当前位置:文档之家› 高考数学大二轮复习专题五解析几何第二讲圆锥曲线的方程与性质限时规范训练理

高考数学大二轮复习专题五解析几何第二讲圆锥曲线的方程与性质限时规范训练理

高考数学大二轮复习专题五解析几何第二讲圆锥曲线的方程与性质限时规范训练理
高考数学大二轮复习专题五解析几何第二讲圆锥曲线的方程与性质限时规范训练理

高考数学大二轮复习专题五解析几何第二讲圆锥曲线的方程与性

质限时规范训练理

1.(2019·咸阳二模)中心在坐标原点,对称轴为坐标轴的双曲线的两条渐近线互相垂直,则双曲线的离心率为( )

A. 3 B .2 C.23

3

D. 2

解析:中心在坐标原点,对称轴为坐标轴的双曲线的两条渐近线互相垂直, ∴a =b ,

∴c =a 2

+b 2

=2a , ∴e =c a

=2, 故选D. 答案:D

2.(2019·广元模拟)已知直线l 过点? ??

??32,2且与x 轴垂直,则以直线l 为准线、顶点在原点的抛物线的方程是( )

A .y 2

=6x B .y 2

=-6x C .x 2=6y

D .x 2

=-6y

解析:依题意,设抛物线的方程为:y 2

=-2px (p >0), ∵准线方程为x =3

2

∴p 2=32

, ∴p =3,

∴抛物线的方程是y 2

=-6x . 故选B. 答案:B

3.(2019·成都模拟)已知双曲线C :x 2

-y 2

b

2=1(b >0)的焦距为4,则双曲线C 的渐近线方

程为( )

A .y =±15x

B .y =±2x

C .y =±3x

D .y =±3x

解析:双曲线C :x 2

-y 2

b

2=1(b >0)的焦距为4,则2c =4,即c =2,

∵1+b 2

=c 2

=4, ∴b =3,

∴双曲线C 的渐近线方程为y =±3x , 故选D. 答案:D

4.(2019·邯郸一模)位于德国东部萨克森州的莱科勃克桥(如图所示)有“仙境之桥”之称,它的桥形可近似地看成抛物线,该桥的高度为5 m ,跨径为12 m ,则桥形对应的抛物线的焦点到准线的距离为( )

A.2512

m B.256 m C.95

m D.185

m 解析:设抛物线的解析式为:x 2

=-2py ,p >0, ∵抛物线过(6,-5),则36=10p ,可得p =18

5,

抛物线的焦点到准线的距离为18

5.

故选D. 答案:D

5.(2019·浉河区校级月考)椭圆x 2a 2+y 2

b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为

A ,若△AF 1F 2的面积为3,且∠F 1AF 2=4∠AF 1F 2,则椭圆方程为( )

A.x 23+y 2

=1 B.x 23+y 22=1 C.x 2

4

+y 2

=1 D.x 24+y 2

3

=1 解析:椭圆x 2a 2+y 2

b

2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,

若△AF 1F 2的面积为3,可得bc =3,且∠F 1AF 2=4∠AF 1F 2,∴∠AF 1F 2=30°, ∴b c =

3

3

,解得b =1,c =3,所以a =2, 则椭圆方程为:x 2

4+y 2

=1.

故选C. 答案:C

6.(2019·潍坊一模)已知双曲线C :y 2a 2-x 2

b

2=1(a >0,b >0)的一条渐近线方程为y =2x ,

则C 的离心率为( )

A. 5

B.55

C.

52

D.255

解析:∵双曲线的渐近线方程为y =±a b ,一条渐近线的方程为y =2x ,∴a b

=2,设b =t ,

a =2t

则c =t 2

+4t 2

=5t ∴离心率e =c a =52

. 故选C. 答案:C

7.(2019·安庆二模)直线l 是抛物线x 2

=2y 在点(-2,2)处的切线,点P 是圆x 2

-4x +

y 2=0上的动点,则点P 到直线l 的距离的最小值等于( )

A .0 B.655

C.

65

5

-2 D.65

解析:y ′=x |x =-2=-2,∴l :y =-2x -2,所以圆心(2,0)到l 的距离是6

5

=655.

所以最小值是65

5-2.

故选C. 答案:C

8.(2019·烟台一模)已知圆锥曲线C 1:mx 2+ny 2=1(n >m >0)与C 2:px 2-qy 2

=1(p >0)的公共焦点为F 1,F 2.点M 为C 1,C 2的一个公共点,且满足∠F 1MF 2=90°,若圆锥曲线C 1的离心率

为3

4

,则C 2的离心率为( ) A.92 B.32

2

C.32

D.54

解析:C 1:x 21m

+y 21n

=1,C 2:x 21p

-y 21

q

=1.

