当前位置:文档之家› 基于单片机及AD9850的正弦信号发生器设计说明书

基于单片机及AD9850的正弦信号发生器设计说明书

基于单片机及AD9850的正弦信号发生器设计说明书
基于单片机及AD9850的正弦信号发生器设计说明书

陕西理工学院毕业设计

[摘要]本设计使用51单片机对DDS芯片进行控制,利用DDS造波的方法产生需要的正弦信号.用户可以根据需要对芯片设定一个频率值或相位值,通过单片机传输芯片控制字对芯片输出的频率和相位进行调节,达到用户所要求的信号。本设计采用模块化设计的方法,不同的模块为实现不同的功能而设计,总体由单片机控制协调工作。利用51单片机控制DDS芯片造波,具有如下优越性:1.造价低廉。51系列单片机应用广泛,价格低廉,比较容易购买,DDS芯片价格较单片机稍高,但与价格成百上千的成品信号发生器相比,本设计经济优势显著。2.电路简单。本设计利用单片机进行数字化控制,外围元件较少,仅需辅以少量的阻容元件用于电流电压匹配控制以及滤波电路既可。3.频率控制准确高效。数字化控制的最大优点即控制准确。本设计选用的DDS芯片内置32位高速数模转换器,分辨率高,响应快。

[关键词]51单片机;DDS造波;频率;

The Design of Sinusoidal Signal Generator Based on Singlechip

Fan Pengxing

[Abstract]: The design use 51series’ singlechip to control DDS chip’s https://www.doczj.com/doc/bf6507012.html,ing DDS method to produce sine signal.The user can set a frequency or phase value freely.To achieve the user request signal,the singlechip need sending a control word to DDS chip,which determines the frequency and phase values.This design uses the modular design method, different modules designed for different functions.Singlechip responsible for coordination of all work.The benefits of DDS method to produce sine signal as follows:1.low cost. The 51 series’singlechip’s application are range,so they have low price and are easy to purchase.The price of DDS chip is slightly higher than singlechip.but to compare with the commodity signal generator which values hundreds even thousands,the advantages of this design is obvious.2.Simple circuit..Benefits which digital control takes is Peripheral element is less.It’s only need a few capacitance and resistance element for crrent and voltage matching and filter.3.Frequency control is accurate and efficient.Frequency control is accurate and efficient.This design using DDS chip with 32 bit high speed D/A converter,which has a high resolution, fast response.

[Key words]: 51 singlechip;DDS method to produce signal;Frequency;

第 1 页共 64 页

目录

The Design of Sinusoidal Signal Generator Based on Singlechip (1)

引言 (4)

1 绪论 (5)

1.1单片机在函数信号发生器中的应用 (5)

1.2发展现状 (5)

1.3项目可行性研究 (5)

1.4设计任务和要求 (6)

2.方案及工作原理 (6)

2.1方案设计 (6)

2.1.1方案一 (6)

2.1.2 方案二 (6)

2.1.3 方案三 (6)

2.1.4 方案四 (6)

2.2DDS工作原理 (7)

2.3DDS移相原理 (7)

3.电路设计 (8)

3.1设计思路 (8)

3.2元件选型 (8)

3.3系统总体框图 (8)

3.4STC89C52RC单片机 (9)

3.5AD9850芯片 (10)

3.5.1 AD9850芯片简介 (10)

3.5.2 AD9850工作方式介绍 (11)

3.5.3相位控制字的计算 (11)

3.61602LCD显示屏 (12)

3.6.1液晶概述 (12)

3.6.2接口信号说明 (12)

3.6.3 1602地址说明 (13)

3.6.4 1602指令码说明 (13)

3.6.5 1602LCD写操作时序图 (13)

3.7低通滤波器的设计 (14)

3.7.1低通滤波器 (14)

3.7.2低通滤波器的选型 (14)

3.7.3低通滤波器的设计 (14)

3.8总电路原理图 (16)

3.9硬件调试 (16)

3.10参数测量及误差分析 (20)

3.10.1参数测量 (20)

3.10.2误差分析 (20)

4.软件设计 (21)

4.1主程序流程图 (21)

4.2源程序 (22)

总结 (23)

致谢 (24)

参考文献 (25)

附录 (26)

附录A:文献原文 (26)

附录B:外文文献翻译; (34)

附录C:电路原理图 (41)

附录D:元器件清单表。 (43)

附录E:源程序 (44)

引言

随着数字电子技术的发展正弦信号发生器作为电子技术领域中最基本的电子仪器,广泛应用于航空航天测控、通信系统、电子对抗、电子测量、科研等各个领域中。随着电子信息技术的发展,对其性能的要求也越来越高,如要求频率稳定性高、转换速度快,具有调幅、调频、调相等功能,另外还经常需要两路正弦信号不仅具有相同的频率,同时要有确定的相位差。

随着数字信号处理和集成电路技术的发展,直接数字频率合成(DDS)的应用也越来越广泛。直接数字频率合成是一种新的频率合成技术和信号产生的方法,具有超高速的频率转换时间、极高的频率分辨率分辨率和较低的相位噪声,在频率改变与调频时,DDS能够保持相位的连续,因此很容易实现频率、相位和幅度调制。此外,DDS技术大部分是基于数字电路技术的,具有可编程控制的突出优点。因此,这种信号产生技术得到了越来越广泛的应用,很多厂家已经生产出了DDS专用芯片,这种器件成为当今电子系统及设各中频率源的首选器件。本课题的目的就是依据DDS原理,利用DDS芯片设计出一个能随意调节频率和相位值得正弦信号发生器。

1 绪论

1.1单片机在函数信号发生器中的应用

在当今电子领域尤其是自动化智能控制及检测领域,传统的分立元件或数字逻辑电路构成的控制系统,正以逐步被单片机控制系统所取代。单片机具有体积小、功能强、成本低、应用面广(在各种仪器仪表生产单位、石油、化工、纺织、机械加工等各个行业中都有广泛应用)等优点,可以说智能控制与自动控制的核心就是单片机。

学习单片机最有效的方法就是理论与实践并重,毕业设计就为我们提供了这样一个合适的平台。基于单片机的正弦信号发生器的设计,该课题的设计目的就是让我充分运用大学期间所学专业知识,结合动手实践的能力,完成一个有实际意义的、有实用性的作品。通过对作品设计,提高单片的应用能力。本设计中,单片机担任着举足轻重的任务,它是整个系统的大脑和核心,其他各分立模块均由单片机分管掌控,协调工作。如单片机不但要负责键盘按键输入的检测,而且要负责显示屏实

时信息的输出,更要按照用户的要求及时的将工作命令发送到DDS芯片中去。

1.2发展现状

信号发生器是一种历史悠久的测量仪器。早在二十年代当电子设备刚开始出现时它就出现了。随着通信和雷达技术的发展四十年代出现了主要用于测试各种接收机的标准信号发生器使信号发生器从定性分析的测试仪器成为定量分析的测量仪器。同时还出现了可用来测试脉冲电路或用作脉冲调制器的脉冲信号发生器。由于早期的信号发生器机械结构比较复杂功率比较大电路比较简单与数字仪器、示波器等相比因此发展速度较慢。直到1964年才出现了第一台全晶体管的信号发生器。

自六十年代以来信号发生器有了迅速的发展出现了函数发生器、扫频信号发生器、合成信号发生器、程控信号发生器等新种类。各类信号发生器的主要性能指标也都有了大幅度的提高同时在简化机械结构、小型化、多功能等各方面也有了显著的进展。

