当前位置:文档之家› (完整版)专题一(二阶常微分方程解法)

(完整版)专题一(二阶常微分方程解法)

(完整版)专题一(二阶常微分方程解法)
(完整版)专题一(二阶常微分方程解法)

二阶微分方程:

时为非齐次

时为齐次,0)(0)()()()(22≠≡=++x f x f x f y x Q dx dy x P dx y d 二阶常系数齐次线性微分方程及其解法:

2

122,)(2,,(*)0)(1,0(*)r r y y y r r q pr r q p qy y p y 式的两个根、求出的系数;

式中的系数及常数项恰好是,,其中、写出特征方程:求解步骤:

为常数;

,其中?'''=++?=+'+''式的通解:出的不同情况,按下表写、根据(*),321r r

二阶常系数非齐次线性微分方程

为常数;

型,为常数

,]sin )(cos )([)()()(,)(x x P x x P e x f x P e x f q p x f qy y p y n l x m x ωωλλλ+===+'+''

二阶常系数非齐次线性微分方程的一般形式是 ''+'+=y py qy f x () (1)

其中p q ,是常数。

方程(1)的通解为对应的齐次方程

0=+'+''qy y p y (2)

的通解Y 和方程(1)的一个特解*y 之和。即 *y Y y +=.我们已解决了求二阶常系数齐

次线性方程通解的问题,所以,我们只需讨论求二阶常系数非齐次线性微分方程的特解*

y 的方法。

下面我们只介绍当方程(1)中的)(x f 为如下两种常见形式时求其特解*y 的方法。

一、

f x e P x x m ()()=?λ型 由于方程(1)右端函数f x ()是指数函数e x λ?与m 次多项式P x m ()的乘积,而指数

函数与多项式的乘积的导数仍是这类函数,因此,我们推测:

方程(1)的特解应为

y e Q x x *?=λ()( Q x ()是某个次数待定的多项式 ) y e Q x e Q x x x *??'=+'λλλ()() y e Q x Q x Q x x *?"=?+'+''λλλ[()()()]22 代入方程(1),得

e Q x p Q x p q Q x e P x x x m λλλλλ???''++'+++≡?[()()()()()]()22 消去e x λ?,得

''++'+++≡Q x p Q x p q Q x P x m ()()()()()()22λλλ (3) 讨论

01、如果λ不是特征方程

r pr q 20++=的根。 即

02≠++q p λλ 由于P x m

()是一个m 次的多项式,欲使(3)的两端恒等,那未Q x ()必为一个m 次多项式,设为

Q x b x b x b x b m m m m m ()=++++--0111Λ

将之代入(3),比较恒等式两端x 的同次幂的系数,就得到以b b b b

m m 01

1,,,,Λ-为未知数的m +1个线性方程的联立方程组,解此方程组可得到这m +1个待定的系数,并得到特解 y e Q x x m *?=λ()

02、如果λ是特征方程

r pr q 20++=的单根。 即

λλ20++=p q ,但 20λ+≠p 欲使(3)式的两端恒等,那么'Q x ()必是一个m 次多项式。

因此,可令 Q x x Q x m ()()=?

并且用同样的方法来确定)(x Q 的系数b b b b m m 0

11,,,,Λ-。 03、如果λ是特征方程

r pr q 20++=的二重根。 即

λλ20++=p q ,且 20λ+=p 。 欲使(3)式的两端恒等,那么''Q x ()必是一个m 次多项式

因此, 可令

Q x x Q x m ()()=?2 并且用同样的方法来确定)(x Q 的系数b b b b m m 011,,,,Λ-。

综上所述,我们有结论

如果

f x e P x x m ()()=?λ,则方程(1)的特解形式为 y x Q x e k m x *?=()λ

其中Q x m ()是与P x m ()同次的多项式,k 的取值应满足条件 k =?????012λλλ不是特征方程的根是特征方程的单根

是特征方程的二重根

例1求 ''-'+=y y y xe x 562 的通解。

解 特征方程为 0652=+-r r

特征根为 3,221==r r

齐次方程的通解为 x x e C e C Y 3221+=

因为2=λ是特征单根,所以,设非齐次方程的特解为

y x b x b e x *=+()012

则 *'y =+++[()]222020112b x b b x b e x

*''y =++++[()]484240201012b x b b x b b e x

将上述三式代入原方程,得

()-+-≡2200122b x b b e xe x x ,

比较恒等式两端的系数,得

-=-=???2120001b b b

解得

21

0-

=b , 11-=b 因此 x

e x x y 2)121(*+-= 所以方程的通解为

y c e c e x x e x x x

=+-+12232121()