设a 1=

1

m

,a 2=

1

p

,MF 1=s ,MF 2=t ,

由椭圆的定义可得s +t =2a 1, 由双曲线的定义可得s -t =2a 2, 解得s =a 1+a 2,t =a 1-a 2,

由∠F 1MF 2=90°,运用勾股定理,可得s 2

+t 2

=4c 2

, 即为a 2

1+a 2

2=2c 2

由离心率的公式可得,1e 21+1

e 22

=2,

∵e 1=34,∴e 2

2=92,则e 2=322.

故选B. 答案:B

9.已知M 是抛物线C :y 2

=2px 上的任意一点,以M 为圆心的圆与直线x =-1相切且经过点N (1,0),设斜率为1的直线与抛物线C 交于P ,Q 两点,则线段PQ 的中点的纵坐标为( )

A .2

B .4

C .6

D .8

解析:设M (x 0,y 0),

∵以M 为圆心的圆与直线x =-1相切且经过点N (1,0),∴x 0+1=(x 0-1)2

+y 2

0, 又y 2

0=2px 0.∴p =2. 即可得抛物线方程为y 2

=4x .

由?

????

y =x +b y 2

=4x ?y 2

-4y +4b =0.

y 1+y 2=4,

∴线段PQ 的中点的纵坐标为y 1+y 2

2

=2.

故选A.

答案:A

10.已知抛物线C 1:x 2

=2py (p >0)的焦点为F 1,抛物线C 2:y 2

=(4p +2)x 的焦点为F 2,点

P ?

??

??

x 0,12

在C 1上,且|PF 1|=34

,则直线F 1F 2的斜率为( )

A .-12

B .-14

C .-13

D .-15

解析:因为抛物线C 1:x 2

=2py (p >0)的焦点为F 1? ?

???

0,p 2,准线方程为y =-p

2,

|PF 1|=34,由抛物线的定义可得12+p 2=34,解得p =1

2

可得C 1:x 2=y ,C 2:y 2

=4x ,F 1? ??

??0,14,F 2(1,0),

所以直线F 1F 2的斜率为140-1=-1

4.

故选B. 答案:B

11.如图所示,A 1,A 2是椭圆C :x 29+y 2

4=1的短轴端点,点M 在

椭圆上运动,且点M 不与A 1,A 2重合,点N 满足NA 1⊥MA 1,NA 2⊥MA 2,则

S △MA 1A 2

S △NA 1A 2

=( )

A.32

B.23

C.94

D.49

解析:由题意以及选项的值可知:

S △MA 1A 2

S △NA 1A 2

是常数,

取M 为椭圆的左顶点,由椭圆的性质可知N 在x 的正半轴上,如图:

则A 1(0,2),A 2是(0,-2),M (-3,0), 由OM ·ON =OA 2

1, 可得ON =4

3

则S △MA 1A 2S △NA 1A 2=1

2|OM |·|A 1A 2|

12|ON |·|A 1A 2|=|OM ||ON |=343=94

. 故选C. 答案:C

12.(2019·西湖区校级月考)已知双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的左焦点为F 1(-c,0)(c >0),

过点F 1作直线与圆x 2

+y 2

=a 2

4

相切于点A ,与双曲线的右支交于点B ,若OB →=2OA →-OF 1→

,则双曲

线的离心率为( )

A .2 B.102 C.72

D.

52

解析:设双曲线x 2a 2-y 2

b

2=1(a >0,b >0)的右焦点为F 2(c,0)

∵OB →=2OA →-OF 1→,∴2OA →=OB →+OF 1→, ∴A 是BF 1的中点,

∵过点F 1作直线与圆x 2

+y 2

=a 2

4相切于点A ,

∴OA ⊥BF 1,∵O 是F 1F 2的中点, ∴OA ∥BF 2,∴BF 1⊥BF 2,|BF 2|=a , ∴|BF 1|2

=|F 1F 2|2

-|BF 2|2

=4c 2

-a 2

, ∵|BF 1|=2a +|BF 2|=3a , ∴9a 2

=4c 2

-a 2

,∴10a 2

=4c 2

, ∴e =

102

, 故选B. 答案:B

13.(2019·高考全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 2

20=1的两个焦点,M 为C 上一点且

在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.

解析:设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心, 焦距为半径的圆上,即在圆(x +4)2

+y 2

=64上. 因为点M 在椭圆x 236+y 2

20

=1上,

所以联立方程可得?????

(x +4)2+y 2

=64,x 2

36+y 2

20

=1,

解得??

?

x =3,

y =±15.

