当前位置:文档之家› 贝叶斯滤波与卡尔曼滤波的区别

贝叶斯滤波与卡尔曼滤波的区别

贝叶斯滤波与卡尔曼滤波的区别
贝叶斯滤波与卡尔曼滤波的区别

贝叶斯滤波与卡尔曼滤波的区别

课程:现代信号处理专业:信号与信息处理

卡尔曼滤波是贝叶斯滤波的一种特例,是在线性滤波的前提下,以最小均方误差为最佳准则的。采用最小均方误差准则作为最佳滤波准则的原因在于这种准则下的理论分析比较简单,因而可以得到解析结果。贝叶斯估计和最大似然估计都要求对观测值作概率描述,线性最小均方误差估计却放松了要求,不再涉及所用的概率假设,而只保留对前两阶矩的要求。

扩展卡尔曼滤波和无迹卡尔曼滤波都是递推滤波算法,它们的基本思想都是通过采用参数化的解析形式对系统的非线性进行近似,而且都是基于高斯假设。

EKF其基本思想是围绕状态估值对非线性模型进行一阶Taylor展开,然后应用线性系统Kalman滤波公式。主要缺陷有两点:(1)必须满足小扰动假设,即假设非线性方程的理论解与实际解之差为小量。也就是说EKF只适合非线性系统,对于强非线性系统,该假设不成立,此时EKF性能极不稳定,甚至发散;(2)必须计算Jacobian 矩阵及其幂。

UKF是基于UT变换,采用一种确定性抽样方法来计算均值和协方差。相对于EKF的一阶精确,UKF的估计精确度提高到了对高斯数据的三阶精确和对任何非线性的非高斯数据的二阶精确,可出来非加性噪声情况以及离散系统,扩展了应用范围,而且UKF对滤波参数不敏感,鲁棒性强,对复杂的非线性系统,UKF比EKF具有更大的优越性。

如何使卡尔曼滤波后的状态估计误差的相关矩阵的迹最小?

Kalman 滤波器是一个最小均方误差估计器,先

验状态误差估计可表示为我们最小化这个

矢量幅度平方的期望值,这等价于最小

化后验估计协方差矩阵的迹,通过展开合并

公式,可得

当矩阵导数为0时,矩阵的迹取最小值,

从这个式子解出Kalman增益

维纳滤波的应用综述

基于维纳滤波的应用综述 一、维纳滤波概述 维纳(wiener)滤波是用来解决从噪声中提取信号问题的一种过滤(或滤波)的方法。实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。一个线性系统,如果它的单位样本响应为h (n ),当输入一个随机信号x (n ),且 x (n )=s (n )+v (n ) (1.1) 其中s(n)表示信号,v(n)表示噪声,则输出y(n)为 ()=()()m y n h m x n m -∑ (1.2) 我们希望x (n )通过线性系统h (n )后得到的y (n )尽量接近于s (n ),因此称y (n )为s (n )的估计值,用^ s 表示,即 ^ ()()y n s n = (1.3) 实际上,式(1.2)的卷积形式可以理解为从当前和过去的观察值x (n ),x (n -1),x (n -2)…x (n -m ),来估计信号的当前值^()s n 。因此,用h (n )进行过滤的问题可以看成是一个估计问题。由于现在涉及的信号是随机信号,所以这样一种过滤问题实际上是一种统计估计问题。 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多,更多的是基于维纳滤波器发展而来的滤波方式。 二、基于维纳滤波的应用 2.1在飞机盲降着陆系统中的应用 盲降着陆系统(ILS)又译为仪表着陆系统。它的作用是由地面发射的两束无线电信号实现航向道和下滑道指引,建立一条由跑道指向空中的虚拟路径。飞机通过机载接收设备确定自身与该路径的相对位置,使飞机沿正确方向飞向跑道并且平稳下降高度。最终实现安全着陆。在飞机盲降着陆时,飞机以较慢的恒定速度沿着一个无线电波束下降。为了自动对准跑道,通常要为盲目着陆系统提供两个信号。一个是由无线电波束提供的信号,由航向台提供,它与飞机航向滑离跑道方向的大小成正比;另一个信号由飞机通过自身方位的测量来提供。在这两个信号中,前者是飞机位置信号与高频噪声的叠加,作为前面分系统的x 1(n );后者由于飞机下降过程中风向的改变而在信号中引入了低频噪声,作为x 2(n )。为了对飞机的位置信号进行最佳估计,采用互补维纳滤波器去除无用噪声信号,提高信噪比。由此,增强了飞机着陆时的精度,提高了飞机自身的安全。 2.2在图像处理中的应用 在图像处理中,噪声问题是经常会遇到的问题,它使得图像信息受损,降低了信噪比。如何尽可能地滤去噪声,恢复真实的信号,是图像处理中关键的问题。几类简单、常用的滤