信号发生器的应用非常广泛,种类也相当繁多。首先,信号发生器可以分为通用和专用两大类。专用信号发生器主要是为了某种特殊的测量目的而研制的,如电视信号发生器、编码脉冲信号发生器等。这种发生器的特性是受测量对象的要求所制约的。其次,信号发生器按输出波形又可分为正弦波形发生器、脉冲信号发生器、函数发生器和任意波形发生器等。再次,按其产生频率的方法又可分为谐振法和合成法两种。一般传统的信号发生器都采用谐振法,即用具有频率选择性的回路来产生正弦振荡,获得所需频率。但也可以通过频率合成技术来获得所需的频率,利用频率合成技术制成的信号发生器,通常被称为合成信号发生器。

目前国内生产的波形发生器大部分是利用分立元件及模拟集成电路构成的转换量程靠手动来实现不仅体积大而且可靠性和准确度很难进一步提高。

1.3项目可行性研究

基于单片机的信号发生器的设计,将采用单片机控制DDS芯片的方法来实现正弦波的发生,在有余力的基础上尽可能的实现锯齿波、矩形波。根据设计的要求,可以使用多种方案完成造波过程。函数信号发生器电路中使用的器件可以是分立器件,也可以是集成器件。产生的正弦波,可以通过整形电路将正弦转化为方波,经过积分电路将其变为三角波。也可以先产生三角波,再将三角波或方波转化为正弦波。随着电子技术

的发展,新的材料层出不穷,开发信号发生器,方案及器件的可选择行多种多样。所以,从技术上讲,项目是可行的。

1.4设计任务和要求

尽可能利用DDS造波方法实现正弦信号的产生,如果实现基本功能后可增加其他波形信号的产生。

2.方案及工作原理

2.1方案设计

2.1.1方案一

用分立元件组成的函数发生器。分立器件是相对于集成芯片而言的。随着科学技术的不断发展,人们渐渐步入电子时代,分立器件也被也被广泛应用到消费电子、计算机及外设、网络通信,汽车电子、led显示平等领域。它包括:半导体二极管、半导体三极管、电容、电阻、逻辑器件、传感器、敏感器件以及装好的压电晶体类似半导体器件等。

用分立器件组成的函数信号发生器通常机构简单、成本较低。但是由于元器件的分散性及环境条件的改变等因素,致使波形频率产生偏差,它通常是单函数发生器且平率不高,其工作不很稳定,不易调试。2.1.2 方案二

用晶体管、运放IC等通用器件制作的函数信号发生器。函数信号发生器可以由晶体管、运放IC等通用器件制作,更多的则是用专门的函数ixnhao发生器IC产生。早期的函数信号发生器IC,如L8038、BA205、XR2207、/209等,它们的功能较少,精度不高,频率上限只有300kHz,无法产生更高的频率信号,调节方式也不够灵活,频率和占空比不能独立调节,二者互相影响。

由于用通用器件制作的函数信号发生器同样具有频率不高的缺点,因此,在本论文设计中,此种方案也不宜采用。

2.1.3 方案三

采用DAC0832通过查表得方式输出需要的波形,通过单片机定时向DAC转化器发送转换数据,实现不同的幅值和频率的输出。这种方法能够实现各种需要的波形的输出,成本也不高,只是在扩展外设的时候浪费了大量的接口,以后的系统扩展可能会有影响。

2.1.4 方案四

利用专用直接数字合成DDS芯片制作的函数信号发生器。DDS有如下优点:(1)频率分辨率高,输出频点多,可达多个频点(N为相位累加器位数);(2)频率切换速度快,可达us量级;(3)频率切换时相位连续;(4)可以输出宽带正交信号;(5)输出相位噪声低,对参数频率源的相位噪声有改善作用;可以产生任意波形;(7)全数字化实现便于集成,体积小,重量轻。DDS芯片的时钟频率从几十兆赫兹到几百赫兹不等,芯片从一般功能到集成有D/A转换器和正交调制器。

DDS有上述诸多优点,而且利用直接数字合成DDS芯片实现的函数信号发生器能够产生任意波

形并达到很高的频率,克服了方案一、方案二的多数缺点,故本设计采用方案四。

2.2 DDS工作原理

直接数字频率合成器(DDFS)的基本原理:DDS是利用采样定理,根据相位间隔对正弦信号进行取样、量化、编码,然后储存在EPROM中构成一个正弦查询表,通过查表法产生波形。它是由参考时钟、相位累加器、正弦查询表和D/A转换器组成,如图2.2所示。

图2.1 直接数字频率合成原理框图

相位累加器由N位加法器与N位累加寄存器级联构成,其原理框图如图2.2所示。每来一个时钟脉冲Fc,N位加法器将频率控制数据K与累加寄存器输出的累加相位数据相加,把相加后的结果Y送至累加寄存器的输入端。累加寄存器一方面将在上一时钟周期作用后所产生的新的相位数据反馈到加法器的输入端,以使加法器在下一时钟的作用下继续与频率控制数据K相加;另一方面以相加后的结果形成正弦查询表的地址,取出表中与该相位对应的单元中的幅度量化正弦函数值,作为取样地址值送入幅度/相位转换电路(即图2.1中的波形存储器)。这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。

图2.2 相位累加原理框图

由此可以看出,相位累加器在每一个时钟脉冲输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位。当相位累加器加满量时就会产生一次溢出,溢出频率就是DDS输出的信号频率。

相位累加器的最大计数长度与正弦查询表中所存储的相位分隔点数相同,在取样频率(由参考时钟频率决定)不变的情况下,由于相位累加器的相位增量不同,将导致一周期内的取样点数不同,输出信号的频率也相应变化。如果设定累加器的初始相位,则可以对输出信号进行相位控制。由采样原理可知,如果使用两个相同的频率合成器,并使其参考时钟相同,同时设定相同的频率控制字、不同的初始相位,那么在原理上就可以实现输出两路具有一定相位差的同频信号。

2.3 DDS移相原理

所谓移相是指两路同频的信号,以其中的一路为参考,另一路相对于该参考作超前或滞后的移动,即称为相位的移动。两路信号的相位不同,便存在相位差,简称相差。若我们将一个信号周期看作是360°,则相差的范围就在0°~360°之间。例如在图2.3中,以A信号为参考,B信号相对于A信号作滞后移相φ°,则

称A超前Bφ°,或称B滞后Aφ°。

图2.3 移相示意图

若输出信号A和B的相位差可调,须保证两路信号同步,故应满足以下条件:(1)输入到两个频率合成器芯片的参考时钟之间的相位偏移要足够小。这个相移会导致输出信号之间产生与之成比例的相移。(2)频率控制字送到频率合成器的数据缓冲区后,还必须通过一个更新时钟才能将数据缓冲区中的数据送到相位累加器,成为有效数据后进行输出。

3.电路设计

3.1设计思路

根据毕业设计要求,以及方案的比较结果,拟采用DDS芯片实现设计内容。本设计采用模块化思想,即将不同功能器件分别做成不同模块,以排线进行连接。根据功能要求,共分为四大模块:输入模块、输出模块、造波模块和控制模块。其中输入模块为矩阵键盘,输出模块为LCD1602液晶显示器。输入与输出模块体积较小,焊接在同一块电路板上,但分有不同数据接口,相互独立。造波模块由DDS芯片及其外围电路以及一个低通滤波器组成。控制模块由单片机、晶振电路和复位电路以及电源开关、指示灯构成单片机最小系统板。