又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案:(3,15)

14.(2019·抚顺一模)已知点F 是抛物线C :y 2

=4x 的焦点,点M 为抛物线C 上任意一点,过点M 向圆(x -1)2+y 2

=12

作切线,切点分别为A ,B ,则四边形AFBM 面积的最小值为________.

解析:如图所示:

圆的圆心与抛物线的焦点重合, 若四边形AFBM 的面积最小, 则MF 最小,即M 距离准线最近, 故满足条件时,M 与原点重合, 此时MF =1,BF =BM =

22

, 此时四边形AFBM 面积S =2S △BMF =2×12×22×22=12,故答案为:1

2.

答案:1

2

15.(2019·高考全国卷Ⅰ)已知双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0)的左,右焦点分别为F 1,

F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →

=AB →

,F 1B →

·F 2B →

=0,则C 的离心

率为________.

解析:法一:由F 1A →=AB →

,得A 为F 1B 的中点.

又∵O 为F 1F 2的中点,∴OA ∥BF 2. 又F 1B →·F 2B →

=0,∴∠F 1BF 2=90°. ∴OF 2=OB ,∴∠OBF 2=∠OF 2B . 又∵∠F 1OA =∠BOF 2, ∠F 1OA =∠OF 2B ,

∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形. 如图所示,不妨设B 为? ????c

2,-32c .

∵点B 在直线y =-b a x 上,∴b a

=3, ∴离心率e =c a

=2.

法二:∵F 1B →·F 2B →

=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2

的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=b a

,且|BH |2+|OH |2=|OB |2=c 2

,∴|BH |=b ,|OH |=a ,

∴B (a ,-b ),F 2(c,0). 又∵F 1A →=AB →, ∴A 为F 1B 的中点. ∴OA ∥F 2B ,∴b a =

b

c -a

∴c =2a ,∴离心率e =c a

=2. 答案:2

16.已知双曲线C :x 2a 2-y 2

b

2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是

双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→

的最小值的取值范围是________.

解析:设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2? ??

??1+n 2b 2.

又F 1(-1,0),F 2(1,0),

则PF 1→=(-1-m ,-n ),PF 2→

=(1-m ,-n ),

PF 1→

·PF 2→

=n 2

+m 2

-1=n 2

+a 2

? ??

??1+n 2

b 2-1 =n 2

? ??

??1+a 2

b 2+a 2-1≥a 2

-1,当且仅当n =0时取等号,

所以PF 1→·PF 2→的最小值为a 2

-1. 由2≤1a ≤4,得14≤a ≤12,

故-1516≤a 2

-1≤-34

即PF 1→·PF 2→的最小值的取值范围是??????-15

16,-34.

答案:??????-15

16,-34

(完整word版)高中数学解析几何大题精选

解析几何大量精选 1.在直角坐标系xOy 中,点M 到点()1,0F ,) 2 ,0F 的距离之和是4,点M 的轨迹 是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于不同的两点P 和Q . ⑴求轨迹C 的方程; ⑴当0AP AQ ?=u u u r u u u r 时,求k 与b 的关系,并证明直线l 过定点. 【解析】 ⑴ 2 214 x y +=. ⑴将y kx b =+代入曲线C 的方程, 整理得2 2 2 (14)8440k x kbx b +++-=, 因为直线l 与曲线C 交于不同的两点P 和Q , 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 设()11,P x y ,()22,Q x y ,则122 814kb x x k +=-+,21224414b x x k -= + ② 且2222 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 所以()112,AP x y =+u u u r ,()222,AQ x y =+u u u r . 由0AP AQ ?=u u u r u u u r ,得1212(2)(2)0x x y y +++=. 将②、③代入上式,整理得22121650k kb b -+=. 所以(2)(65)0k b k b -?-=,即2b k =或6 5 b k =.经检验,都符合条件① 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-点. 即直线l 经过点A ,与题意不符. 当65b k =时,直线l 的方程为6655y kx k k x ? ?=+=+ ?? ?. 显然,此时直线l 经过定点6,05?? - ??? 点,满足题意. 综上,k 与b 的关系是65b k =,且直线l 经过定点6,05?? - ??? 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半轴为半径的 圆与直线0x y -=相切. ⑴ 求椭圆C 的方程; ⑴ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; ⑴ 在⑴的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?u u u u r u u u r 的取值范围. 【解析】 ⑴22 143 x y +=. ⑴ 由题意知直线PB 的斜率存在,设直线PB 的方程为(4)y k x =-.

