite segment we obtain two daughter web diagrams which describe the local geometry around the two daughter singularities 12.This is manifest in Figure 8b,where,upon breaking the elongated segment (by removing the red piece in Figure 8b)we are left with two web diagrams describing the two conifold singularities in the left-over geometry.Notice that the original and ?nal singularities are simpler to recognize if one keeps track of the collapsed ?nite segments,by showing them with a small size,as we do in all our discussions.Recall however that the singularities are obtained when such ?nite pieces have zero size.

Notice that this process can be easily inverted.If one is interested in constructing a local CY with two isolated singularities of speci?ed type,one simply needs to consider combining their web diagrams into a larger one by joining one external leg of each diagram into one ?nite size segment 13.This will be useful in the construction of geometries in Section 3.

Finally let us mention that the partial resolution,when regarded in terms of the mirror Riemann surface Σ,simply corresponds to elongating a tube.By pinching this tube (or

elongating it in?nitely)one obtains two daughter Riemann surfaces that describe the mirror of the two daughter singularities.

2.3.1E?ect on D-branes

We would like to describe the e?ect of the above partial resolutions on systems of D-branes at the original singularity.This is most easily determined using the language of dimer diagrams in previous Sections.

For D3-branes,this has been systematically described in[32],which we review in what follows.Consider the gauge theory on D3-branes at the initial singularity.Following the proposal in[52],the partial resolution corresponds to giving a vev to a closed string Kahler modulus.This couples as a FI term for the U(1)gauge?elds in the D3-brane gauge theory, which therefore forces a set of bi-fundamental multiplets to acquire a vev,breaking the gauge group by a Higgs mechanism.After the Higgs mechanism,one recovers two gauge sectors, which are decoupled at the level of massless states,and which represent the gauge theory on D3-branes at the two daughter singularities.The massive states correspond to the massive open strings stretching between D3-branes at di?erent singularities.In the case where the two gauge sectors correspond to the visible and supersymmetry breaking sectors,the massive modes are the messengers of supersymmetry breaking.

The above discussion can be made very explicit using the dimer diagrams.Consider the dimer diagram describing the gauge theory on D3-branes at the initial singularity.As discussed above,the zig-zag paths of the dimer diagram correspond to the external legs of the initial web diagram.When the partial resolution is carried out,the web diagram splits into two daughter web diagrams.The dimer diagrams of D3-branes at e.g.the?rst daughter singularity can be obtained by using the initial zig-zag paths that correspond to external legs of the?rst daughter web diagram.To these one should add a new zig-zag path corresponding to the external leg of the daughter web diagram that arises from the?nite size segment in the initial web diagram.The resulting set of zig-zag paths determines the subset of edges of the initial dimer diagram that survive in the?rst daughter dimer diagram.Similarly for the second.

To illustrate this,consider the example of the partial resolution of the double conifold to two conifolds[32].The dimer diagram for the double conifold and its zig-zag paths are shown in Figure9(the(p,q)homology charge of the paths correspond to the(p,q)label of the legs in the web diagram in Figure8a,modulo an overall SL(2,Z)transformation).The partial resolution splits the web diagram into two daughter web diagrams,involving the legs A,F, B,G and C,D,E,G,respectively,see Figure8b.The resolved geometry thus contains two singularities,at which two subsets of the original set of D3-branes are located.The dimer diagram of the gauge theory on D3-branes at the?rst daughter singularity is obtained by

Figure9:Zig-zag paths for the dimer diagram of the double conifold.The path names agree with the names of the legs in the web diagram in

Figure8a,and the numbers label the di?erent gauge factors.

Figure10:Zig-zag paths corresponding to the two daughter theories,in the splitting of the double conifold singularity to two conifold singularities,with the corresponding dimers shown as thick lines. The numbers label the di?erent gauge groups.

keeping the edges involved in the paths A,F,B of the original dimer diagram(with the new path G passing through edges crossed only once by paths in the set A,F,B).Similarly for the second daughter singularity.The two daughter dimer diagrams are shown in Figure10.They correspond(upon integrating out chiral multiplets with mass terms in the superpotential due to bi-valent nodes in the dimer diagram,see footnote3)to the dimer diagrams of conifold theories,in agreement with the e?ect on the geometry.

As discussed in[32],the speci?c pattern of edges that survives in the di?erent daughter dimer diagrams determines the speci?c vevs acquired by the bi-fundamental multiplets in the Higgsing of the initial gauge theory.Speci?cally,let us denote edges of type1those disappearing in the second daughter diagram,of type2those disappearing in the?rst,and of type3those present in both(namely,those through which the path G passes).Denoting the corresponding bifundamental vevs byΦ1,Φ2,Φ3the pattern of vevs for those?elds in

the partial resolution Higgs mechanism is

Φ3= 0000 ;Φ2= v1N1000 ;Φ1= 000v1N2 (2.8) where N1,N2denote the number of D3-branes at the?rst and second daughter singularity. These vevs are?at with respect to the F-terms and non-abelian D-terms.Their deviations from U(1)D-?atness is compensated by the FI terms controlled by the closed string modes carrying out the geometric blow-up.

The Higgs mechanism interpretation allows one to obtain the spectrum of massive states in the partially resolved geometry(namely the massive open strings stretching between D3-branes at di?erent singularities)by starting with the initial gauge theory and computing the spectrum of multiplets becoming massive in the Higgs mechanism.The computation reduces to some dimer diagram gymnastics,and is described in Appendix A(this can be considered a new appendix of[32]).The result can be summarized as follows:

?1For each edge which disappears in the i th daughter dimer diagram,there is a massive vector multiplet in the adjoint of the U(N i)gauge factor corresponding to that location(i.e. that arising from the diagonal of the gauge factors of the two faces the edge used to separate in the initial theory).

?2For each face in the original dimer diagram,we obtain two massive vector multiplets in the bi-fundamental(N1,

N2)chiral multiplet in the corresponding bi-fundamental representation(i.e.charged under faces sepa-rated by the edge)becoming massive.The dimer diagram ensures that globally,these types chiral multiplets pair up consistently to form massive scalar multiplets.

?4Finally,if the daughter dimer diagrams contain bi-valent nodes(nodes with two edges) the corresponding edges each describe a massive scalar multiplet in the bi-fundamental of the two faces they separate.

Let us illustrate this with an example.For instance,the partial resolution of the double conifold to two conifolds is given by the following spectrum:

Vector multiplets in the adjoint:There are two edges of type1,both giving rise to massive vector multiplets in the adjoint of the gauge factor7(see Figure10).Similarly,the two edges of type2give massive vector multiplets in the adjoint of5.

Vectors in the bifundamental We obtain massive vectors in the representations

(5,7)+(5,8)+c.c.(2.9) Scalar multiplets One?nds the following spectrum of massive scalar multiplets:

2(5,7)+(5,

Other examples are worked out similarly.A more complicated resolution will be described in section3.1.