3.2元件选型

元件选型的原则是在能够完成毕业设计要求的前提下本着“经济、实惠、够用就行”的原则进行。单片机选用STC公司生产的STC89C52RC单片机。DDS芯片选用AD公司生产的AD9850芯片。矩阵键盘则采用弹性小按键自行焊制。

3.3系统总体框图

本系统结构为以单片机为核心,三大功能模块为主干。总体框图见下:

图3.1 系统总体设计框图

3.4 STC89C52RC单片机

STC89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,STC89C52单片机在电子行业中有着广泛的应用。

STC89C52单片机主要特性:1、兼容MCS51指令系统 2、8k可反复擦写(大于1000次)Flash ROM;

3、32个双向I/O口;

4、256x8bit内部RAM;

5、3个16位可编程定时/计数器中断;

6、时钟频率0-24MHz;

7、2个串行中断,可编程UART串行通道;

8、2个外部中断源,共8个中断源;

9、2个读写中断口线,3级加密位; 10、低功耗空闲和掉电模式,软件设置睡眠和唤醒功能; 11、有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求。

STC89C51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶休或陶瓷谐振器一起构成自激振荡器。外接石英晶体(或陶瓷诺振器)及电容C1, C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1, C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,这里选择使用石英晶休,我们的电容使用30pF。如使用陶瓷谐振器的话,应选择40pF士10pF 的容值的电容。也可以采用外部时钟。采用外部时钟的电路的情况时,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。

管脚说明。图3.2所示:

图3.2 STC89C52管脚分布

1、主电源引脚(2根)

VCC(Pin40):电源输入,接+5V电源

GND(Pin20):接地线

2、外接晶振引脚(2根)

XTAL1(Pin19):片内振荡电路的输入端

XTAL2(Pin20):片内振荡电路的输出端

3、控制引脚(4根)

RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):地址锁存允许信号

PSEN(Pin29):外部存储器读选通信号

EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电

则从内部程序存储器读指令。

4、可编程输入/输出引脚(32根)

AT89S51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32根。每一根引脚都可以编程。

PO口(Pin39~Pin32):8位双向I/O口线,名称为P0.0~P0.7

P1口(Pin1~Pin8):8位准双向I/O口线,名称为P1.0~P1.7

P2口(Pin21~Pin28):8位准双向I/O口线,名称为P2.0~P2.7

P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.7

3.5 AD9850芯片

3.5.1 AD9850芯片简介

AD9850 是AD 公司采用先进的DDS 技术于1996 年推出的高集成度DDS频率合成器,它内部包括可编程DDS系统、高性能DAC及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器。接上精密时钟源,AD9850 可产生一个频谱纯净、频率和相位都可编程控制的模拟正弦波输出。此正弦波可直接用作频率信号源或转换成方波用作时钟输出。

AD9850 采用先进的CMOS 工艺, 其功耗在3.3V 供电时仅为155mW,温度范围为-40~85℃, 采用28 脚SSOP 表面封装形式。其管脚功能如图4-5所示。图 4-6是一个完整的可编程DDS系统,包含了AD9850的主要组成部分。AD9850内含可编程DDS系统和高速比较器,能实现全数字编程控制的频率合成。可编程DDS系统的核心是相位累加器, 它由一个加法器和一个N位相位寄存器组成,N为32;每来一个外部参考时钟,相位寄存器便以步长M递加;相位寄存器的输出与相位控制字相加后可输入到正弦查询表地址上;正弦查询表包含一个正弦波周期的数字幅度信息, 每一个地址对应正弦波中 0°~360°范围的一个相位点;查询表把输入地址的相位信息映射成正弦波幅度信号, 然后驱动DAC 以输出模拟量。

永福垃圾填埋场设计说明书

《固体废物工程》课程设计 题目:永福镇垃圾填埋场设计 设计时间:2007年07月14日

目录 1.概论 1.1项目简况 (4) 1.2设计依据及主要设计资料 (4) 1.2.1设计依据 (4) 1.2.2基础资料 (4) 1.2.3采用的主要标准和规范 (4) 1.3城市概况及自然条件 (5) 1.3.1城市概况 (5) 1.3.2城市总体规划 (5) 1.3.3自然条件 (6) 1.4城市环卫设施现状 (7) 1.4.1垃圾清运 (7) 1.4.2垃圾成分 (7) 1.4.3现有垃圾堆放场 (7) 1.5建设的必要性 (7) 1.5.1存在的主要问题 (7) 1.5.2建设的必要性 (8) 1.6建设原则及指导思想 (8) 2.总体设计 (8) 2.1工程规模 (8) 2.1.1服务人口及面积 (8) 2.1.2垃圾产率 (8) 2.1.3垃圾产生量预测 (9) 2.1.4工程规模 (9) 2.2处理方法选择 (9) 2.2.1处理方法简述 (9) 2.2.2处理方法选择 (9) 2.3场址选择 (9) 3.垃圾处理场工程设计 (9) 3.1工程内容 (10) 3.2卫生填埋场 (11) 3.2.1库容及使用年限 (12) 3.2.2填埋工艺 (12) 3.2.3覆盖材料 (12) 3.2.4填埋场主要机械设备 (12) 3.2.5防渗工程(水平防渗及垂直防渗) (12) 3.2.6渗滤液收集系统及调节池 (13) 3.2.7地下水层排 (16) 3.2.8填埋气体导排 (17) 3.2.9防洪工程设计(截洪沟) (18)

3.2.10垃圾坝及截污坝 (19) 3.2.11垃圾填埋场终场处理 (19) 4.环境保护与环境监测 (20) 4.1环境质量现状 (20) 4.2环境保护设计依据 (21) 4.3设计执行的环保标准 (21) 4.4主要污染物和主要污染源 (21) 4.5环境保护措施 (22) 4.6施工期环境影响简要分析 (23) 4.7生态保护(影响及措施) (23) 4.8环境监测 (23) 5.设计计算书 (24) 5.1总体设计 (25) 5.1.1服务人口 (26) 5.1.2垃圾产生量 (26) 5.2垃圾填埋场工程设计 (26) 5.2.1库容 (26) 5.2.2使用年限 (27) 5.2.3渗滤液及气体的产生量 (27) 5.2.4渗滤液及气体的收集设备 (28) 5.2.5调节池的容积 (29) 5.3防洪工程 (29) 5.4防渗工程 (35)

(完整word版)基于单片机的信号发生器开题报告

内蒙古工业大学本科生毕业设计(论文)开题报告

注:表格根据所填内容可进行调整,可多页。 一、设计总体方案 利用AT89S52 单片机采用程序设计方法产生锯齿波,正弦波,矩形波,方波四种波形,再通过D/A 转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来,通过键盘来控四种波形的类型,频率变化,最终输出显示其各自的类型及数值

图4.1 硬件原理框图 二.硬件各单元电路方案设计与选择 1、单片机的选择 方案一:AT89S52芯片中只有一路模拟输出或几路模拟信号非同步输出,这种情况下CPU对DAC0832 执行一次写操作,则把一个数据直接写入DAC寄存器,DAC0832的输出模拟信号随之对应变化。输出波形稳定,精度高,滤波好,抗干扰效果好,连接简单,性价比高。 方案二:C8051F005单片机是完全集成的混合信号系统级芯片,具有与8051兼容的微控制器内核,与MCS-51指令集完全兼容。除了具有标准8052的数字外设部件,片内还集成了数据采集和控制系统中常用的模拟部件和其他数字外设及功能部件,而且执行速度快。但其价格较贵 方案三:采用单片机编程的方法来实现。该方法可以通过编程的方法来控制信号波形的频率和幅度,而且在硬件电路不变的情况下,通过改变程序来实现频率的变换。此外,由于通过编程方法产生的是数字信号,所以信号的精度可以做的很高。 以上两种方案综合考虑,选择方案一 2.键盘设计方案比较 方案一:矩阵式键盘。矩阵式键盘的按键触点接于由行、列母线构成的矩阵电路的交叉处。当键盘上没有键闭合时,所有的行和列线都断开,行线都呈高电平。当某一个键闭合时,该键所对应的行线和列线被短路。 方案二:独立式键盘。独立式键盘具有硬件与软件相对简单的特点,其缺点是按键数量较多时,要占用大量口线。 以上两种方案综合考虑,选择方案二。 3、D/A转换部分