2020高考数学圆锥曲线试题(含答案)

2020高考虽然延期,但是每天练习一定要跟上,加油! 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、 F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2, -1)的距离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. (4 1 ,-1) B. (4 1,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点 的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 1 1 c a <2 2 c a . 其中正确式子的序号是B

A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点 到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.(江西卷7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C .(0, 2 D .,1)2 6.(辽宁卷10)已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A ) A B .3 C D .92 7.(全国二9)设1a >,则双曲线22 22 1(1)x y a a - =+的离心率e 的取值范围是( B ) A . B . C .(25), D .(2 8.(山东卷(10)设椭圆C 1的离心率为 13 5 ,焦点在X 轴上且长轴长为 A B C D -

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

高考数学一轮复习专题突破训练圆锥曲线

圆锥曲线 一、填空题 1、(2015年江苏高考)在平面直角坐标系xoy 中,P 为双曲线221x y -=右支上的一个动点,若P 到直线10x y -+=的距离大于c 恒成立,则c 的最大值 为___ 2 __________。 2、(2013年江苏高考)双曲线19 162 2=-y x 的两条渐近线的方程为 。 3、(2013年江苏高考)在平面直角坐标系xOy 中,椭圆C 的标准方程为 )0,0(122 22>>=+b a b y a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆 C 的离心率为 。 4、( 南京、盐城市高三二模)在平面直角坐标系xoy 中,已知抛物线C : y x 42=的焦点为F ,定点)0, 22(A ,若射线FA 及抛物线C 相交于点M ,及抛物线C 的准线相交于点N ,则FM :MN= 5、(苏锡常镇四市 高三教学情况调研(二))已知双曲线22 221(,0) x y a b a b -=>的离心率等于2,它的焦点到渐近线的距离等于1,则该双曲线的方程为 ▲ 6、(泰州市 高三第二次模拟考试)已知双曲线22 14x y m -=的渐近线方程为 2 y x =± ,则m = ▲

7、(盐城市 高三第三次模拟考试)若抛物线28y x =的焦点F 及双曲线 22 13x y n -=的一个焦点重合,则n 的值为 ▲ 8、( 江苏南京高三9月调研)已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的渐近 线方程 为y =±3x ,则该双曲线的离心率为 ▲ 9、( 江苏苏州高三9月调研)已知双曲线22 15 x y m -=的右焦点及抛物线 212y x =的焦点相同,则此双曲线的渐近线方程为 ▲ 10、(南京市、盐城市 高三)若双曲线222(0)x y a a -=>的右焦点及抛物线 24y x =的焦点重合,则a = ▲ . 11、(南通市 高三)在平面直角坐标系xOy 中,以直线2y x =±为渐近线,且经过抛物 线24y x =焦点的双曲线的方程是 12、(苏州市 高三上期末)以抛物线24y x =的焦点为顶点,顶点为中心,离心率为2的双曲线标准方程为 13、(泰州市 高三上期末)双曲线12222=-b y a x 的右焦点到渐近线的距离是其 到左顶点距离的一半,则双曲线的离心率e = ▲ 14、(苏锡常镇四市2014届高三5月调研(二))在平面直角坐标系xOy 中,已知双曲线22 19x y m -=的一个焦点为(5,0),则实数 m = ▲ 15、(南京、盐城市2014届高三第二次模拟(淮安三模))在平面直角坐 标系xOy 中,双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两条渐近线及抛物线y 2=4x Y

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

高考数学圆锥曲线专题复习

圆锥曲线 一、知识结构 1.方程的曲线 在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上?f(x0,y 0)=0; 点P0(x0,y0)不在曲线C上?f(x0,y0)≠0 两条曲线的交点若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则 f1(x0,y0)=0 点P0(x0,y0)是C1,C2的交点? f2(x0,y0) =0 方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点.

2.圆 圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: (1)标准方程 圆心在c(a,b),半径为r 的圆方程是 (x-a)2 +(y-b)2 =r 2 圆心在坐标原点,半径为r 的圆方程是 x 2 +y 2 =r 2 (2)一般方程 当D 2 +E 2 -4F >0时,一元二次方程 x 2 +y 2 +Dx+Ey+F=0 叫做圆的一般方程,圆心为(-2D ,-2 E ),半径是 2 4F -E D 22+.配方,将方程 x 2 +y 2 +Dx+Ey+F=0化为 (x+2D )2+(y+2 E )2=44 F -E D 22+ 当D 2 +E 2 -4F=0时,方程表示一个点 (-2D ,-2 E ); 当D 2 +E 2-4F <0时,方程不表示任何图形. 点与圆的位置关系 已知圆心C(a,b),半径为r,点M 的坐标为(x 0,y 0),则 |MC |<r ?点M 在圆C 内,|MC |=r ?点M 在圆C 上,|MC |>r ?点M 在圆C 内, 其中|MC |=2 02 0b)-(y a)-(x +. (3)直线和圆的位置关系 ①直线和圆有相交、相切、相离三种位置关系 直线与圆相交?有两个公共点 直线与圆相切?有一个公共点 直线与圆相离?没有公共点 ②直线和圆的位置关系的判定 (i)判别式法 (ii)利用圆心C(a,b)到直线Ax+By+C=0的距离d= 2 2 C Bb Aa B A +++与半径r 的大小关系来判 定.