二、

f x e P x x P x x x l n ()[()cos ()sin ]=+λωω型 由于方程(1)右端函数为

[]x x p x x p e n l x ωωλsin )(cos )(+,这种形式得到非齐次方程的特解*y 的过程稍微复杂些,所以我们这里就只给出结论

y x e R x x R x x k x m m *=+λωω[()cos ()sin ]()()12

其中,R x m ()()1、R x m ()()2是两个m 次多项式,m l n =max{,},

???++=是特征方程的根若不是特征方程的根若ωλωλi i k 10 例2求方程 ''+

=y y x x cos2 的通解。 解 特征方程 r

210+= 特征根 i

r ±=2,1 齐次方程的通解为 x C x C Y sin cos 21+=

这里1,2,0===m ωλ,由于i i 2=+ωλ不是特征方程的根,所以设方程的特解为 y ax b x cx d x *=+++()cos ()sin 22

代入原方程,得

x x x a d Cx x C b ax 2cos 2sin )433(2cos )433(=++-+--

比较两端同类项的系数,得

???????=--=-=+-=-0430

304313a d C C b a

解得

94,0,0,31===-=d C b a 于是 y x x x *

=-+132492cos sin 所以非齐次方程的通解为

y c x c x x x x =+-+12132492cos sin cos sin

一阶常微分方程的奇解

摘要.................................................... 错误!未定义书签。 1.何谓奇解.............................................. 错误!未定义书签。 2.奇解的产生............................................ 错误!未定义书签。 3.包络跟奇解的关系...................................... 错误!未定义书签。 4.理论上证明C-判别曲线与P-判别曲线方法................. 错误!未定义书签。 克莱罗微分方程 ..................................... 错误!未定义书签。 5.奇解的基本性质........................................ 错误!未定义书签。 定理1 ............................................. 错误!未定义书签。 定理2 ............................................. 错误!未定义书签。 定理3 ............................................. 错误!未定义书签。 6.小结.................................................. 错误!未定义书签。参考文献:.............................................. 错误!未定义书签。

二阶微分方程解法知识讲解

二阶微分方程解法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r , 所以x r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2 1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

总结一阶常微分方程奇解的求法

总结一阶微分方程奇解的求法 摘要:利用有关奇解的存在定理,总结出求一阶微分方程奇解的几种方法,并通过一些具体的例题说明这几种方法的应用 Using relevant theorems to develop several methods of finding singular solution of ordinary differential equation. In addition, illustrate the application of these methods through the concrete examples. 关键词:常微分方程 奇解 c-判别式 p-判别式 方法一:利用c-判别式求奇解 设一阶微分方程0, ,=?? ? ?? dx dy y x F ① 可求出方程①的通解为()0,,=c y x φ ② 如果()()???==0 ,,0,,' c y x c y x c φφ ③ 是微分方程①的解,且对③式满足:()()02 '2 '≠+y x φφ ④ 则③是微分方程①的奇解,且是通解②的包络。 例1:方程() 2 2 2 x x y dy dx dy dx + -= 的奇解 解:首先,本具题意求出该微分方程的通解为2 2 2 c cx y x ++= 与4 2 x y = 其中c 为任意常数 当时2 2 2 c cx y x ++= , ()y c cx x c y x -++= 2 2 2 ,,φ 其相应的c -判别式为 ? ??=+=-++02022x 2 c x y c cx 易得到: ? ??=-=2 2c y c x

代入原微分方程,可知? ??=-=2 2c y c x 不是原微分方程的解; 当4 2 x y = 时,易求出2 ,1''x y x ==φφ,则有()()02 '2 '≠+y x φφ 故4 2 x y = 为原微分方程的奇解 例2:试求微分方程() () y y dy dx 9 42 2 1= -的奇解 解:首先,根据题意求出微分方程的通解为:()()0322=---y y c x 其中c 为任意常数 再由相应的c-判别式: ()()()? ??=--=---020 322c x y y c x 易求出:? ??==0y c x 或 ???==3y c x 当???==0y c x 时,代入原微分方程成立; 所以? ??==0y c x 为原微分方程的解 且有()02'=--=c x x φ;()()93232 '-=---=y y y y φ 满足(Φ‘ x )2 +(Φ‘ y )2≠0 易验证???==3y c x 不是原微分方程的解 故x=c, y=0 是元微分方程的奇解。 方法二:利用p-判别法求奇解 在微分方程①中,设y ′=p,则此方程的p-判别式为: ()()?????==0,,0 ,,' p y x F p y x F p ⑤ 消去p 之后得到的函数y=?(x)是微分方程①身为解,

二阶常微分方程的解法及其应用.