A last important point is that partial resolutions may be obstructed whenever the initial con?guration contains fractional branes wrapped on the collapsed cycle that acquires?nite size in the partial resolution.Fractional branes not of this kind can be regarded as fractional branes of the daughter singularities(since they wrap cycles which remain collapsed to zero size even after the partial resolution).These rules are manifest using the description of D3-branes as1-cycles in the mirror Riemann surfaceΣ.Fractional branes corresponding to 1-cycles stretching along the tube that elongates in the partial resolution obstruct it.On the other hand,1-cycles not stretching along the tube correspond to1-cycles of the daughter Riemann surfaces,and hence de?ne fractional branes of the daughter singularities.In our applications we are interested in this last kind of situation,hence the partial resolutions we consider are not obstructed.The generalization of the Higgs mechanism interpretation to situations with fractional branes is straightforward.

Including D7-branes

The e?ect of partial resolutions on D7-branes was not described in[32],but the discussion can be carried out using the description in Section2.1.

Recall the representation of D7-branes as segments across an edge in the dimer diagram (leading to37,73states coupling to the corresponding33bi-fundamental in the D3-brane gauge theory).Let us consider the possible D7-branes in the parent dimer diagram,and consider their fate in a partial resolution.This is essentially determined by the behaviour of the edge in this process:

-A D7-brane across an edge which survives only in the?rst daughter dimer diagram, survives as a D7-brane passing through the?rst daughter singularity.It corresponds to the D7-branes of the daughter singularity naturally associated to the corresponding edge in the daughter dimer(namely leading to73,73states coupling to the33bi-fundamental of the corresponding gauge sector in the daughter theory).

-Similarly for D7-branes across edges surviving only in the second daughter dimer dia-gram.

-Finally,a D7-brane across an edge that survives in both daughter dimer diagrams corresponds to a D7-brane passing through both daughter singularities.

In Figure11we provide examples of these possibilities in the partial resolution of the double conifold to two conifolds.

The rules are easily justi?ed by considering the picture of D7-branes as1-cycles in the mirror Riemann surfaces,stretching between two punctures.Recall also that a D7-brane is naturally associated to a dimer diagram edge(in the sense that the corresponding33,37,73

b) a)

Figure11:The fate of di?erent D7-branes in a partial resolution.D7-branes associated to edges of type1resp.2become D7-branes absent in the?rst resp.second dimer diagram,hence passing through the second resp.?rst daughter singularity.For type3edges,the D7-branes remains in both daughter dimer diagrams,hence passes through both daughter singularities.

states couple)over which the two zig-zag paths associated to the punctures overlap.From this it follows that D7-branes stretching between two punctures remaining in e.g.the?rst daughter Riemann surface,descend to D7-branes of the?rst daughter singularity.They are naturally associated to edges which survive only on the?rst daughter dimer diagram(since the two zig-zag paths correspond to punctures surviving in the?rst daughter Riemann surface). Similarly for D7-branes represented by1-cycles stretching between punctures remaining in the second Riemann surface.The last possibility is a D7-brane represented by a1-cycle stretching between punctures ending up in di?erent daughter Riemann surfaces.Since it passes through the elongated tube in the partial resolution,it leads to two D7-branes in the two daughter theories.

The above description nicely?ts with the?eld theory description in terms of Higgsing.A D7-brane leads to D3-D7states with couplings37-73-33with the33bi-fundamental associated to the edge across which the D7-brane segment stretches.If the edge disappears from e.g. the?rst daughter dimer diagram,the corresponding33entries get a vev and give masses to the open string states stretching between the D7’s and the?rst stack of D3-branes.On the other hand,open string states stretching between the D7’s and the second stack of D3-branes remain massless,hence the D7-branes passes through the second daughter singularity,and can be represented as a segment in the second daughter dimer diagram(across the same edge).Similarly for edges disappearing in the second dimer diagram.Finally,for edges appearing in both daughter dimer diagrams,the33bi-fundamentals get no vev,so all D3-D7 open string states remain massless,showing that the D7-brane passes through both daughter singularities.From this discussion it is clear that the rule to obtain the massive set of multiplets from D3-D7open string states is:

?5For each D7-brane passing through an edge of type1(resp.type2)there is a massive scalar multiplet in the fundamental representation of the U(N2)(resp U(N1))gauge factor corresponding to the resulting recombined face.For N D7across such an edge the massive multiplets transform as(N D3,

3Basic strategy and some examples

As announced,we plan to construct systems of D-branes at a local CY with two singular points,leading to two chiral gauge theories describing the visible and supersymmetry breaking sectors.The system reproduces a model of GMSB in the regime where the distance between the D-brane stacks is smaller than the string scale.In most of the paper,we consider the case where the distance is controlled by a Kahler modulus(on which we center in this paper).The system is thus most e?ciently described as a slight partial resolution of a worse singularity, as those we have discussed.Correspondingly,the complete gauge system(two sectors plus messengers)are fully encoded on the gauge theory of D3-branes at this worse singularity, in the presence of non-trivial FI terms(triggering the above described Higgsings).In this case,the distance between the singularities is classically a?at direction(however possibly getting a non-trivial potential upon supersymmetry breaking).In order to avoid dealing with this issue,which we leave as an open question,we assume that all Kahler moduli have been stabilized.

The case where the distance is controlled by a complex structure parameter admits an analogous interpretation.The geometry is most e?ciently described as a slight complex deformation of a worse singularity.The complete gauge system is encoded in the gauge theory on D3-branes at the latter,in the presence of fractional branes,triggering the complex deformation via a geometric transition.An important di?erence with the previous situation is that the distance between singularities is dynamically?xed in terms of the amount of fractional branes triggering the geometric transition.The idea is sketched in Section4.3,and although realistic models are possible,they tend to be involved and we do not present any explicit example.

It is important to realize that,although the idea of using CY geometries with several singularities is general,it is most practically implemented in toric geometries,on which we center in most of the paper.

3.1A simple example

Let us consider one simple example of the above strategy.We would like to consider a non-compact Calabi-Yau with two singularities,with their local structures being that of a complex cone over dP0,and a complex cone over dP1respectively.We would like to locate D3-branes at each of these singularities,so as to obtain two gauge sectors,which are decoupled at the level of massless states(although massive open strings stretched between the two stacks provide a massive messenger sector).

The simplest toric geometry realizing this is described by the web diagram in Figure12a. As usual,and for clarity,we have shown the geometry with all2-and4-cycles of?nite size. The geometry of interest,with the two singularities is better represented by Figure12b,more

B

D E

G

A C G

a)

b)c)

A C D E B

Figure 12:(a)Web diagram for a local CY with dP 0and dP 1singularities,for generic sizes of all 2-and 4-cycles.(b)The two singularities are obtained when the cycles corresponding to the two ?nite faces shrink to zero size,while the leg G remains ?nite and controls the distance between the singularities.(c)Toric diagram for the geometry,with the partial resolution leading to the two separated singularities.

speci?cally when the two small faces in the web diagram are collapsed to zero size.The two singularities are described by the two sets of blue legs.The ?nite leg G with the dashed red piece on it describes the 2-cycle which controls the distance between the two singularities,and thus the mass scale of the messenger sector.