高中数学复习:圆锥曲线的方程与性质

高中数学复习:圆锥曲线的方程与性质 1.已知A 为抛物线C :y 2 =2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A.2 B.3 C.6 D.9 解析 设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p 2=12. 又因为点A 到y 轴的距离为9,即x =9, 所以9+p 2=12,解得p =6.故选C. 答案 C 2.设O 为坐标原点,直线x =2与抛物线C :y 2 =2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A.? ????14,0 B.? ?? ??12,0 C.(1,0) D.(2,0) 解析 将x =2与抛物线方程y 2 =2px 联立, 可得y =±2p , 不妨设D (2,2p ),E (2,-2p ), 由OD ⊥OE ,可得OD →·OE → =4-4p =0,解得p =1, 所以抛物线C 的方程为y 2 =2x .其焦点坐标为? ?? ??12,0.故选B. 答案 B 3.设F 1,F 2是双曲线C :x 2 -y 2 3 =1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△ PF 1F 2的面积为( ) A.72 B.3 C.52 D.2 解析 法一 由题知a =1,b =3,c =2,F 1(-2,0),F 2(2,0), 如图,因为|OF 1|=|OF 2|=|OP |=2,所以点P 在以F 1F 2为直径的圆上,故PF 1⊥PF 2,则|PF 1|2 +|PF 2|2 =(2c )2 =16.

由双曲线的定义知||PF 1|-|PF 2||=2a =2,所以|PF 1|2 +|PF 2|2 -2|PF 1||PF 2|=4,所以|PF 1||PF 2|=6, 所以△PF 1F 2的面积为1 2 |PF 1||PF 2|=3.故选B. 法二 由双曲线的方程可知,双曲线的焦点F 1,F 2在x 轴上,且|F 1F 2|=21+3=4.设点P 的坐标为(x 0,y 0),则?????x 20-y 2 03=1,x 20+y 20 =2,解得|y 0|=32. 所以△PF 1F 2的面积为12|F 1F 2|·|y 0|=12×4×3 2=3.故选B. 答案 B 4.已知椭圆C 1:x 2a 2+y 2 b 2=1(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点 重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=4 3|AB |. (1)求C 1的离心率; (2)设M 是C 1与C 2的公共点.若|MF |=5,求C 1与C 2的标准方程. 解 (1)由已知可设C 2的方程为y 2 =4cx ,其中c =a 2 -b 2 . 不妨设A ,C 在第一象限,由题设得A ,B 的纵坐标分别为b 2a ,-b 2 a ;C ,D 的纵坐标分别为2c , -2c ,故|AB |=2b 2 a ,|CD |=4c . 由|CD |=43|AB |得4c =8b 2 3a ,即3×c a =2-2? ?? ??c a 2 . 解得c a =-2(舍去)或c a =1 2 . 所以C 1的离心率为12 . (2)由(1)知a =2c ,b =3c ,故C 1:x 24c 2+y 2 3c 2=1. 设M (x 0,y 0),则x 204c 2+y 203c 2=1,y 2 0=4cx 0, 故x 20 4c 2+4x 03c =1.①

高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线 1. 如图,直线l1与l2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l1 上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是N ,且|BN|=2|DM|. 2. (Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程. (Ⅱ)过点D 且不与l1、l2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足: ○1(R);AG AD λλ=∈u u u r u u u r ○22;GE GF GH +=u u u r u u u r u u u r ○30.GH EF ?=u u u r u u u r 求点G 的横坐标的取值范围. 2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率 23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程. 3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是, 425=x 其左、右顶点分别 是A 、B ;双曲线1 :22 222=-b y a x C 的一条渐近线方程为3x -5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P ,连结AP 交椭圆C1于点M ,连结PB 并延长交椭圆C1于点N ,若=. 求证:.0=? B A D M B N l2 l1