目录 1 引言 (1) 2 二阶常系数常微分方程的几种解法 (1) 2.1 特征方程法 (1) 2.1.1 特征根是两个实根的情形 (2) 2.1.2 特征根有重根的情形 (2) 2.2 常数变异法 (4) 2.3 拉普拉斯变化法 (5) 3 常微分方程的简单应用 (6) 3.1 特征方程法 (7) 3.2 常数变异法 (9) 3.3 拉普拉斯变化法 (10) 4 总结及意义 (11) 参考文献 (12)

二阶常微分方程的解法及其应用 摘要:本文通过对特征方程法、常数变易法、拉普拉斯变换法这三种二阶常系数常微分方程解法进行介绍,特别是其中的特征方程法分为特征根是两个实根的情形和特征根有重根的情形这两种情况,分别使用特征值法、常数变异法以及拉普拉斯变换法来求动力学方程,现今对于二阶常微分方程解法的研究已经取得了不少成就,尤其在二阶常系数线性微分方程的求解问题方面卓有成效。应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。 关键词:二阶常微分方程;特征分析法;常数变异法;拉普拉斯变换

METHODS FOR TWO ORDER ORDINARY DIFFERENTIAL EQUATION AND ITS APPLICATION Abstract:This paper introduces the solution of the characteristic equation method, the method of variation of parameters, the Laplasse transform method the three kind of two order ordinary differential equations with constant coefficients, especially the characteristic equation method which is characteristic of the root is the two of two real roots and characteristics of root root, branch and don't use eigenvalue method, method of variation of constants and Laplasse transform method to obtain the dynamic equation, the current studies on solution of ordinary differential equations of order two has made many achievements, especially in the aspect of solving the problem of two order linear differential equation with constant coefficients very fruitful. Application of the theory of ordinary differential equations has made great achievements, however, the existing theory it is still far from meeting the need, needs further development, to make the discipline theory more perfect. Keywords:second ord er ordinary differential equation; Characteristic analysis; constant variation method; Laplasse transform 1 引言 数学发展的历史告诉我们,300年来数学分析是数学的首要分支,而微分方程

一阶常微分方程解法总结

页脚内容1 第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )()(=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、xy dx dy = 解:当0≠y 时,有xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(11212 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(1212 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有dy y N y Q dx x P x M ) ()()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(22=-+-dy x y dx y x

页脚内容2 解:当0)1)(1(22≠--y x 时,有dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(22=--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(22为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如)(x y g dx dy = 解法:令x y u = ,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x x y f =。 ②、形如)0(),(≠+=ab by ax G dx dy 解法:令by ax u +=,则b du adx dy +=,代入得到)(1u G b a dx du b =+为变量可分离方程,得到)(0),,(为常数C C x u f =再把u 代入得到)(0),,(为常数C C x by ax f =+。 ③、形如 )(222111c y b x a c y b x a f dx dy ++++= 解法:01、02211 =b a b a ,转化为)(by ax G dx dy +=,下同①; 02、0221 1 ≠b a b a ,???=++=++00222111c y b x a c y b x a 的解为),(00y x ,令???-=-=00y y v x x u

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶常微分方程解

第七节 二阶常系数线性微分方程 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线 性微分方程及其求解方法。先讨论二阶常系数线性齐 §7.1 二阶常系数线性齐次方程及其求 22dx y d +p dx dy +qy = 0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22 dx y d ,dx dy ,y 各乘 以常数因子后相加等于零,如果能找到一个函数y ,

其22dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函 数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx y =e rx (其中r 为待定常数) 将y =e rx ,dx dy =re rx ,22dx y d =r 2e rx 代入方程 (7.1) 得 r 2e rx +pre rx +qe rx = 0 或 e rx (r 2+pr +q )= 因为e rx ≠ 0 r 2 +pr +q = 由此可见,若 r r 2+pr +q = 0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1) 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2 有三种可能的情况,下面 (1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程(7.1)