正弦信号发生器的设计

XXXX大学现代科技学院DSP硬件电路设计基础课程设计 设计名称正弦信号发生器的设计 专业班级 学号 姓名DENG 指导教师XXXX

课程设计任务书 注: 上交(大张图纸不必装订) 2.可根据实际内容需要续表,但应保持原格式不变。 日期:2014-12-10

专业班级 XXXXXXX 学号 姓名 DENG 成绩 设计题目 正弦波信号发生器 设计目的 学会使用CCS(Code Composer Studio)集成开发环境软件,在此集成开发环境下完成工程项目创建,程序编写,编译,链接,调试以及数据的分析。同时完成一个正弦波信号发生器的程序的编写,并在集成开发环境下进行模拟运行,观察结果。 设计内容 编写一个产生正弦波信号的程序,在CCS 软件下进行模拟运行,观察输出结果。 设计原理 正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中。通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。本次课程设计只要使用泰勒级数展开法来实现正弦波信号。 1. 产生正弦波的算法 在高等数学中,正弦函数和余弦函数可以展开成泰勒级数,其表达式为 若要计算一个角度x 的正弦和余弦值,可取泰勒级数的前5项进行近似计算。 ……………………………………装………………………………………订…………………………………………线………………………………………

由上述两个式子可以推导出递推公式,即 sin(nx)=2cos(x)sin[(n-1)x]-sin[(n-2)x] cos(nx)=2cos(x)sin[(n-1)x]-cos[(n-2)x] 由递推公式可以看出,在计算正弦和余弦值时,不仅需要已知cos(x),而且还需要sin[(n-1)x]、sin[(n-2)x]和cos[(n-2)x]。 2. 正弦波的实现 ⑴计算一个角度的正弦值 利用泰勒级数的展开式,可计算一个角度x的正弦值,并采用子程序的调用方式。在调用前先在数据存储器d_xs单元中存放x的弧度值,计算结果存放在d_sinx单元中。 ⑵计算一个角度的余弦值 利用余弦函数展开的泰勒级数的前五项计算一个角度的余弦值,可采用子程序的调用方式来实现。调用前先将x弧度值放在数据存储器d_xc单元中,计算结果存放在d_cosx单元中。 ⑶正弦波的实现 利用计算一个角度的正弦值和余弦值程序可实现正弦波。其实现步骤如下:第一步:利用sin_start和cos_start 子程序,计算 45°~0°(间隔为 0.5°)的正弦和余弦值; 第二步:利用sin(2x)=2sin(x)cos(x)公式,计算 90°~0°的正弦值(间隔为1°);第三步:通过复制,获得359°~0°的正弦值; 第四步:将359°~0°的正弦值重复从PA口输出,便可得到正弦波。 在实际应用中,正弦波是通过D/A口输出的。选择每个正弦周期中的样点数、改变每个样点之间的延迟,就能够产生不同频率的波形,也可以利用软件改变波形的幅度以及起始相位。 总体方案设计 1. 总体实现方案 我们知道一个角度为x的正弦和余弦函数,都可以展开为泰勒级数,且其前五项可以看为:

生活垃圾卫生填埋场设计说明书

环境工程专业生产实习 工程设计 生活垃圾填埋场设计说明书 姓名:郝飞 麻太刚 王屿

姜浩 指导教师:董军、迟子芳2014 年8 月

目录 生活垃圾填埋场设计说明书 (1) 一.工程概况 (1) 1.1项目背景 (1) 1.1.1城市地理位置及自然条件概况 (1) 1.1.2社会经济现状 (1) 1.1.3城市发展基本情况 (3) 1.1.4环境卫生现状 (3) 1.2工程设计主要内容 (4) 1.3方案设计依据和原则 (4) 1.3.1采用主要规范及标准 (4) 1.3.2方案设计原则 (5) 1.4设计特点 (6) 1.4.1总平面布置特点 (6) 1.4.2污染控制技术特点 (6) 1.4.3雨污分流及渗滤液处理技术 (6) 1.4.4卫生填埋工艺 (7) 1.4.5环境污染控制措施 (7) 二.厂址选择与确定 (7) 2.1 厂址选择要求 (8) 2.2 厂址选择与确定 (9) 三.工艺设计 (9) 3.1 建设规模以及服务年限 (9) 3.2 覆盖土来源 (10)

3.3 填埋方案 (10) 四.主体工程设计 (12) 4.1 场底处理及边坡平整 (12) 4.1.1 场地平整 (12) 4.1.2 边坡平整 (12) 4.2 防渗 (12) 4.3.渗滤液收排系统 (13) 4.3.1渗滤液收排系统的作用 (13) 4.3.2渗滤液收排系统的结构 (14) 4.3.3渗滤液收排系统的类型选择 (14) 4.4 场外排水系统 (15) 4.5 场外排水系统 (16) 4.6 垃圾渗滤液处理 (16) 五.辅助设施设计 (16) 5.1 调节池 (16) 5.2 截污坝 (17) 5.3 垃圾拦挡坝 (17) 5.4污水处理站和渗滤液处理站 (17) 5.4.1 污水处理站 (17) 5.4.2 渗滤液处理站 (17) 5.5 垃圾填埋场气体处理 (18) 5.6 覆土备料场地 (21) 5.7地磅站布置 (21) 5.8 道路设计 (21) 六.封场技术方案 (21)

基于51单片机的函数信号发生器的设计

龙源期刊网 https://www.doczj.com/doc/bf6507012.html, 基于51单片机的函数信号发生器的设计 作者:朱兆旭 来源:《数字技术与应用》2017年第02期 摘要:本文所设计的系统是采用AT89C51单片机和D/A转换器件DAC0832产生所需不 同信号的低频信号源,AT89C51 单片机作为主体,采用D/A转换电路、运放电路、按键和LCD液晶显示电路等,按下按键控制生成方波、三角波、正弦波,同时用LCD显示相应的波形,输出波形的周期可以用程序改变,具有线路简单、结构紧凑、性能优越等特点。 关键词:51单片机;模数转换器;信号发生器 中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2017)02-0011-01 1 前言 波形发生器,是一种作为测试用的信号源,是当下很多电子设计要用到的仪器。现如今是科学技术和设备高速智能化发展的科技信息社会,集成电路发展迅猛,集成电路能简单地生成各式各样的波形发生器,将其他信号波形发生器于用集成电路实现的信号波形发生器进行对比,波形质量、幅度和频率稳定性等性能指标,集成电路实现的信号波形发生器都胜过一筹,随着单片机应用技术的不断成长和完善,导致传统控制与检测技术更加快捷方便。 2 系统设计思路 文章基于单片机信号发生器设计,产生正弦波、方波、三角波,连接示波器,将生成的波形显示在示波器上。按照对作品的设计研究,编写程序,来实现各种波形的频率和幅值数值与要求相匹配,然后把该程序导入到程序存储器里面。 当程序运行时,一旦收到外界发出的指令,要求设备输出相应的波形时,设备会调用对应波形发生程序以及中断服务子程序,D/A转换器和运放器随之处理信号,然后设备的端口输出该信号。其中,KEY0为复位键,KEY1的作用是选择频率的步进值,KEY2的作用是增加频 率或增加频率的步进值,KEY3的作用是减小频率或减小频率的步进值,KEY4的作用是选择三种波形。103为可调电阻,用于幅值的调节。自锁开关起到电源开关的作用。启动电源,程序运行的时候,选择正弦波,红色LED灯亮起;选择方波,黄色LED灯亮起;选择三角波,绿色LED灯亮起。函数信号发生器频率最高可达到100Hz,最低可达到10Hz,步进值0.1- 10Hz,幅值最高可到3.5V。系统框图如图1所示。 3 软件设计