4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tg α; (2)若2

历年高考数学圆锥曲线试题汇总

高考数学试题分类详解——圆锥曲线 一、选择题 1.设双曲线22 221x y a b -=(a >0,b >0)的渐近线与抛物线y=x 2 +1相切,则该双曲线的离心率等于( C ) (A (B )2 (C (D 2.已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3F A F B =,则||AF = (A). (B). 2 (D). 3 3.过双曲线22 221(0,0)x y a b a b -=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线 的交点分别为,B C .若1 2 AB BC =,则双曲线的离心率是 ( ) A B C D 4.已知椭圆22 221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF x ⊥轴, 直 线AB 交y 轴于点P .若2AP PB =,则椭圆的离心率是( ) A B .2 C .13 D .12 5.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2 y x =于,A B 两点,且 |||PA AB =,则称点P 为“ 点”,那么下列结论中正确的是 ( ) A .直线l 上的所有点都是“点” B .直线l 上仅有有限个点是“点” C .直线l 上的所有点都不是“ 点” D .直线l 上有无穷多个点(点不是所有的点)是“ 点” 6.设双曲线12222=-b y a x 的一条渐近线与抛物线y=x 2 +1 只有一个公共点,则双曲线的离心率为 ( ). A. 4 5 B. 5 C. 25 D.5 7.设斜率为2的直线l 过抛物线2 (0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)

椭圆的标准方程与性质

椭圆的标准方程与性质 教学目标: 1了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用; 2 掌握椭圆的定义、几何图形、标准方程及简单几何性质. 高考相关点: 在高考中所占分数:13分 考查出题方式:解答题的形式,而且考查方式很固定,涉及到的知识点有:求曲线方程,弦长,面积,对称关系,范围问题,存在性问题。 涉及到的基础知识 1.引入椭圆的定义 在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|=2c)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: 有以下3种情况 (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若a

标准方程x2 a2 +\f(y2,b2)=1 (a>b>0) \f(y2,a2)+错误!=1 (a>b>0) 图形 性质范围 -a≤x≤a -b≤y≤b -b≤x≤b -a≤y≤a 对称性对称轴:坐标轴;对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b 焦距|F1F2|=2c 离心率e=错误!∈(0,1) a,b,c的关系c2=a2-b2题型总结

类型一椭圆的定义及其应用 例1:如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是( ) A.椭圆? B.双曲线 C.抛物线 D.圆 【解析】根据CD是线段MF的垂直平分线.可推断出,进而可以知道 结果为定值,进而根据椭圆的定义推断出点P的轨迹【答案】根据题意知,CD是线段MF的垂直平分线.,(定值),又显然,根 据椭圆的定义可推断出点P轨迹是以F、O两点为焦点的椭圆.所以A选项是正确的 练习1:已知F1,F2是椭圆C: 22 22 1 x y a b +=(a>b>0)的两个焦点,P为椭圆C 上的一点,且 错误! 1⊥2 PF,若△PF1F2的面积为9,则b=________. 【解析】由题意的面积∴故答案为: 【答案】3 练习2:已知F1,F2是椭圆错误!+错误!=1的两焦点,过点F2的直线交椭圆于A,B两点,在△AF1B中,若有两边之和是10,则第三边的长度为() A.6?B.5 C.4 D.3

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

全国卷高考数学圆锥曲线大题集大全

高考二轮复习专项:圆锥曲线大题集 1. 如图,直线11与12是同一平面两条互相垂直的直线, 交点是A ,点B 、D 在直线11上(B 、 D 位于点A 右侧),且|AB|=4 , |AD|=1 , M 是该平面上的一个动点, M 在l i 上的射影点 是 N ,且 |BN|=2|DM|. (I )建立适当的坐标系,求动点 M 的轨迹C 的方程. (II )过点D 且不与11、12垂直的直线1交(I )中的轨迹C 于E 、F 两点;另外平面上的点 G 、 求点G 的横坐标的取值围. M ___ B ___________________ A D N B 11 、3 e 2. 设椭圆的中心是坐标原点,焦点在 x 轴上,离心率 2,已知 点P(0,3) 到这个椭圆 上的点的最远距离是 4,求这个椭圆的方程. H 满足: AD( R); G E G F 2G H ; G H E F 0. 12

2 2 C x y 1( b 0) 3. 已知椭圆/ b2的一条准线方程是25 , 4其左、右顶点分别

(I) 求椭圆C i的方程及双曲线C2的离心率; (H)在第一象限取双曲线C2上一点P,连结AP交椭圆C i于点M,连结PB并延长交椭 圆C i于点N,若AM MP.求证:MN ?AB 0. 4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45。的直线交 椭圆于A, B两点.设AB中点为M,直线AB与OM的夹角为 a. (1) 用半焦距c表示椭圆的方程及tan ; (2) 若2b>0)的离心率 3 ,过点A (0, -b)和B (a, 0)的直线 ,3 与原点的距离为 2 (1)求椭圆的方程 (2)已知定点E (-1, 0),若直线y= kx + 2 (k乒0与椭圆交于C D两点问:是否存在k的值,使以CD 为直径的圆过E点?请说明理由 2 2 C x y 是A、B;双曲线, a2b2 1 的一条渐近线方程为3x- 5y=0. 2 x 2 5.已知椭圆a