一阶常微分方程解法总结

第 一 章 一阶微分方程的解法的小结 ⑴、可分离变量的方程: ①、形如 )()(y g x f dx dy = 当0)(≠y g 时,得到 dx x f y g dy )() (=,两边积分即可得到结果; 当0)(0=ηg 时,则0)(η=x y 也是方程的解。 例1.1、 xy dx dy = 解:当0≠y 时,有 xdx y dy =,两边积分得到)(2ln 2为常数C C x y += 所以)(112 12 C x e C C e C y ±==为非零常数且 0=y 显然是原方程的解; 综上所述,原方程的解为)(12 12 为常数C e C y x = ②、形如0)()()()(=+dy y Q x P dx y N x M 当0)()(≠y N x P 时,可有 dy y N y Q dx x P x M ) () ()()(=,两边积分可得结果; 当0)(0=y N 时,0y y =为原方程的解,当0(0=) x P 时,0x x =为原方程的解。 例1.2、0)1()1(2 2 =-+-dy x y dx y x 解:当0)1)(1(2 2 ≠--y x 时,有 dx x x dy y y 1 122-=-两边积分得到 )0(ln 1ln 1ln 22≠=-+-C C y x ,所以有)0()1)(1(22≠=--C C y x ; 当0)1)(1(2 2 =--y x 时,也是原方程的解; 综上所述,原方程的解为)()1)(1(2 2 为常数C C y x =--。 ⑵可化为变量可分离方程的方程: ①、形如 )(x y g dx dy = 解法:令x y u =,则udx xdu dy +=,代入得到)(u g u dx du x =+为变量可分离方程,得到

二阶常微分方程解

二阶常微分方程解

————————————————————————————————作者: ————————————————————————————————日期:

第七节 二阶常系数线性微分方程 的解法 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线性微分方程及其求解方法。先讨论二阶常系数线性齐次方程的求解方法。 §7.1 二阶常系数线性齐次方程及其求解方法 设给定一常系数二阶线性齐次方程为 ?? 22 dx y d +p dx dy +qy=0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y2就可以了,下面讨论这样两个特解的求法。 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22dx y d ,dx dy ,y 各乘以 常数因子后相加等于零,如果能找到一个函数y,其

22dx y d ,dx dy ,y之间只相差一个常数因子,这样的函数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx ,符合上述要求,于是我们令 y=e r x (其中r 为待定常数)来试解 将y =e rx ,dx dy =re r x,22dx y d =r 2e r x 代入方程(7.1) 得 r 2e rx +pre rx +qerx =0 或 e r x(r 2+pr+q )=0 因为e rx ≠0,故得 ? r 2 +pr +q=0 由此可见,若r 是二次方程 ?? r 2+pr +q=0 (7.2) 的根,那么e r x就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1)的特征方程。 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2有三种可能的情况,下面我们分别进行讨论。 (1)若特证方程(7.2)有两个不相等的实根r 1, r 2,此时e r 1x ,e r2x 是方程(7.1)的两个特解。

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

常微分方程考研讲义 一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练 近似解的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的 证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延 拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客 观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一 阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法 求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初 值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值 问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定 性理论,稳定性理论以及其他理论的基础。 例如方程 过点(0,0)的解就是不唯一,易知0 y=是方程过(0,0)的解,此外,容易验证,2 =或更一般地,函数 y x 都是方程过点(0,0)而且定义在区间01 <<的任一数。 c ≤≤上的解,其中c是满足01 x

一阶常微分方程的奇解

摘要 (2) 1.何谓奇解 (2) 2.奇解的产生 (3) 3.包络跟奇解的关系 (4) 4.理论上证明C-判别曲线与P-判别曲线方法 (5) 4.1 克莱罗微分方程 (9) 5.奇解的基本性质 (12) 5.1 定理1 (12) 5.2 定理2 (14) 5.3 定理3 (14) 6.小结 (14) 参考文献: (15)

一阶常微分方程的奇解 摘要 在常微分方程中,我们知道方程的解可以有多种,现在我们来讨论求奇解的方法。我们看到某些微分方程,会存在一些特殊的积分曲线,他并不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。从而我们引出了积分曲线族的包络,而为了求微分方程的奇解,,我们应先求出他的通解,然后求通解的包络。 关键词:奇解,包络,C-判别式,P-判别式 1.何谓奇解 设一阶隐式方程),,(,y y x F =0有一特解