卡尔曼滤波和粒子滤波最直白的解释

卡尔曼滤波本来是控制系统课上学的,当时就没学明白,也蒙混过关了,以为以后也不用再见到它了,可惜没这么容易,后来学计算机视觉和图像处理,发现用它的地方更多了,没办法的时候只好耐心学习和理解了。一直很想把学习的过程记录一下,让大家少走弯路,可惜总也没时间和机会,直到今天。。。 我一直有一个愿望,就是把抽象的理论具体化,用最直白的方式告诉大家--不提一个生涩的词,不写一个数学公式,像讲故事一样先把道理说明白,需要知道细节的同学可以自己去查所有需要知道的一切。因为学习的过程告诉我,最难的其实是最初和这个理论和应用背景亲和的过程--这些理论它究竟是做什么的,又是怎么做到的。可惜我们能看到的关于这些理论的资料大多数都是公式的堆砌并且假定我们明白许多“基本的道理”,其实这些“基本的道理”往往是我们最难想象和超越的。以卡尔曼滤波为例,让我们尝试一种不同的学习方法。 相信所有学习卡尔曼滤波的同学首先接触的都是状态方程和观测方程,学过控制系统的同学可能不陌生,否则,先被那两个看起来好深奥的公式给吓跑了,关键是还不知道他们究竟是干什么的,什么是状态,什么是观测。。。。。。如果再看到后面的一大串递归推导增益,实在很晕很晕,更糟糕的是还没整明白的时候就已经知道卡尔曼滤波其实已经不够使了,需要extended kalmanfilter和particle filter了。。。 其实我们完全不用理会这些公式。先来看看究竟卡尔曼滤波是做什么的,理解了卡尔曼滤波,下面的就顺其自然了。 用一句最简单的话来说,卡尔曼滤波是来帮助我们做测量的,大家一定不明白测量干嘛搞那么复杂?测量长度拿个尺子比一下,测量温度拿温度表测一下不就完了嘛。的确如此,如果你要测量的东西很容易测准确,没有什么随机干扰,那真的不需要劳驾卡尔曼先生。但在有的时候,我们的测量因为随机干扰,无法准确得到,卡尔曼先生就给我们想了个办法,让我们在干扰为高斯分布的情况下,得到的测量均方误差最小,也就是测量值扰动最小,看起来最平滑。 还是举例子最容易明白。我最近养了只小兔子,忍不住拿小兔子做个例子嘻嘻。 每天给兔子拔草,看她香甜地吃啊吃地,就忍不住关心一下她的体重增长情况。那么我们就以小兔子的体重作为研究对象吧。假定我每周做一次观察,我有两个办法可以知道兔子的体重,一个是拿体重计来称:或许你有办法一下子就称准兔子的体重(兽医通常都有这办法),但现在为了体现卡尔曼先生理论的魅力,我们假定你的称实在很糟糕,误差很大,或者兔子太调皮,不能老实呆着,弹簧秤因为小兔子的晃动会产生很大误差。尽管有误差,那也是一个不可失去的渠道来得到兔子的体重。还有一个途径是根据书本上的资料,和兔子的年龄,我可以估计一下我的小兔子应该会多重,我们把用称称出来的叫观察量,用资料估计出来的叫估计值,无论是观察值还是估计值显然都是有误差的,假定误差是高斯分布。现在问题就来了,按照书本上说我的兔子该3公斤重,称出来却只有2.5公斤,我究竟该信哪个呢?如果称足够准,兔子足够乖,卡尔曼先生就没有用武之地了呵呵,再强调一下是我们的现状是兔兔不够乖,称还很烂呵呵。在这样恶劣的情景下,卡尔曼先生告诉我们一个办法,仍然可以估计出八九不离十的兔兔体重,这个办法其实也很直白,就是加权平均,把称称出来的结果也就是观测值和按照书本经验估算出来的结果也就是估计值分别加一个权值,再做平均。当然这两个权值加起来是等于一的。也就是说如果你有0.7分相信称出来的体重,那么就只有0.3分相信书上的估计。说到这里大家一定更着急了,究竟该有几分相信书上的,有几分相信我自己称的呢?都怪我的称不争气,没法让我百分一百信赖它,还要根据书上的数据来做调整。好在卡尔曼先生也体会到了我们的苦恼,告诉我们一个办法来决定这个权值,这个办法其实也很直白,就是根据以往的表现来做决定,这其实听起来挺公平的,你以前表现好,我就相信你多一点,权值也就给的高一点,以前表现不好,我就相信你少一点,权值自然给的低一点。那么什么是表现好表现不好呢,表现好意思就是测量结果稳定,方差很小,