历年高考数学圆锥曲线第二轮专题复习

高考数学试题圆锥曲线 一. 选择题: 1.又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点, 且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到 抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 41 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④ 11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.若双曲线22221x y a b -=(a >0,b >0)上横坐标为32 a 的点到右焦点的距离大于它 到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞) 5.已知1F 、2F 是椭圆的两个焦点,满足120MF MF ?=的点M 总在椭圆内部,则椭圆离心率的取值范围是C A .(0,1) B .1 (0,]2 C . D . 6.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( A )

最新高中数学解析几何大题精选

解析几何大量精选 1 2 1.在直角坐标系xOy 中,点M 到点()1,0F ,)2,0F 的距离之和是4,点M 3 的轨迹是C 与x 轴的负半轴交于点A ,不过点A 的直线:l y kx b =+与轨迹C 交于4 不同的两点P 和Q . 5 ⑴求轨迹C 的方程; 6 ⑵当0AP AQ ?=时,求k 与b 的关系,并证明直线l 过定点. 7 【解析】 ⑴ 2214 x y +=. 8 ⑵将y kx b =+代入曲线C 的方程, 9 整理得222(14)8440k x kbx b +++-=, 10 因为直线l 与曲线C 交于不同的两点P 和Q , 11 所以222222644(14)(44)16(41)0k b k b k b ?=-+-=-+> ① 12 设()11,P x y ,()22,Q x y ,则122814kb x x k +=-+,21224414b x x k -=+ ② 13 且22 2 2 121212122 4()()()14b k y y kx b kx b k x x kb x x b k -?=++=+++=+, 14 显然,曲线C 与x 轴的负半轴交于点()2,0A -, 15 所以()112,AP x y =+,()222,AQ x y =+. 16 由0AP AQ ?=,得1212(2)(2)0x x y y +++=. 17

将②、③代入上式,整理得22121650k kb b -+=. 18 所以(2)(65)0k b k b -?-=,即2b k =或65 b k =.经检验,都符合条件① 19 当2b k =时,直线l 的方程为2y kx k =+.显然,此时直线l 经过定点()2,0-20 点. 21 即直线l 经过点A ,与题意不符. 22 当6 5b k =时,直线l 的方程为665 5y kx k k x ??=+=+ ?? ? . 23 显然,此时直线l 经过定点6 ,05 ??- ?? ? 点,满足题意. 24 综上,k 与b 的关系是65 b k =,且直线l 经过定点6 ,05?? - ??? 25 26 2. 已知椭圆2222:1x y C a b +=(0)a b >>的离心率为1 2 ,以原点为圆心,椭圆的短半 27 轴为半径的圆与直线0x y -+相切. 28 ⑴ 求椭圆C 的方程; 29 ⑵ 设(4,0)P ,A ,B 是椭圆C 上关于x 轴对称的任意两个不同的点,连结PB 30 交椭圆C 于另一点E ,证明直线AE 与x 轴相交于定点Q ; 31 ⑶ 在⑵的条件下,过点Q 的直线与椭圆C 交于M ,N 两点,求OM ON ?的取32 值范围. 33 【解析】 ⑴22 143 x y +=. 34

数学高考圆锥曲线压轴题

数学高考圆锥曲线压轴 题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

数学高考圆锥曲线压轴题经典预测一、圆锥曲线中的定值问题 ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的离心率e= 3 2,a+b=3. (Ⅰ)求椭圆C的方程; (Ⅱ)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m-k为定值. ★★如图,椭圆C:x2 a2+ y2 b2=1(a>b>0)经过点P(1, 3 2),离心率e= 1 2,直 线l的方程为x=4. (Ⅰ)求椭圆C的方程; (Ⅱ)AB是经过右焦点F的任一弦(不经过点P),设直线AB与直线l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3.问:是否存在常数λ,使得k1+k2=λk3若存在,求λ的值;若不存在,说明理由. ★★椭圆C:x2 a2+ y2 b2=1(a>b>0)的左右焦点分别是F1,F2,离心率为 3 2,过 F1且垂直于x轴的直线被椭圆C截得的线段长为1. (Ⅰ)求椭圆C的方程; (Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围; (Ⅲ)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只 有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明 1 kk1+ 1 kk2 为定值,并求出这个定值. - 2 -