垃圾填埋场设计说明书

目录设计说明书 1、绪论 生活垃圾 生活垃圾处理与处置方法 卫生填埋场概述 2、工程概况 项目背景 项目设计原始资料 项目设计要求 设计计算书 3、填埋场的选址 选址的考虑因素 选址的程序 地址的选定与所需的容积 4.填埋场的地基与防渗 填埋区基底工程 填埋场的防渗系统 防渗材料 防渗系统的构造 5. 渗滤液的产生及收集处理 垃圾渗滤液概念和来源

垃圾渗滤液的水质特征 渗滤液收集系统 渗滤液产生量的计算 5.4.1渗滤液产生量的计算 5.4.2渗滤液调节池设计 6.填埋气体的产生与收集处理 填埋气的组成 填埋气体产生量的预测 填埋场气体的收集与导排 6.3.1填埋场的导排方式及选择 6.3.2填埋场气体收集系统的设计 7.终场覆盖 填埋场封场系统设计 填埋场封场后的土地回用 8.封场后续工作 参考文献 3.8.4 库底地下水导排系统 为防止库底地下水蓄集后对防渗膜产生顶托从而破坏防渗层,本工程在库底及调节池池底防渗膜下层设置排除地下水盲沟,与渗沥液主盲沟对应设置,主盲沟采用三角形断面,最大断面尺寸为底宽2m,深,盲沟中铺设HDPE 穿孔排水花管和级配卵(砾)石,HDPE花管管径为dn315,级配卵(砾)石粒径为d20~d50mm。地下水由盲沟中的排水管引排至调节池下游冲沟。 生活垃圾概述

1.1.1生活垃圾的定义 生活垃圾,是指在日常生活中或者为日常生活提供服务的活动中产生的固体废物以及法律、行政法规规定视为生活垃圾的固体废物。生活垃圾一般可分为四大类:可回收垃圾、厨余垃圾、有害垃圾和其他垃圾。 城市生活垃圾亦称城市固体废物,是由城市居民家庭、城市商业、餐饮业、旅馆业、旅游业、服务业,以及市政环卫系统、城市交通运输、文教机关团体、行政事业、工矿企业等单位所排出的固体废物。其主要组成为:厨余物、废纸屑、废塑料、废橡胶制品、废编织物、废金属、玻璃陶瓷碎片、庭院废物、废旧家用电器、废旧家具器皿、废旧办公用品、废日杂用品、废建筑材料、给水排水污泥等。 1.1.1生活垃圾的危害 固体废物,特别是有害固体废物,如处理、处置不当,其中的有害物质可以通过环境介质——大气、土壤、地表或地下水体进入生态系统形成污染,对人体产生危害,同时破坏生态环境,导致不可逆生态变化。 (1)对土壤环境的影响:固体废物不加利用,任意露天堆放,不但占用一定的土地,导致可利用土地资源减少,而且如填埋处理不当,不进行严密的场地工程处理和填埋后的科学管理,容易污染土壤环境。 (2)对水体环境的影响:固体废物可随地表径流进入河流湖泊,或随风迁徙落入水体,从而将有害物质带入水体,杀死水中生物,污染人类饮用水水源,危害人体健康;固体废物产生的渗滤液危害很大,它可进入土壤污染地下水,或直接流入河流、湖泊或海洋,造成水资源的水质型短缺。 (3)对大气环境的影响:对方的固体废物中的细微颗粒、粉尘等可随风飞扬,进入大气并扩散到很远的地方;一些有机固体废物在适宜的温度和湿度下还可发生生物降解,释放出沼气,在一定程度上消耗其上层空间的氧气,使植物衰败;有毒有害废物还可发生化学反应生成有毒气体,扩散到大气中危害人体健康。 生活垃圾处理与处置方法 1.2.1焚烧 焚烧法是一种高温热处理技术,即以一定量的过剩空气与被处理的有机废物在焚烧炉内进行氧化燃烧反应,废物中有还有毒物质在800——1200℃的高温下氧化、热解而被破坏,是一种可同时实现废物无害化、减量化和资源化的处理技术。 1.2.2堆肥 堆废化是在控制条件下,利用自然界广泛分布的细菌、放线菌、真菌等微生物,促进来源于生物的有机废物发生生物稳定作用,使可被生物降解的有机物转化为稳定的腐殖质的生物化学过程。

单片机课程设计说明书范文概况

目录 1 绪论 (1) 1.1 概述 (1) 1.2 设计目的 (1) 2 设计任务及内容 (1) 2.1 设计任务 (1) 2.2 设计内容 (1) 3 总体设计及核心器件简介 (2) 3.1 总体设计 (2) 3.2 硬件设计 (2) 3.2.1 硬件系统总体设计 (2) 3.2.2 单片机的选择 (3) 3.2.3 显示电路的选择与设计 (4) 3.2.4 按键电路的选择与设计 (6) 3.2.5 时钟电路的选择与设计 (7) 3.2.6 复位电路的选择与设计 (8) 3.2.7 系统总电路的设计 (10) 3.3 软件设计 (11) 3.3.1 程序设计思想 (11) 3.3.2 系统资源的分配 (11) 3.3.3 主程序设计 (11) 3.3.4 中断程序设计 (12) 4 数字电子秒表的安装与调试 (15) 4.1 软件的仿真与调试 (15) 4.2 硬件的安装与调试 (15) 4.2 汇编程序 (15) 5 设计体会与总结 (21)

1 绪论 1.1 概述 单片微型计算机简称单片机,又称微控制器,是微型计算机的一个重要分支。单片机是20世纪七十年代中期发展起来的一种大规模集成电路芯片,是集CPU、RAM、ROM、I/O接口和终端系统与同一硅片的器件。20世纪八十年代以来单片机发展迅速各类新产品不断涌现出现许多新产品,出现了许多高性能新型机种现已成为工业控制和各控制领域的支柱产业之一。由于单片机功能强、体积小、可靠性好、价格便宜等独特优点因而受到人们的高度重视并取到了一系列的科研成果,成为传统工业技术改造和新产品更新换代的理想机种,并具有广阔的发展前景。 本设计运用所学的单片机知识,将单片机与普通秒表相结合设计了电子秒表,具有显示直观、读取方便、精度高等优良特点,在计时中应用广泛。 1.2 设计目的 加强对51系列单片机的构造了解及应用,熟悉汇编语言或C语言编程,综合掌握和理解设计各部分的工作原理、设计过程、芯片器件的选择方法、模块化编程等多项知识。 (1)用单片机模拟实现具体应用使个人设计系统能够真正使用; (2)把理论知识与实践知识相结合,充分发挥个人能力,并在实践中得到锻炼;(3)提高利用已学的知识分析和解决问题的能力; (4)提高动手实践能力。 2 设计任务及内容 2.1 设计任务 结合教材及参考资料,用80C51单片机模拟实现电子秒表的开启,计时,停止并显示时间等功能。 2.2 设计内容 (1)填写设计任务书; (2)进行总体设计,画出设计原理图; (3)用PROTEUS软件画出设计电路图; (4)用Keil软件编写程序; (5)在PROTEUS里模拟并调试程序达到期望功能。