Regarding Figure 12b as preceding Figure 12a illustrates a simple algorithm to construct local Calabi-Yau geometries containing several singularities.One simply considers the web diagrams for the di?erent daughter singularities,and glues them together by combining ex-ternal legs of the daughter web diagrams into ?nite size legs (which is always possible by using the SL (2,Z )freedom in de?ning each of the daughter web diagrams)14.

D3-branes at the dP 0singularity can provide a toy model of the MSSM.For the time being,we can consider e.g.3D3-branes (without fractional branes)at the dP 0singularity,so that the gauge theory content is

Vector :U (3)1′×U (3)2′×U (3)3′

Chiral :3[(3,

3)+(2M ,1)+3(1,2M,M,1,M )(3.2)

化工行业标准规范

化工行业标准目录 序号化工行业标准名称标准代号单价 1 带压密封技术规范HG/T20201-2007 60.00 2 工程建设安装工程起重施工规范HG20201-200012.00 3脱脂工程施工及验收规范HG20202-2000 6.00 4化工机器安装工程施工及验收规范HG20203-200018.00 5化工金属管道工程施工及验收规范HG20225-199540.00 6工业设备、管道防腐蚀工程施工及验收规范HGJ229-199140.00 7《化工机器安装工程施工及验收规范》 (离心式压缩机) HGJ205-199230.00 8《化工机器安装工程施工及验收规范》 (中小型活塞式压缩机) HGJ206-199230.00 9铝及铝合金焊接技术规程HGJ222-199228.00 10《铜及铜合金焊接钎焊技术规程》HGJ223-199228.00 11《化学工业大、中型装置试车工作规范》HGJ231-199130.00 12《化学工业大、中型装置生产准备工作规范》HGJ232-199230.00 13《化工建设项目进口设备、材料检验大纲》HG20234-199335.00 14《化工建设项目施工设计标准》HG20235-199330.00 15《化工设备安装工程质量检验评定标准》HG20236-199340.00 16《化学工业工程建设交工技术文件规定》HG20237-199460.00 17钢筋混凝土独立式管架通用图HG21539-1992260.00 18钢筋混凝土纵粱式管架通用图HG21540-1992250.00 19焊接H型钢标准节点通用图HG21541-1992260.00 20单轨悬挂吊车梁通用图HG21542-199280.00 21圆形塔平台通用图HG21543-1992150.00 22预埋件通用图HG21544-2006100.00 23 地脚螺栓通用图HG21545-2006 50.00 24钢筋混凝土桁架式管架通用图HG21552-1993320.00 25钢铺板通用图HG21553-199370.00 26《钢制管法兰、垫片紧固件》HG20592-20635-1997150.00 27《钢制人孔和手孔》HG21514-21535-2005148.00 28《钢筋混凝土带式输送机栈桥通用图》HG/T21611.1-1996160.00

TSG 21-2015固定压力容器安全技术监察规程 3

TSG特种设备安全技术规范TSG 21—2015 固定式压力容器安全技术 监察规程 Supervision Regulation on Safety Technology for Stationary Pressure Vessel 中华人民共和国国家质量监督检验检疫总局颁布 2015年月日

TSG R1—2015 特种设备安全技术规范 —2—修订说明 1.以《固定式压力容器安全技术监察规程》、《非金属压力容器安全技术监察规程》、《简单压力容器安全技术监察规程》、《超高压容器安全技术监察规程》(及其2013年修订稿)、《压力容器定期检验规则》、《压力容器使用规则》、《压力容器监督检验规则》等七个规范为基础,内容上不作过大的技术改动,进行上述规程内容的合并以及逻辑关系上理顺,统一并且进一步明确基本安全要求,形成关于固定式压力容器的综合规范(大规范); 2.整理国家质检总局近年来针对压力容器安全监察的有关文件,汇总《固定式压力容器安全技术监察规程》宣贯、实施中存在的具体问题,收集网上咨询意见,增补相应内容,重点解决当前存在的突出问题; 3.开展相关的调研工作,重点解决铸钢、铸铁压力容器材料技术要求(安全系数、化学成分、力学性能和适用范围),增加非焊接结构容器高强钢材料技术要求;完善超高压容器技术要求,完善非金属压力容器,如石墨、玻璃钢的基本安全要求,简化塑料压力容器监管方式;完善安全附件的基本要求,包括安全附件的种类、范围界定、型式试验要求及产品性能要求;推广压力容器设计风险评估报告;统一固定式压力容器分类的方法; 4.按照固定式压力容器各环节分章进行描述,每个环节的边界尽可能清晰,明确相应的主体责任(如耐压试验介质、压力、温度,无损检测方法、比例,热处理等技术要求明确由设计提出并且放到相应设计章节); 5.理顺法规与标准的关系,建立满足法规安全基本要求的协调标准概念; 6.进一步明确基本安全要求的内容,尽量不采用引用标准的方式描述,而是直接阐述其内容;对介质特性、产品结构、试验方法的限定要求,引用相应标准。

各种单位换算及公式

各种单位换算及公式 长度单位面积单位 1 in = 25.4 mm 1 in 2 = 6.45 cm2 1 ft = 0.3048 m 1 ft2 = 0.09 3 m2 1 micron = 0.001 mm 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.in. = 16.39 cm3 1 fluid oz.(imp) = 28.41 mL 1 fluid oz.(us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°F-32)X5/9=℃K-273.15 = ℃ 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 lbft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W 质量单位 1 lb = 453.6 g 1 tonne = 1000 kg 1 ton(imp) = 1016 kg 1 ton(us) = 907. 2 kg

流量计算公式 Q = Cv值X 984 = Kv值X 1100 Cv = So ÷ 18 力单位 1 kgf = 9.81 N 1 lbf = 4.45 N 1 kp(kilopound) = 9.81 N 1 poundal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poundal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury = 133.3 Pa 1 in mercury = 3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1standard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96ins mercury 1m3 = 1000000cm3 1cu ft/min = 28.3 l/min