二、圆锥曲线中的最值问题 +y2 b2=1( a>b>0)的离心率为 (Ⅰ)求椭圆C的方程; (Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且A D⊥AB,直线BD与x轴、y轴分别交于M,N两点.(i)设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值; (ii)求△OMN面积的最大值. - 3 -

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

解析几何-- 圆锥曲线的概念及性质

4.2解析几何--圆锥曲线的概念及性质 一、选择题 1.(2010·安徽双曲线方程为x2-2y2=1,则它的右焦点坐标为 ( A. B. C. D.(,0 解析:∵原方程可化为-=1,a2=1, b2=,c2=a2+b2=, ∴右焦点为. 答案:C 2.(2010·天津已知双曲线-=1(a>0,b>0的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为 ( A.-=1 B.-=1 C.-=1 D.-=1 解析:∵渐近线方程是y=x,∴=.① ∵双曲线的一个焦点在y2=24x的准线上, ∴c=6.② 又c2=a2+b2,③ 由①②③知,a2=9,b2=27, 此双曲线方程为-=1. 答案:B

4.(2010·辽宁设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为-,那么|PF|= ( A.4 B.8 C.8 D.16 解析:解法一:AF直线方程为: y=-(x-2, 当x=-2时,y=4,4A(-2,4. 当y=4时代入y2=8x中,x=6, 4P(6,4, 4|PF|=|PA|=6-(-2=8.故选B. 解法二:5PA∞l,4PA%x轴.

又5 AFO=60°,4 FAP=60°, 又由抛物线定义知PA=PF, 4≥PAF为等边三角形. 又在Rt≥AFF′中,FF′=4, 4FA=8,4PA=8.故选B. 答案:B 5.高8 m和4 m的两根旗杆笔直竖在水平地面上,且相距10 m,则地面上观察两旗杆顶端仰角相等的点的轨迹为 ( A.圆 B.椭圆 C.双曲线 D.抛物线 解析:如图1,假设AB、CD分别为高4 m、8 m的旗杆,P点为地面上观察两旗杆顶端仰角相等的点,由于∠BPA=∠DPC,则Rt△ABP∽Rt△CDP,=,从而 PC=2PA.在平面APC上,以AC为x轴,AC的中垂线为y轴建立平面直角坐标系(图2,则A(-5,0,C(5,0,设P(x,y,得=2 化简得x2+y2+x+25=0,显然,P点的轨迹为圆. 答案:A 二、填空题 解析:由题知,垂足的轨迹为以焦距为直径的圆,则c

高考理科数学-圆锥曲线专题训练

高三圆锥曲线选填训练 一、选择题(本大题共10小题,每小题4分,共40分) 1.椭圆12222=+b y a x (a >b>0)离心率为23,则双曲线12222=-b y a x 的离心率为 ( ) A .45 B .25 C .32 D .45 2.椭圆13 122 2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1中点在y 轴上,那么|PF 1|是|PF 2| 的 ( ) A .7倍 B .5倍 C .4倍 D .3倍 3.过双曲线x 2 -22 y =1的右焦点F 作直线l 交双曲线于A , B 两点,若|AB |=4,则这样的直线l 有 ( ) A .1条 B .2条 C .3条 D .4条 4.如果双曲线 136 642 2=-y x 上的一点P 到双曲线的右焦点的距离是8,那么点P 到右准线的距离是 ( ) A .10 B .7 7 32 C .27 D .5 32 5.若抛物线y 2=2p x 上的一点A (6,y )到焦点F 的距离为10,则p 等于 ( ) A .4 B .8 C .16 D .32 6.如图,过抛物线)(022>=p px y 的焦点F 的直线l 交抛物线于点A .B ,交其准线于点C ,若 BF BC 2=,且3=AF ,则此抛物线的方程为 A .x y 23 2= B .x y 32= C .x y 2 9 2= D .x y 92= 7.曲线 19252 2 =+y x 与曲线)925(19252 2 ≠<=-+-k k k y k x 且 有相同的( A .长、短轴 B .焦距 C .离心率 D .准线 8.过椭圆22 2214x y a a += (a>0)的焦点F 作一直线交椭圆于P, Q 两点,若线段PF 与QF 的长分别为 p, q ,则11p q +等于( ) A .4a B .1 2a C .4a D .2a 9.椭圆13 22 =+y x 上的点到直线x -y+6=0的距离的最小值是 . 10.已知双曲线C 的渐近线方程是x y 32±=,且经过点M ()1,2 9 -,则双曲线C 的方程是 . 11.AB 是抛物线y =x 2的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值 为 .

相关主题
文本预览
相关文档 最新文档