基于51单片机的信号发生器设计报告

基于51单片机的信号发生器设计报告 二零一四年十二月十一日

摘要 根据题目要求以及结合实际情况,本文采用一种以AT89C51单片机为核心所构成的波形发生器,可产生方波、三角波、正弦波、锯齿波等多种波形,波形的频率可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。本设计经过测试,性能和各项指标基本满足题目要求。 关键词:信号发生器 DAC0832芯片 LM358运放 89C51芯片

目录 摘要...................................................................... 目录...................................................................... 第一章绪论................................................................. 1.1单片机概述........................................................... 1.2信号发生器的概述和分类.............................................. 1.3问题重述及要求....................................................... 第二章方案的设计与选择................................................... 2.1方案的比较........................................................... 2.2设计原理 ............................................................. 2.3设计思想 ............................................................. 2.4实际功能 ............................................................. 第三章硬件设计............................................................ 3.1硬件原理框图......................................................... 3.2主控电路 ............................................................. 3.3数、模转换电路....................................................... 3.4按键接口电路......................................................... 3.5时钟电路 ............................................................. 3.6显示电路 ............................................................. 第四章软件设计............................................................ 4.1程序流程图........................................................... 参考文献.................................................................... 附录1 电路原理图 .......................................................... 附录2 源程序............................................................... 附录3 器件清单......................................................

51单片机课程设计

课程设计说明书
课程设计名称






学生姓名
指导教师
单片机原理及应用课程设计 电子信息工程 140405 20141329 李延琦 胡黄水
2016 年 12 月 26 日

课程设计任务书
课程设计 题目
酒精测试仪
起止日期
2016 年 12 月 26 日— 2017 年 1 月 6 日
设计地点
计算机科学与工程学 院单片机实验室 3409
设计任务及日程安排: 设计任务:分两部分: (一)、设计实现类:进行软、硬件设计,并上机编程、联线、调试、 实现; 1.电子钟的设计 2.交通灯的设计 3.温度计的设计 4.点阵显示 5.电机调速 6.电子音乐发声(自己选曲) 7.键盘液晶显示系统 (二)、应用系统设计类:不须上机,查资料完成软、硬件设计画图。 查资料选定题目。 说明:第 1--7 题任选其二即可。(二)里题目自拟。 日程安排: 本次设计共二周时间,日程安排如下: 第 1 天:查阅资料,确定题目。 第 2--4 天:进实验室做实验,连接硬件并编写程序作相关的模块实验。 第 5--7 天:编写程序,并调试通过。观察及总结硬件实验现象和结果。 第 8--9 天:整理资料,撰写课程设计报告,准备答辩。 第 10 天:上交课程设计报告,答辩。 设计报告要求:
1. 设计报告里有两个内容,自选题目内容+附录(实验内容),每 位同学独立完成。 2. 自选题目不须上机实现,要求能正确完成硬件电路和软件程序 设计。内容包括: 1) 设计题目、任务与要求 2)硬件框图与电路图 3) 软件及流程图 (a)主要模块流程图 (b)源程序清单与注释 4) 总结 5) 参考资料 6)附录 实验上机调试内容
注:此任务书由指导教师在课程设计前填写,发给学生做为本门课程设计 的依据。

简易信号发生器单片机课程设计报告

课程设计(论文)任务书 电气学院电力系统及其自动化专业12(1 )班 一、课程设计(论文)题目:简易信号发生器设计 二、课程设计(论文)工作自 2015年1 月12 日起至2015 年 1月16 日止。 三、课程设计(论文) 地点:电气学院机房 10-303 四、课程设计(论文)内容要求: 1.课程设计的目的 (1)综合运用单片机原理及应用相关课程的理论知识和实际应用知识,进行单片机应用系统电路及程序设计,从而使这些知识得到进一步的巩固,加深和发展;(2)熟悉和掌握单片机控制系统的设计方法,汇编语言程序设计及proteus 软件的使用; (3)通过查阅图书资料、以及书写课程设计报告可提高综合应用设计能力,培养独立分析问题和解决问题的能力。 2.课程设计的内容及任务 (1)可产生频率可调的正弦波(64个点)、方波、锯齿波或三角波。 (2)显示出仿真波形。 (3)通过按键选择输出波形的种类。 (4)在此基础上使输出波形的幅值可控。

3.课程设计说明书编写要求 (1)设计说明书用A4纸统一规格,论述清晰,字迹端正,应用资料应说明出处。(2)说明书内容应包括(装订次序):题目、目录、正文、设计总结、参考文献等。应阐述整个设计内容,要重点突出,图文并茂,文字通畅。 (3)报告内容应包括方案分析;方案对比;整体设计论述;硬件设计(电路接线,元器件说明,硬件资源分配);软件设计(软件流程,编程思想,程序注释,) 调试结果;收获与体会;附录(设计代码放在附录部分,必须加上合理的注释)(4) 学生签名: 2015年1月16 日 课程设计(论文)评审意见 (1)总体方案的选择是否正确;正确()、较正确()、基本正确()(2)程序仿真能满足基本要求;满足()、较满足()、基本满足()(3)设计功能是否完善;完善()、较完善()、基本完善()(4)元器件选择是否合理;合理()、较合理()、基本合理()(5)动手实践能力;强()、较强()、一般()(6)学习态度;好()、良好()、一般()(7)基础知识掌握程度;好()、良好()、一般()(8)回答问题是否正确;正确()、较正确()、基本正确()、不正确() (9)程序代码是否具有创新性;全部()、部分()、无() (10)书写整洁、条理清楚、格式规范;规范()、较规范()、一般()总评成绩优()、良()、中()、及格()、不及格() 评阅人:

课程设计垃圾填埋场设计

目录设计说明书 1、绪论 1.1生活垃圾 1.2生活垃圾处理与处置方法 1.3卫生填埋场概述 2、工程概况 2.1项目背景 2.2项目设计原始资料 2.3项目设计要求 设计计算书 3、填埋场的选址 3.1选址的考虑因素 3.2选址的程序 3.3地址的选定与所需的容积 4.填埋场的地基与防渗 4.1填埋区基底工程 4.2填埋场的防渗系统 4.3防渗材料 4.4防渗系统的构造 5. 渗滤液的产生及收集处理 5.1垃圾渗滤液概念和来源

5.2垃圾渗滤液的水质特征 5.3渗滤液收集系统 5.4渗滤液产生量的计算 5.4.1渗滤液产生量的计算 5.4.2渗滤液调节池设计 6.填埋气体的产生与收集处理6.1填埋气的组成 6.2填埋气体产生量的预测 6.3填埋场气体的收集与导排 6.3.1填埋场的导排方式及选择 6.3.2填埋场气体收集系统的设计 7.终场覆盖 7.1填埋场封场系统设计 7.2填埋场封场后的土地回用 8.封场后续工作 结语 参考文献 附图 主要符号说明