承压设备带压密封技术规范

GB/T*****—2008 承压设备带压密封技术规范 编制说明 前言 《承压设备带压密封技术规范》标准由全口锅炉压力容器标准化技术委员会提出并归口。于2007年经国家标准化管理委员会在第五批国家标准制修订计划中批准。 在全国锅炉压力容器标准化技术委员会的指导下,该标准主要起草单位翔悦密封材料有限公司,于2005年起进行标准起草准备工作,于2006年上报该标准立项申报稿。为完善充实该标准,全国锅炉压力容器标准化技术委员会于2007年元月在北京召开了有带压密封技术研究和应用单位参加的会议并成立标准编制组。 为了保证该标准的编制质量,组织召开多次会议,确定编制原则和编写大纲。在编制组内成立了《承压设备带压密封技术规范》编制组。完成初稿后经多次修改,并在天津市翔悦密封材料有限公司网站上广泛征求意见。于2008年8月由全国锅炉压力容器标准化技术委员会固定式压力容器分会将征求意见稿在网上向全国征求意见。对提出的建议经认真研究贯彻到该标准中,力求完善准确。 1、编制目的和意义 带压密封技术在我国于1984年通过省部级技术鉴定,填补了国内空白,属于新型检维修技术。带压密封综合技术包括:包容泄漏部位的夹具、填充密封空腔形成新的密封比压的密封剂、注入密封剂的专用工具和为建立新的密封结构实施的封堵操作技术等四部分。 通过国内外查新未见同类国家标准,该标准是以多年应用实践为基础,结合已进行的科学实验和检测数据作为依据编制的。 带压密封技术应用有以下特点: (1)带压密封技术施工,是在泄漏介质,带温带压喷射工况下封堵,多数介质带有不同的毒性,而且泄漏部位,大部分属于压力容器压力管道,故施工有一定的风险性。因此执行相应安全规范成为必要的因素。 (2)由于带压密封技术适应性广泛,对连续化流程企业的长周期运行,具有显著的企业经济效益和社会效益,因此,目前在石油、化工、冶金、核电、热电、医药等行业广泛应用。(3)带压密封技术必须将四个组成部分协调才能收到好的效果,尤其是泄漏介质的复杂性,使技术成为需多门学科结合起来的边缘技术,带压密封的动态过程,使得经验性非常突出。 为规范带压密封施工应用操作,提高作业的安全性和成功率,特编制该标准。 2、标准编制的指导原则 在编写过程中我们主要基于标准的内容应要点突出,溯源有科学依据,便于和方便使用,(1)带压密封技术基础理论是指导带压密封操作的依据。对泄漏部位进行包容或覆盖、形成一定容积容纳密封剂的空腔,用专用工具将密封剂注入到密封空腔并形成高于泄漏介质压力的密封比压、终止泄漏,建立新的密封结构。 (2)控制密封空腔内的密封剂挤压力,既保持包容或覆盖泄漏部位的包容物(固定夹具、钢带)的稳定,同时又必须保证泄漏法兰螺栓和原泄漏结构不致超载,又能实现密封空腔内的密封剂致密。都是以合理控制密封剂挤压力为基本条件。

设备润滑技术规范

设备润滑技术规范(试行) 定期按照标准对使用设备进行润滑油加注、换油是设备运行过程中减缓磨损,提高使用效率,延长使用寿命,保障安全运行,使之处于完好状态的重要保证,为了更好使用设备,确保有效完成生产任务,特制订本规范。 1、各部门要严格执行本规范内相关的加油、换油规范,认真检查设备相关润滑部位的油质、油量,及时处理润滑缺陷,详细做好加换油记录。 2、维护好润滑用具,做到专油专具,即每一品类润滑油都要有专门的加油油具并都贴上标识,不得混用。 3、加油、换油时润滑油必须严格注意油的品质,严禁杂质进入设备,必要时对润滑油先进行过滤。 4、机修工在对设备进行定期维护,小、大、中修后必须按本规范对设备进行清洗、换油。 5、加油、换油过程中各设备的油位控制必须符合该机器油位标准。

油位标准以标准操作规程为准。 6、设备长时间停止使用的,使用车间应通知机修对该设备进行维修保养。机修要在检维修结束后放光设备内的润滑油,并用清洁的润滑油冲洗油箱后将油放出,并注入新的润滑油后封存设备。 7、各部门要对使用的设备加油、换油时间作出明确的时间规定,并在重新制作设备管理卡时写进此内容。 8、设备运行时严禁加注润滑油。 9、设备运行或静止时严禁带压加注润滑油。 10、设备运行时严禁换油。 11、如因停产或生产没有按时间要求进行加油、换油的则顺延到具备条件时进行加换油,但不得超过规定期限时间的50%。 12、使用部门要对使用设备设立专门的加油记录。换油记录由换油者负责在设备检修记录内以检修项目填写。

13、设备加油工作由设备使用部门自行安排相关人员负责;设备换油工作由机修工结合该设备的检维修计划时间安排换油或者在机修工的指导下由设备使用部门安排换油。 14、使用部门对加油、换油方法需要进行专门培训的,由使用部门提出申请,设备科将给予专门的培训。 15、对相关部门执行本规范不力的,视情况由设备科提出整改、限期整改、责令整改意见并使情况予以相应的处罚。 16、本规范自公布之日起试行。 附:各部门设备润滑技术规范

带压堵漏技术规范书

神华神东电力有限责任公司神东热电公司带压堵漏技术规范书 发包人:神华神东电力有限责任公司神东热电公司 承包人: 二○一一年十一月八日

目录 1. 总则 (1) 2. 外部条件和运行环境 (2) 3. 主要技术规范 (3) 4. 带压堵漏范围 (11) 5. 服务职责 (12) 6. 质量保证和试验 (16) 7. 报价内容 (17)

1. 总则 1.1本技术规范书适用于神东电力公司上湾热电厂承压管件和大柳塔热电厂承压管件的带压堵漏。它提出了带压堵漏方面的技术要求。 1.2本技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,施工单位应提供符合本规范书和工业(行业)标准的施工工艺及方案。 1.3在投标工程中投标方没有以书面形式对本规范书的条文提出异议,则意味着投标方在施工过程以及施工质量完全符合招标技术规范书的要求。 1.4本规范书所使用的标准如遇与投标方所执行的标准发生矛盾,应按较高标准执行。 1.5本技术规范书作为招标文件的技术附件,投标方要认真审阅,按照技术规范书的要求进行报价。

2. 外部条件和运行环境 2.1室外气象条件 厂址:内蒙古鄂尔多斯市伊旗上湾镇以及大柳塔镇 ?气象台站位置:北纬39°34′,东经109°44′,海拔高 度1097.50~1150m ?冬季采暖室外计算温度-18℃ ?冬季通风室外计算温度-12℃ ?夏季通风室外计算温度26℃ ?冬季空气调节室外计算温度-21℃ ?夏季空气调节室外计算温度30℃ ?夏季空调日平均室外计算温度:25℃ ?冬季空气调节室外计算相对湿度:54 % ?最热月月平均室外计算相对湿度:59 % ?夏季室外平均风速 3.6m/s ?冬季室外平均风速 3.6m/s ?夏季主导风向及频率NW—16 %;C—21 % ?冬季主导风向及频率C—11 %;S—10 % ?夏季大气压力872.1hPa ?冬季大气压力863.8hPa ?日平均温度≤+5°C的天数:163 天 ?年平均温度:18℃ ?极端最低温度:-29.6℃ ?极端最高温度:36.1℃ ? 2.2.2电源参数 2.2 所提供的电源参数为:AC 380/220V,50Hz。