)(:x y ψ=Γ,j x ∈ 如果对每一点Γ∈P ,在P 点的任何一个领域,方程),,(,y y x F =0都有一个不同于Γ的解在P 点与Γ相切,则称Γ是微分方程的),,(,y y x F =0的奇解 定义:如果一个一阶微分方程的一个特解的积分曲线上的每一点都至少和这个微分方程的不同的积分曲线相切,并且这相切的积分曲线在切点的任何邻域都不重合,则称这个特解为这个微分方程的奇解 2.奇解的产生 先看一个例子,求方程 033=-?? ? ??y dx dy (1) 或与它等价的方程 3y dx dy = 的解。 经分离变量后,可得(1)的通解 3)(27 1c x y += 容易看出,y=0也是原方程的一个解。现在来研究这个解y=0有什么特殊的地方。由图我们看到,在解y=0上的每一 点)0,(0x 处相切,这种特殊的积分曲线y=0 称为奇积分曲线,他所对应的解就是奇 解,这就是奇解的产生。 我们现在给出曲线族包络的定义 某些微分方程,存在一些特殊的积分 曲线,会存在一些特殊的积分曲线,他并 不属于这方程的积分曲线族,但是,在这些特殊的积分曲线上的每一点处,都有积分曲线族中的一条曲线和他在此处相切。在几何学里,这些特殊的积分曲线称为上述积分曲线族的包络,在微分方程里,这些特殊的积分曲线所对应的解酒称为方程的奇解。

常微分方程数值解法的误差分析教材

淮北师范大学 2013届学士学位论文 常微分方程数值解法的误差分析 学院、专业数学科学学院数学与应用数学 研究方向计算数学 学生姓名李娜 学号 20091101070 指导教师姓名陈昊 指导教师职称讲师 年月日

常微分方程数值解法的误差分析 李娜 (淮北师范大学数学科学学院,淮北,235000) 摘要 自然界与工程技术中的很多现象,往往归结为常微分方程定解问题。许多偏微分方程问题也可以化为常微分方程问题来近似求解。因此,研究常微分方程的数值解法是有实际应用意义的。数值解法是一种离散化的数学方法,可以求出函数的精确解在自变量一系列离散点处的近似值。随着计算机计算能力的增强以及数值计算方法的发展,常微分方程的数值求解方法越来越多,比较成熟的有Euler 法、后退Euler法、梯形方法、Runge—Kutta方法、投影法和多步法,等等.本文将对这些解的误差进行分析,以求能够得到求解常微分数值解的精度更好的方法。 关键词:常微分方程, 数值解法, 单步法, 线性多步法, 局部截断误差

Error Analysis of Numerical Method for Solving the Ordinary Differential Equation Li Na (School of Mathematical Science, Huaibei Normal University, Huaibei, 235000) Abstract In nature and engineering have many phenomena , definite solution of the problem often boils down to ordinary differential equations. So study the numerical solution of ordinary differential equations is practical significance. The numerical method is a discrete mathematical methods, and exact solution of the function can be obtained in the approximation of a series of discrete points of the argument.With the enhanced computing power and the development of numerical methods,ordinary differential equations have more and more numerical solution,there are some mature methods. Such as Euler method, backward Euler method, trapezoidal method, Runge-Kutta method, projection method and multi-step method and so on.Therefore, numerical solution of differential equation is of great practical significance. Through this paper, error of these solutions will be analyzed in order to get a the accuracy better way to solve the numerical solution of ordinary differential. Keywords:Ordinary differential equations, numerical solution methods, s ingle ste p methods, l inear multi-step methods, local truncation error

一阶常微分方程的解法

一阶常微分方程的解法 摘要:常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中,在整个数学中占有重要的地位。本文对一阶常微分方程的解法作了简要的总结,并举例加以分析了变量可分离方程,线性微分方程,积分因子,恰当微分方程,主要归纳了一阶微分方程的初等解法,并以典型例题加以说明。 关键词:变量分离;积分因子;非齐次微分方程;常数变易法 Solution of first-order differential equation Abstract: Differential equations, important parts of calculus, are widely used in the research of practical problems, which also play important role in mathematics. The solution of a differential equation is summarized briefly, and illustrates the analysis of variable separable equation, linear differential equation, integral factor, exact differential equation, mainly summarizes the elementary solution of first order differential equations, and the typical examples to illustrate. Keywords: variable separation; integral factor; non-homogeneous differential equation; constant variation method 1. 引言 一阶常微分方程初等解法,就是把常微分方程的求解问题转化为积分问题, 能用这种方法求解的微分方程称为可积方程. 本文通过对一阶微分方程的初等解法的归纳与总结,以及对变量分离,积分因子,微分方程等各类初等解法的简要分析,同时结合例题把常微分方程的求解问题化为积分问题,进行求解. 2. 一般变量分离 2.1 变量可分离方程 形如 ()()dy f x g y dx = (1.1) 或 1122()()()()M x N y dx M x N y dy = (1.2) 的方程,称为变量可分离方程。分别称(1.1)、(1.2)为显式变量可分离方程和 微分形式变量可分离方程[1] . (1) 显式变量可分离方程的解法 在方程(1.1)中, 若()0g y ≠,(1.1)变形为 ()() dy f x dx g y =

相关主题
文本预览
相关文档 最新文档