1、绪论 1.1生活垃圾概述 1.1.1生活垃圾的定义 生活垃圾,是指在日常生活中或者为日常生活提供服务的活动中产生的固体废物以及法律、行政法规规定视为生活垃圾的固体废物。生活垃圾一般可分为四大类:可回收垃圾、厨余垃圾、有害垃圾和其他垃圾。 城市生活垃圾亦称城市固体废物,是由城市居民家庭、城市商业、餐饮业、旅馆业、旅游业、服务业,以及市政环卫系统、城市交通运输、文教机关团体、行政事业、工矿企业等单位所排出的固体废物。其主要组成为:厨余物、废纸屑、废塑料、废橡胶制品、废编织物、废金属、玻璃陶瓷碎片、庭院废物、废旧家用电器、废旧家具器皿、废旧办公用品、废日杂用品、废建筑材料、给水排水污泥等。 1.1.1生活垃圾的危害 固体废物,特别是有害固体废物,如处理、处置不当,其中的有害物质可以通过环境介质——大气、土壤、地表或地下水体进入生态系统形成污染,对人体产生危害,同时破坏生态环境,导致不可逆生态变化。 (1)对土壤环境的影响:固体废物不加利用,任意露天堆放,不但占用一定的土地,导致可利用土地资源减少,而且如填埋处理不当,不进行严密的场地工程处理和填埋后的科学管理,容易污染土壤环境。 (2)对水体环境的影响:固体废物可随地表径流进入河流湖泊,或随风迁徙落入水体,从而将有害物质带入水体,杀死水中生物,污染人类饮用水水源,危害人体健康;固体废物产生的渗滤液危害很大,它可进入土壤污染地下水,或直接流入河流、湖泊或海洋,造成水资源的水质型短缺。 (3)对大气环境的影响:对方的固体废物中的细微颗粒、粉尘等可随风飞扬,进入大气并扩散到很远的地方;一些有机固体废物在适宜的温度和湿度下还可发生生物降解,释放出沼气,在一定程度上消耗其上层空间的氧气,使植物衰败;有毒有害废物还可发生化学反应生成有毒气体,扩散到大气中危害人体健康。 1.2生活垃圾处理与处置方法 1.2.1焚烧 焚烧法是一种高温热处理技术,即以一定量的过剩空气与被处理的有机废物在焚烧炉内进行氧化燃烧反应,废物中有还有毒物质在800——1200℃的高温下氧化、热解而被破坏,是一种可同时实现废物

基于单片机的直流电压检测系统设计 课程设计说明书

山东建筑大学 课程设计说明书 题目:基于单片机的直流电压检测系统设计课程:单片机原理及应用B课程设计 院(部):信息与电气工程学院 专业: 班级: 学生姓名: 学号: 指导教师: 完成日期:2013年6月

摘要........................................................................... 错误!未定义书签。 1 设计目的 (1) 2 设计要求 (2) 3 设计内容 (3) 3.1 单片机电压测量系统的总体设计 (3) 3.1.1 硬件选择 (4) 3.1.2 软件选择 (4) 3.2 硬件电路的设计 (4) 3.2.1 输入电路模块设计 (4) 3.2.2 LM7805稳压电源电路介绍 (5) 3.2.3 显示模块电路设计 (6) 3.2.4 A/D转换设计 (7) 3.2.5 单片机模块的简介 (9) 3.3系统软件的设计 (12) 3.3.1主程序的设计 (13) 3.3.2 各子程序的设计 (14) 总结与致谢 (17) 参考文献 (18) 附录一系统整体电路图 (19) 附录二A/D转换电路的程序 (20) 附录三1602LCD显示模块的程序 (22)

摘要 随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段。对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。本设计在查阅了大量前人设计的数字电压表的基础上,利用单片机技术结合A/D转换芯片ADC0832构建了一个直流数字电压表。本文首先简要介绍了单片机系统的优势,然后详细介绍了直流数字电压表的设计流程,以及硬件系统和软件系统的设计。 本文介绍了基于89S51单片机的电压测量系统设计,介绍1602LCD液晶的功能和ADC0832的转换原理。该电路设计简单,方便。该设计可以测量0~5V的电压值,并在1602LCD液晶上显示出来。 本系统主要包括三大模块:主程序模块、显示模块、A/D转换模块,绘制点哭原理图与工作流程图,并进行调试,最终设计完成了该系统的硬件电路,在软件编程上,采用了c语言进行编程,开发了显示模块程序,A/D转换程序。 关键词:89S51单片机;1602LCD液晶;ADC0832

基于单片机的信号发生器设计

基于单片机的信号发生器设计

基于单片机的信号发生器 设计

摘要 在介绍MAX038 芯片特性的基础上,论述了采用MAX038 芯片设计数字函数信号发生器的原理以及整机的结构设计。对其振荡频率控制、信号输出幅度控制以及频率和幅度数显的实现作了较详细的论述。该函数信号发生器可输出三角波,方波和正弦波。 本文重点论述了整机通过D/A转换电路控制MAX038的实现过程,D/A转换电路采用了8位4通道的MAX505来实现。在幅度的控制上采用数字电位器AD5171,该芯片是I2C总线方式控制,文中给出了I2C总线的读写控制程序。系统支持按键操作和上位机操作两种模式。 关键词:函数信号;D/A ;单片机控制

Design of Signal Generator System Based on SCM Zisu zhou (College of Zhangjiajie, Jishou University, Jishou,Hunan 416000) Abstract Based on the introduction of MAX038 , we discussed the principle and the whole frame of the digital function signal generator. We described the control of the oscillatory frequent , amplitude and the digital display in detail. Thegenerator can output three kinds of waves : sine wave , square wave , triangle wave. This text has exposition the mirco-computer controls the D/A electric circuit of conversion realize the process. In D/A changing electric circuit adopt the 8 bit 4 channel come to realize. Porentiometer AD5171 is adopted in the control of length. This chip is that I2C bus control way. This system supports key-control or computer-control modes. Key words : function signal ;D/A ;single - chip microprocessor control ;

EDA课程设计-正弦信号发生器的设计

《EDA技术》设计报告 设计题目正弦信号发生器的设计 院系:信息工程学院 专业:通信工程____ 学号: 姓名:__________

一.设计任务及要求 1.设计任务: 利用实验箱上的D/A 转换器和示波器设计正弦波发生器,可以在示波器上观察到正弦波 2.设计要求: (1) 用VHDL 编写正弦波扫描驱动电路 (2)设计可以产生正弦波信号的电路 (3)连接实验箱上的D/A 转换器和示波器,观察正弦波波形 二.设计方案 (1)设计能存储数据的ROM 模块,将正弦波的正弦信号数据存储在在ROM 中,通过地址发生器读取,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 (2)用VHDL 编写正弦波信号数据,将正弦波信号输入八位D/A 转化器,在示波器上观察波形 三.设计框图 图 1 设计框图 信号发生器主要由以下几个部分构成:计数器用于对数据进行采样,ROM 用于存储待采样的波形幅度数值,TLV5620用于将采集的到正弦波数字量变为模拟量,最后通过示波器进行测量获得的波形。其中,ROM 设置为7根地址线,8个数据位,8位并行输出。TLV5260为串行输入的D/A 转换芯片,因此要把ROM 中并行输出的数据进行并转串。 四.实现步骤 1.定制ROM 计 数 器 7根地址线 8 位 R O M 并转串输出 CLK TLV5620D/A 转换 RST

ROM的数据位选择为8位,数据数选择128个。利用megawizard plug-in manager定制正弦信号数据ROM宏功能块,并将上面的波形数据加载于此ROM中。如图3所示。 图2 ROM存储的数据 图3 调入ROM初始化数据文件并选择在系统读写功能 2.设计顶层