压力单位换算方法

工程上常用的是兆帕(MPa):1MPa=1000000Pa。 1个标准大气压力=1.00336×0.098MPa=0.10108MPa≈0.1Mpa。 1bar=0.1MPa 压力的法定单位是帕斯卡(Pa):1Pa=1N/㎡(牛顿/平方米)。 压力单位换算: 1MPa=1000kPa 1kPa=10mbar=101.9716 mmH2O = 4.01463imH2O 10mWC=1bar=100kPa bar 巴= 0.987 大气压= 1.02 千克/平方厘米= 100 千帕= 14.5 磅/平方英寸 PSI英文全称为Pounds per square inch。P是磅pound,S是平方square,I是英寸inch。把所有的单位换成公制单位就可以算出:1bar≈14.5psi 1psi=6.895kPa=0.06895bar

1兆帕(MPa)=145磅/英寸2(psi)=10.2千克/厘米2(kg/cm2)=10巴(bar)=9.8大气压(atm) 1磅/英寸2(psi)=0.006895兆帕(MPa)=0.0703千克/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm) 1巴(bar)=0.1兆帕(MPa)=14.503磅/英寸2(psi)=1.0197千克/厘米 2(kg/cm2)=0.987大气压(atm) 1大气压(atm)=0.101325兆帕(MPa)=14.696磅/英寸2(psi)=1.0333千克/厘米2(kg/cm2)=1.0133巴(bar) ------------------------------------------------------------------------------------- 压力单位换算方法 1. 1atm=0.1MPa=100KPa=1公斤=1bar=10米水柱=14.5PSI 2.1KPa=0.01公斤 =0.01bar=10mbar=7.5mmHg=0.3inHg=7.5torr=100mmH2O=4inH2O 3. 1MPa=1N/mm2 14.5psi=0.1Mpa 1bar=0.1Mpa 30psi=0.21mpa,7bar=0.7mpa 现将单位的换算转摘如下: Bar---国际标准组织定义的压力单位。 1 bar=100,000Pa 1Pa=F/A, Pa: 压力单位, 1Pa=1 N/㎡ F : 力, 单位为牛顿(N) A: 面积, 单位为㎡ 1bar=100,000Pa=100Kpa 1 atm=101,325N/㎡=101,325Pa 所以,bar是一种表压力(gauge pressure)的称呼。

设备密封管理规定

设备密封管理规定 1、主题内容与适用范围 化工企业历来把设备密封管理与考核作为一项十分重要的工作,因为生产过程中发生泄露关系到安稳长满优生产和员工的生命安全,为此设备部把无泄漏作为设备密封管理的重要内容。为达到创建无泄漏设备、无泄漏分厂、无泄漏企业的目的,特制定本规定。 本规定适用于全公司各分厂。 2、管理内容及要求 2.1设备密封管理 2.1.1系统开车之后,要做好热紧或冷紧工作。 2.1.2化工操作人员必须经过专业培训,考试合格持证上岗。每班要进行认真巡检,发现漏点要做好记录挂漏点标示牌并及时通知专业维修人员进行处理。凡是不停车可以处理的必须在本班内进行消缺堵漏,凡是不停车不能处理的要做好准备一旦有机会立即处理。 2.1.3对运行中带有压力的漏点,所属分厂发现后要立即以书面形式报设备部,设备部要立即组织或联系外委单位在第一时间进行带压堵漏,严格防止事故扩大。堵漏前要对堵漏地点进行测厚分析,并编写堵漏方案,方案经审批后,方可实施堵漏。 2.1.4专业维修人员达到“四懂三会三好”,遵守服务承诺。(四懂:懂结构,懂性能,懂原理,懂用途;三会:会操作,会维护保养,会排除故障;三好:用好,管好,修好。) 2.1.5认真执行设备安全操作规程。

⑴、启动前严细检查。 ⑵、运行中认真巡检,各项指标符合要求,做到“四不准”(不准超温、不准超压、不准超速、不准超负荷)。 ⑶、停车后妥善处理,不把问题交给下一班。 2.1.6设备、管线、表盘、支架、基础、地面、房屋建筑要达到“五不漏”(不漏水、不漏气、不漏油、不漏液、不漏煤)。 2.1.7开展创建“完好设备”活动。 ⑴、完好设备标准 ①、主辅机零部件齐全、质量符合要求; ②、仪表、仪器、信号、连锁等各种安全装置、自动调节装置完整齐全、灵敏、准确; ③、基础机座稳固可靠,各部位连接紧固; ④、管线、阀门、支架安装牢固,标志分明; ⑤、防腐、保温、防冻设施完整有效。 ⑵、设备运转正常,性能良好,达到铭牌出力或核定能力 ①、设备润滑良好,油质符合要求,做到“五定”“三级过滤”; ②、无振动、松动、杂音等不正常现象; ③、各部位温度、压力、转速、流量、电流等运行参数符合要求; ④、生产能力达到铭牌出力或核定能力。 ⑶、技术资料齐全、准确。 ①、设备档案完整。 ②、验收及试车记录齐全; ③、运行时间记录、统计真实;

AWG-标准线径对照表

AWG 标准线径对照表 线径的粗细是以号数(xxAWG)来表示的,数目越小表示线径愈粗,所能承载的电流就越大,反之则线径越细,耐电流量越小。例如说:12号的耐电流量是20安培,最大承受功率是2200瓦,而18号线的耐电流量则是7安培,最大承受功率是770瓦。 为什么AWG号数越小直径反而越大?如这么解释你就会明白,固定的截面积下能塞相同的AWG线的数量,如11#AWG号数可塞11根而15#AWG号数可塞15根,自然的15#AWG的单位线径就较小。 美规线径值单一导体或群导体【各正值或负值】的线径值(Gauge)是以圆或平方厘米(mm2) 量测而得,平方厘米不常用在量测线径值,由于牵涉到不正确,因一般大部份的导体形体,包含长方形及其他怪异形状。因此我们拿全部的量测以圆平方厘米(c/m)为参考值 群导体计算的方法或公式: 加上单一导体的线径值总和,并比较上表求得。如果值落入两者之间,取比较少的值。 40股群导体线的线径值为,如每一芯为24 Guage = 40 x 405 c/m = 16,200 c/m = 9 AWG(得出值落入12960c/m和16440c/m之间) 快速求得线径值的方法: 两条(AWG)相加时,该单一线径值减3. ex. 2 x 18 AWG = (18-3=) 15 AWG 三条(AWG)相加时,该单一线径值减5. ex. 3 x 24 AWG = (24-5=) 19 AWG 四条(AWG)相加时,该单一线径值减6. ex. 4 x 10 AWG = (10-6=) 04 AWG 请记得“快速求得线径值的方法”一些案例也许边际会不正确,只采用此方式为大原则 AWG 标准线径规格对照表