单片机设计说明书讲解

福建工程学院 设计内容:基于51单片机的电子时钟设计 院系:计算机科学与信息学院 专业:计算机科学与技术类 班级:嵌入式1105班 学号:3110307618 姓名:林强 指导老师:蔡文培 完成日期:2014-06-03

摘要 随时代的发展,生活节奏的加快,人们的时间观念愈来愈强;随自动化、智能化技术的发展,机电产品的智能度愈来愈高,用到时间提示、定时控制的地方变得更加广泛,因此,设计开发数字时钟具有良好的应用前景。 由于单片机成本价格低、高性能,在自动控制产品得到了广泛的应用。本设计利用Ateml公司的AT89C51单片机对电子时钟进行开发,设计了实现所有功能的硬件电路,使用Keil C来进行代码编写和调试,通过Keil C与Proteus进行联合调试来测试最终结果。 在介绍本单片机的发展情况基础上,说明了本设计实现的功能,以及Proteus仿真实验板上的硬件情况,并对各功能进行了分析。主要工作放在软件的编程上面,用Proteus仿真环境可以实现时间、日期、定时以及它们的设定功能,详细对软件编程以及调试进行了说明,并对计时误差进行了分析及校正。整个实验效果良好,可以投入使用。 关键词:单片机AT89C51 电子时钟C语言

目录

第一章设计任务分析 1.1课题背景 单片机自1976年由Intel公司推出MCS-48开始,迄今已有二十多年了。由于单片机集成度高、功能强、可靠性高、体积小、功耗低、使用方便、价格低廉等一系列优点,目前已经渗入到人们工作和生活的方方面面,单片机的应用领域已从面向工业控制、通讯、交通、智能仪表等迅速发展到家用消费产品、办公自动化、汽车电子、PC机外围以及网络通讯等广大领域。 单片机有两种基本结构:一种是在通用微型计算机中广泛采用的,程序存储器和数据存储器共用一个存储器空间的结构,称为“冯·诺依曼”(V on Neumann)结构。另一种是将程序存储器和数据存储器截然分开,分别寻址的结构,称为“哈佛”(Harvard)结构,目前的单片机采用此种结构为多。 本文讨论的单片机多功能时钟系统的核心是目前应用极为广泛的51系列单片机,配置了外围设备,构成了一个可编程的计时定时系统,具有体积小,可靠性高,功能多等特点。不仅能满足所需要求而且还有很多功能可供扩展,有着广泛的应用领域。 1.2课题意义 在日常生活和工作中,我们常常用到定时控制,如扩印过程中的曝光定时等。早期常用的一些时间控制单元都使用模拟电路设计制作的,其定时准确性和重复精度都不是很理想,现在基本上都是基于数字技术的新一代产品,随着单片机性价比的不断提高,新一代产品的应用也越来越广泛。大则可以构成复杂的工业过程控制系统,完成复杂的控制功能;小则可以用于家电控制,甚至可以用于儿童电子玩具。它功能强大、体积小、质量轻、灵活好用,配以适当的接口芯片,可以构成各种各样、功能各异的微电子产品。 随着电子技术的飞速发展,家用电器和办公电子设备逐渐增多,不同的设备都有自己的控制器,使用起来很不方便。这些具有人们所需要的智能化特性的产品减轻了人的劳动,扩大了数字化的范围,为家庭数字化提供了可能。 根据这种实际情况,设计了一个单片机多功能时钟系统,它有基本的时间功能,还有定时功能,既可作为闹铃,也可扩展为定时对家电等电气产品的自动控制,可以避免多种控制器的混淆,利用一个控制器对多路电器进行控制;可增加温度传感器,进行实时温度显示,进一步扩展为利用不同的温度某些电气产品进行自动控制;也可增加湿度传感器,进行实时湿度显示,以便对湿度进行控制,方便人们的生活。 1.3本章小结 本章主要介绍了课题背景、设计任务和课题意义,对单片机的优点及结构作了简要叙述,也对本系统的应用及概况进行了说明。

基于51单片机信号发生器的设计

专业方向课程设计报告设计课题:信号发生器的设计 设计时间:2012年06月6日

信号发生器的设计 摘要:本文以STC89C51单片机为核心设计了一个低频函数信号发生器。信号发生器采用数字波形合成技术,通过硬件电路和软件程序相结合,可输出自定义波形,如正弦波、方波、三角波、三角波、梯形波及其他任意波形,波形的频率和幅度在一定范围内可任意改变。波形和频率的改变通过软件控制,幅度的改变通过硬件实现。介绍了波形的生成原理、硬件电路和软件部分的设计原理。 关键词:低频信号发生器; 单片机;D/A转换 1设计要求 设计一个能产生方波、三角波、梯形波、锯齿波并且频率、幅度可调的信号发生器。 发挥部分:作品还能产生正弦波。 2系统概述 2.1.1波形产生方案 采用AT89C51单片机和DAC0832数模转换器生成波形,加上一个低通滤波器,生成的波形比较纯净。它的特点是可产生任意波形,频率容易调节,频率能达到设计的500HZ 以上。 2.1.2改变幅度方案: 方案一:可以将送给DA的数字量乘以一个系数,这样就可以改变DA输出电流的幅度,从而改变输出电压;但是这样做有很严重的问题,单片机在做乘法运算时需要很长的时间,这样的话输出波形的频率就会很低;并且该方案的输出电压做不到连续可调,当DA的输入数字量比较小时,输出的波形失真就会比较严重。 方案二:将输出电压通过一个运算放大器的放大。这样还有个优点是幅度连续可调。经比较,方案二既可满足课程设计的基本要求,并且电路也挺简单。 2.2工作原理 数字信号可以通过数/模转换器转换成模拟信号,因此可通过产生数字信号再转换成模

拟信号的方法来获得所需要的波形。89C51单片机本身就是一个完整的微型计算机,具有组成微型计算机的各部分部件:中央处理器CPU、随机存取存储器RAM、只读存储器ROM、I/O接口电路、定时器/计数器以及串行通讯接口等,只要将89C51再配置键盘及、数模转换及波形输出、放大电路等部分,即可构成所需的波形发生器,其信号发生器构成系统框图如图2.2所示。 89C51是整个波形发生器的核心部分,通过程序的编写和执行,产生各种各样的信号,并从键盘接收数据,进行各种功能的转换和信号幅度的调节。当数字信号电路到达转换电路,将其转换成模拟信号也就是所需要的输出波形。波形ROM表是将信号一个周期等间距地分离成64个点,储存在单片机得RON内。具体ROM表是通过MATLAB生成的,例如正弦表,MATLAB生成的程序如下: x=0:2*pi/64:2*pi; y=round(sin(x)*127)+128 图2.2 系统框图 3单元电路设计与分析 3.1.1主控电路(如图3.1.1所示) 设计中主要采用STC89C51型单片机,它具有如下优点:(1)拥有完善的外部扩展总线,通过这些总线可方便地扩展外围单元、外围接口等。(2)该单片机内部拥有4K字节的FLASH ROM程序存储器空间和256字节的RAM数据存储空间,完全可以满足程序的要求。由于该芯片可电擦写,故可重复使用。如果更改程序内容,可将芯片拿下重新烧写。 在波形发生器中,用两个开关直接与外部中断0和外部中断1的管脚相连,其中S1开光用来改变波形,S2开光用来改变频率。在程序主函数中,我们写了个死循环一直输出一个默认的波形和频率(正弦波),当S1或S2按下(接通低电平)又抬起(STC89C51单片机管脚使能高电平)时,程序会暂时跳出死循环,进入中断处理程序,从而对波形和频率

相关主题
文本预览
相关文档 最新文档