带压密封堵漏技术国家现行标准术语

带压密封(堵漏)技术国家现行标准术语汇编 一、泄漏术语 1)泄漏leaking 高能流体经隔离物缺陷通道向低能区侵入的负面传质现象。 2)界面泄漏interface leaking 高能流体通过密封面间隙向低能区侵入的传质现象。 3)参透泄漏permeating leaking 高能流体通过密封材料毛细管向低能区侵入的传质现象。 4)破坏泄漏destroyed leaking 高能流体通过隔离体裂纹、孔洞及已失效的密封件向低能区侵入的剧烈传质现象。 5)流体fluid 泛指液体、气体、气液混合体、含有固体颗粒的气体或液体。 6)隔离物spacer 特指各种密封构件和物理隔离物;也泛指承压设备、管道、器皿等的可能发生泄漏的壁面和部位。 7)缺陷通道destroying channel 密封副间隙、毛细管、腐蚀孔洞,承压设备上的裂纹、焊接缺陷、冲刷孔洞,物品上的穿透裂纹及孔洞等。 8)负面传质negative mass transfer 不希望发生的流体介质泄漏走向。 9)泄漏介质leaking medium

经隔离物缺陷通道淌失的流体。 10)极度危害介质exceeding hazard medium GB 5044《职业性接触毒物危害程度分级》中表2所规定的介质。 二、带压xx术语 1)xxseal 隔离高能流体向低能区进行负面传质的有效措施。 2)带压密封online sealing 流体介质发生泄漏时,创建新密封结构为目的的技术手段。 3)带压密封工程online sealing engineering 以流体泄漏状态下实现再密封为研究对象,泄漏部位勘测数据为依据,应用基础科学原理及密封理论,结合工程实践活动和科学试验中所积累的理论和技术经验,创建带压密封装置为目的的一门新兴的工程技术学科。 4)带压密封工程原理online sealing engineering principle 应用流体力学的原理,以工程力学和机械科学为理论基础,通过研究流体泄漏状态下的泄漏压力与密封压力间的平衡关系,提供带压密封理论和方法。 5)注剂式带压密封online sealing for injecting sealant 向特定的封闭空腔注射密封注剂,创建新的密封结构为目的的一种技术手段。 6)密封比压sealing pressure 紧固法密封tightening leak sealing 通过紧固钢带、卡箍或缠绕带拉紧使密封材料产生有效密封比压终止泄漏的密封方法。

各种单位换算及公式

各种单位换算及公式

各种单位换算及公式 长度单位面积单位 1 in = 25.4 mm 1 in 2 = 6.45 cm2 1 ft = 0.3048 m 1 ft 2 = 0.09 3 m2 1 micro n = 0.001 mm 体积单位 1 litre = 0.001 m3 1 cu.ft. = 0.0283 m3 1 cu.i n. = 16.39 cm3 1 fluid oz. (imp) = 28.41 mL 1 fluid oz. (us) = 29.57 mL 1 gal(imp) = 4.546 L 1 gal(us) = 3.79 L 温度单位 (°-32)X5/9= C K-273.15 = C 功及能量单位 1 Nm = 1 J 1 kgm = 9.807 J 1 kW/hr = 3.6 MJ 1 Ibft = 1.356 J 功率单位 1 Nm/sec = 1 W 1 lbft/sec = 1.356 W 1 kgm/sec = 9.807 W 1 Joule/sec = 1 W 1 H.P.(imp) = 745.7 W

质量单位 1 to nne = 1000 kg 1 lb = 453.6 g

流量计算公式 Q = Cv 值X 984 = Kv 值X 1100 Cv = So 48 力单位 1 kgf = 9.81 N 1 Ibf = 4.45 N 1 kp(kilopou nd) = 9.81 N 1 pou ndal = 138.3 mN 1 ton force = 9.964 kM 力矩单位 1 kgm = 9.807 Nm 1 ft. poun dal = 0.0421 Nm 1 in lb = 0.113 Nm 1 ft lb = 1.356 Nm 压力单位 1 psi = 6.89 kPa 1 kgf/cm 2 = 98.07 kPa 1 bar = 100 kPa 1 bar = 14.5 psi 1 mm mercury =133.3 Pa 1 in mercury =3.39 kPa 1 Torr = 133.3 Pa 1 ft water = 0.0298 bar 1 bar = 3.33 ft water 1 atmosphere = 101.3 kPa 1 cm water = 97.89 Pa 1 in water = 248.64 Pa 换算表 1psi=6.895kPa=0.07kg/cm2=0.06895bar=0.0703atm 1sta ndard atmosphere=14.7psi=101.3kPa=1.01325bar 1kgf/cm2 = 98.07kPa=14.22psi = 28.96i ns mercury 1m3 = 1000000cm3

带压堵漏作业规范

带压堵漏作业规范 1、定义:带压堵漏技术是在运行状态下对管道、法兰、阀门的泄漏部位(原来封闭空腔或新建立的空腔)注入密封剂而实现消除泄漏的临时性应急措施(不包括焊接打套部分)。 2、级别划分: 2.1、为有利于带压堵漏技术应用管理,根据带压堵漏技术及封堵条件的不同,将注胶堵漏作业分为两个等级。同时具备下列条件为一类作业: 1)泄漏点温度:-20℃<T≤300℃; 2)泄漏点压力:P≤4.0MPa; 3)泄漏介质:空气、水、水蒸汽、油类、酸、碱等危害性较小的介质; 4)泄漏部位:法兰公称直径Φ≤600毫米的法兰密封面泄漏;5)管道、阀门泄漏部位在地面或有围栏的固定平台处作业。 2.2、具备下列情况之一的为二类作业: 1)泄漏点温度:300℃<T<650℃; 2)泄漏点压力:4.0MPa<P<32MPa; 3)泄漏介质:毒性危害程度为中度、高度的介质如DMF、四氯化碳、氯、氟化氢; 3、各类低温压力容器及管道应用带压堵漏无安全保障时,不采用带压堵漏,而按有关压力容器及管道规程管理。有下列情况之一

者,不能进行带压注胶堵漏作业: 1)毒性程度为极度的介质如苯、氯乙烯等; 2)设备主要受压元件及管道因裂纹而产生的泄漏部位; 3)高压、高温管道漏点; 4)管道腐蚀、冲刷减薄状况不清楚的泄漏点; 5)由于介质泄漏,使螺栓承受高于原来设计使用温度的泄漏点;6)由于介质泄漏,易使螺栓受到腐蚀的泄漏点; 7)堵漏现场安全措施不符合企业安全规定。 4、带压注胶堵漏作业的相关要求: 1)带压堵漏的施工单位必须设技术负责人,并配备必要的检测仪器及可靠的的堵漏工机具。施工过程中,现场专人负责带压堵漏技术的现场操作及安全措施的落实,并对施工质量和可靠性负责。2)带压堵漏施工前应做好准备工作。专业技术人员和施工操作人员要到泄漏现场详细调查和勘测,进行强度核算,提出具体施工方案,制定有效的操作要求和防护措施。 3)凡应用带压堵漏的作业人员必须经专业培训并持证操作。 4)凡经培训获证的作业人员中,应有取得带压密封专用夹具设计资格的人员,否则只能组织进行一类作业。 5)严格执行带压堵漏相关的国家劳动安全技术标准。高压、高温、剧毒介质管道出现泄漏情况时,要及时进行停车处理,原则上不允许带压堵漏或带压紧固。 5、专用夹具规定:

常用线规号码与线径对照表

常用线规号码与线径对照表

线规SWG BWG BG AWG 号码英寸毫米英寸毫米英寸毫米英寸毫米 7/0 6/0 5/0 4/0 3/0 2/0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 0.500 0.464 0.432 0.400 0.372 0.348 0.324 0.300 0.276 0.252 0.232 0.212 0.192 0.176 0.160 0.144 0.128 0.116 0.104 0.092 0.080 0.072 0.064 0.056 0.048 0.040 0.036 0.032 0.0280 0.0240 0.0220 0.0200 0.0180 12.700 11.786 10.973 10.160 9.449 8.839 8.230 7.620 7.010 6.401 5.893 5.385 4.877 4.470 4.046 3.658 3.251 2.946 2.642 2.337 2.032 1.829 1.626 1.422 1.219 1.016 0.914 0.813 0.711 0.610 0.559 0.508 0.457 -- -- 0.500 0.454 0.425 0.330 0.340 0.300 0.284 0.259 0.238 0.220 0.203 0.180 0.165 0.148 0.134 0.120 0.109 0.095 0.083 0.072 0.065 0.058 0.049 0.042 0.035 0.032 0.028 0.025 0.022 0.020 0.018 -- -- 12.700 11.532 10.795 9.652 8.639 7.620 7.214 6.579 6.045 5.588 5.156 4.572 4.191 3.759 3.404 3.048 2.769 2.413 2.108 1.829 1.651 1.473 1.245 1.067 0.839 0.813 0.711 0.635 0.559 0.508 0.457 0.6666 0.6250 0.5883 0.5416 0.5000 0.1152 0.3954 0.3532 0.3147 0.2804 0.2500 0.2225 0.1981 0.1764 0.1570 0.1398 0.1250 0.1313 0.0991 0.0882 0.0785 0.0699 0.0625 0.0556 0.0495 0.0440 0.0392 0.0349 0.03125 0.02782 0.02476 0.02204 0.01961 16.932 15.875 14.943 13.757 12.700 11.308 10.069 8.971 7.993 7.122 6.350 5.652 5.032 4.481 3.988 3.551 3.175 2.827 2.517 2.240 1.994 1.775 1.588 1.412 1.257 1.118 0.996 0.887 0.794 0.707 0.629 0.560 0.498 -- 0.5800 0.5165 0.4600 0.4096 0.3648 0.3249 0.2893 0.2576 0.2294 0.2043 0.1819 0.1620 0.1443 0.1285 0.1144 0.1019 0.0907 0。0808 0.0720 0.0648 0.0571 0.0508 0.0453 0.0403 0.0359 0.0320 0.0285 0.02535 0.02010 0.01790 0.01594 0.01420 -- 14.732 13.119 11.684 10.404 9.266 8.252 7.348 6.544 5.827 5.189 4.621 4.115 3.665 3.264 2.906 2.588 2.305 2.053 1.828 1.628 1.450 1.291 1.150 1.024 0.912 0.812 0.723 0.644 0.573 0.511 0.455 0.405 常用线规号码与线径对照表

带压堵漏安全管理规定(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 带压堵漏安全管理规定(新版) Safety management is an important part of production management. Safety and production are in the implementation process

带压堵漏安全管理规定(新版) 1目的和范围 为规范带压堵漏安全管理,降低作业风险,确保作业人员安全,特制定本规定。 本规定适用于各装置运行状态下的设备、管道、法兰、阀门等泄漏部位带压、带温堵漏的安全管理。 2管理职责 2.1设备部负责带压堵漏作业的管理。 2.2带压堵漏单位负责制定带压堵漏安全操作规程、作业方案等,负责带压堵漏作业的实施及管理。 2.3各分厂、车间负责带压堵漏作业过程中的工艺管理,提供工艺、设备相关参数及相关安全要求。 2.4HSE管理部对带压堵漏作业进行监督检查。 3管理流程

3.1总体要求 3.1.1设备部对带压堵漏单位、操作人员的资质进行审核,确保满足带压堵漏作业要求。 3.1.2带压堵漏作业专用工具和施工工具必须满足耐温、耐压、防火防爆和国家规定的其它安全要求,不允许在现场使用不合格的工具。 3.1.3带压堵漏作业防护用品必须符合标准。 3.1.4每次作业前都必须取得公司相关部门的同意后,才能按方案进行带压堵漏作业。 3.2带压堵漏作业风险分析及方案、防护措施的制定 3.2.1泄漏介质分为普通介质和危险介质,其中危险介质有:高温高压介质、有毒介质、腐蚀和烧灼介质、易燃易爆介质等。 3.2.2作业前,施工单位对现场进行检查,对泄漏部位的泄漏介质、温度、压力、孔洞大小,外部尺寸和缺陷等情况必须勘测清楚,认真记录,彻底了解现场工况,针对泄漏的介质及带压堵漏操作可能带来的风险,制定施工方案和安全措施。

TSG规范大集合

TSG规范 压力容器使用管理规则(TSG R5002-2013)2013-05-13 压力容器定期检验规则(TSG R7001-2013)2013-05-13 压力管道元件制造监督检验规则(TSG D7001-2013)2013-05-13 特种设备作业人员考核规则(TSG Z6001-2013)2013-05-13 特种设备无损检测人员考核规则(TSG Z8001-2013)2013-05-13 特种设备检验人员考核规则(TSG Z8002-2013)2013-05-13 锅炉安全技术监察规程(TSG G0001-2012)2013-02-01 电梯监督检验和定期检验规则——自动扶梯与自动人行道(TSG T7005-2012)2012-06-15 电梯监督检验和定期检验规则——杂物电梯(TSG T7006-2012)2012-06-15 电梯监督检验和定期检验规则——液压电梯(TSG T7004-2012)2012-06-15 移动式压力容器安全技术监察规程(TSG R0005-2011)2012-03-05 移动式压力容器充装许可规则(TSG R4002-2011)2011-10-18 压力容器安全管理人员和操作人员考核大纲(TSG R6001-2011)2011-10-18 特种设备型式试验机构核准规则(TSG Z7004-2011)2011-10-18 气瓶制造监督检验规则(TSG R7003-2011)2011-10-18 锅炉水(介)质处理检测人员考核规则(TSG G8001-2011)2011-10-18 电梯监督检验和定期检验规则 消防员电梯(TSGT7002-2011)2011-10-18 电梯监督检验和定期检验规则 防爆电梯(TSG T7003-2011)2011-10-18 爆破片装置安全技术监察规程(TSG ZF003-2011)2011-10-18 锅炉水(介质)处理监督管理规则2011-03-14 起重机械定期检验规则(TSG Q7015-2008)2011-03-14 起重机械使用管理规则(TSG Q5001-2009)2011-03-14 特种设备焊接操作人员考核细则(TSGZ6002-2010)2011-03-14 固定式压力容器安全技术监察规程(TSG R0004-2009)2011-03-14 压力管道定期检验规则 长输(油气)管道(TSG D7004-2010)2010-10-27 压力管道定期检验规则 公用管道(TSG D7004-2010)2010-10-27 锅炉节能技术监督管 锅炉节能技术监督管理规程(TSG G0002-2010)2010-10-27 工业锅炉能效测试与评价规则(TSG G0003-2010)2010-10-27 压力管道元件制造许可规则(TSG D2001-2006)2010-07-15 压力管道使用登记管理规则(TSG D5001-2009)2010-06-08 特种设备信息化工作管理规则(TSG Z0002-2009)2010-06-08 特种设备事故调查处理导则(TSG Z0006-2009 )2010-06-08 特种设备安全技术规范制造程序导则(TSG Z0001-2009 )2010-06-08 气瓶附件安全技术监察规程(TSG RF001-2009)2010-06-08 起重机械使用管理规则(TSG Q5001-2009)2010-06-08 锅炉压力容器用钢板(带)制造许可规则(TSG ZC001-2009)2010-06-08 锅炉水处理检验规则(TSG G5002-2008)2010-06-08

线材线号AWG与导线截面积对照表 芯线

American Wire Gauge AWG mm2 42 0.003 1/0.06 41 0.004 1/0.07 40 0.005 1/0.08 38 0.008 1/0.10 36 0.013 1/0.127 34 0.020 1/0.16 7/0.06 32 0.032 1/0.203 7/0.08 8/0.07 11/0.06 30 0.051 1/0.26 7/0.10 11/0.08 14/0.07 19/0.06 28 0.081 1/0.32 7/0.12 11/0.10 16/0.08 21/0.07 28/0.06 26 0.129 1/0.40 7/0.16 9/0.14 11/0.12 16/0.10 25/0.08 33/0.07 45/0.06 24 0.205 1/0.50 7/0.20 14/0.14 19/0.12 26/0.10 41/0.08 53/0.07 73/0.06 22 0.326 1/0.65 7/0.26 11/0.203 13/0.18 17/0.16 22/0.14 29/0.12 42/0.10 65/0.08 20 0.518 1/0.80 7/0.30 10/0.26 12/0.23 16/0.203 20/0.18 26/0.16 34/0.14 46/0.12 66/0.10 18 0.823 1/1.02 7/0.40 10/0.32 16/0.26 20/0.23 26/0.203 33/0.18 41/0.16 54/0.14 73/0.12 65/0.127 104/0.10 16 1.309 1/1.29 7/0.50 11/0.40 17/0.32 25/0.26 32/0.23 41/0.203 52/0.18 65/0.16 85/0.14 119/0.12 165/0.10 14 2.081 1/1.63 11/0.50 17/0.40 26/0.32 40/0.26 50/0.23 65/0.203 82/0.18 103/0.16 135/0.14 183/0.12 264/0.10 12 3.309 1/2.05 17/0.50 27/0.40 41/0.32 54/0.28 80/0.23 102/0.203 130/0.18 164/0.16 10 5.261 1/2.60 27/0.50 42/0.40 65/0.32 99/0.26 126/0.23 162/0.203 206/0.18 261/0.16 8 8.366 1/3.26 26/0.65 67/0.40 104/0.32 157/0.26 6 13.30 1/4.12 27/0.80 40/0.65 68/0.50 105/0.40 165/0.32 4 21.1 5 1/5.20 26/1.02 42/0.80 64/0.65 107/0.50 168/0.40 2 33.6 3 1/6.54 4 26/1.29 42/1.02 67/0.80 101/0.6 5 171/0.50 0 53.48 1/8.254 26/1.63 41/1.29 66/1.02 106/0.80 161/0.65 1. 基准线规直径:直径5 mil(0.005 inch)为36 AWG: 2. 相邻线号之间以几何级数计算:见右框图中公式。 例如:d18 = d36 × r (36-18) = 5 × 8.06053 = 40.3mils = 1.024mm d n = d 36× r (36 - n)( mil ) = 0.127 r(36 - n)( mm ) 其中,r = (460/5) 1/39 = 1.1229322

Gauge 板材 换算

Gauge 板材換算

钢材理论重量计算 钢材理论重量计算的计量单位为公斤(kg )。其基本公式为: 钢的密度为:7.85g/cm3 ,各种钢材理论重量计算公式如下: 圆钢盘条(kg/m)W= 0.006165 ×d×d d = 直径mm 直径100 mm 的圆钢,求每m 重量。每m 重量= 0.006165 ×1002=61.65kg 螺纹钢(kg/m)W= 0.00617 ×d×d d= 断面直径mm 断面直径为12 mm 的螺纹钢,求每m 重量。每m 重量=0.00617 ×12 2=0.89kg 等边角钢(kg/m)= 0.00785 ×[d (2b – d )+0.215 (R2 –2r 2 )] b= 边宽 d= 边厚R= 内弧半径r= 端弧半径求20 mm ×4mm 等边角钢的每m 重量。从冶金产品目录中查出4mm ×20 mm 等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(2 ×20 – 4 )+0.215 ×(3.52 – 2 ×1.2 2 )]=1.15kg 不等边角钢(kg/m)W= 0.00785 ×[d (B+b –d )+0.215 (R2 – 2 r 2 )] B= 长边宽 b= 短边宽d= 边厚R= 内弧半径r= 端弧半径求30 mm ×20mm ×4mm 不等边角钢的每m 重量。从冶金产品目录中查出30 ×20 ×4 不等边角钢的R 为3.5 ,r 为1.2 ,则每m 重量= 0.00785 ×[4 ×(30+20 –4 )+0.215 ×(3.52 –2 ×1.2 2 )]=1.46kg 钢板(kg/m2)W= 7.85 ×d d= 厚厚度4mm 的钢板,求每m2 重量。每m2 重量=7.85 ×4=31.4kg 钢管(包括无缝钢管及焊接钢管(kg/m)W= 0.02466 ×S (D –S )D= 外径 S= 壁厚外径为60 mm 壁厚4mm 的无缝钢管,求每m 重量。每m 重量= 0.02466 ×4 ×(60 –4 )=5.52kg

相关主题
文本预览
相关文档 最新文档