卡尔曼滤波简介及其实现(附C代码)

卡尔曼滤波简介及其算法实现代码(C++/C/MATLAB) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/bf10081233.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5 条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

卡尔曼滤波的原理说明

卡尔曼滤波的原理说明 2009年10月23日星期五 01:19 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下 载:.edu/~welch/kalman/media/pdf/Kalman1960.pdf 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。 好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。 假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值

基于维纳滤波的应用综述

基于维纳滤波的应用综述 摘要:介绍了维纳滤波的基本概念,列举了基于维纳滤波的滤波方式在飞机盲降着陆系统、在图像处理、桩基检测、超声物位计、地震数据信号处理和抗多址干扰盲检测中的应用。 一、维纳滤波概述 维纳(wiener)滤波是用来解决从噪声中提取信号问题的一种过滤(或滤波)的方法。实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。一个线性系统,如果它的单位样本响应为h(n),当输入一个随机信号x(n),且 (1.1) 其中s(n)表示信号,v(n)表示噪声,则输出y(n)为 (1.2) 我们希望x(n)通过线性系统h(n)后得到的.y(n)尽量接近于s(n),因此称y(n)为s(n)的 估计值,用表示,即 (1.3) 如图1.1所示。这个线性系统h(n)称为对于s(n)的一种估计器。 实际上,式(1.2)的卷积形式可以理解为从当前和过去的观察值x(n),x(n一1),x(n一2)…x(n-m),来估计信号的当前值。因此,用h(n)进行过滤的问题可以看成是一个估计问题。由于现在涉及的信号是随机信号,所以这样一种过滤问题实际上是一种统计估计问题[1]。 维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。对某些问题,还可求出滤波器传递函数的显式解,并进而采用由简单的物理元件组成的网络构成维纳滤波器。维纳滤波器的缺

点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。因此,维纳滤波在实际问题中应用不多,更多的是基于维纳滤波器发展而来的滤波方式。 二、基于维纳滤波的应用 2.1在飞机盲降着陆系统中的应用 盲降着陆系统(Instrument Landing System.ILS)又译为仪表着陆系统。是目前应用最为广泛的飞机精密进近和着陆引导系统。它的作用是由地面发射的两束无线电信号实现航向道和下滑道指引。建立一条由跑道指向空中的虚拟路径。飞机通过机载接收设备.确定自身与该路径的相对位置,使飞机沿正确方向飞向跑道并且平稳下降高度。最终实现安全着陆。由于是仪表指针引导飞行员按预定下滑线着陆,无需目视。故又称为盲降着陆系统。该系统为飞行员提供相对预定下滑线的水平和垂直面内的修正指示以及到跑道端口的距离指示。 在飞机盲目着陆系统的实际应用中。盲降着陆时,飞机以较慢的恒定速度沿着一个无线电波束下降。为了自动对准跑道,通常要为盲目着陆系统提供两个信号。一个是由无线电波束提供的信号。由航向台提供,它与飞机航向滑离跑道方向的大小成正比;另一个信号由飞机通过自身方位的测量来提供。在这两个信号中,前者是飞机位置信号与高频噪声的叠加。作为前面分系统的x1(n)后者由于飞机下降过程中风向的改变而在信号中引入了低频噪声,作为x2(n)。为了对飞机的位置信号进行最佳估计,采用互补维纳滤波器去除无用噪声信号[2],提高信噪比。由此,增强了飞机着陆时的精度,提高了飞机自身的安全。 2.2在图像处理中的应用 在图像处理中,噪声问题是经常会遇到的问题,它使得图像信息受损,降低了信噪比。如何尽可能地滤去噪声,恢复真实的信号.是图像处理中关键的问题。几类简单、常用的滤波器如维纳滤波器和卡尔曼滤波器等都是假定噪声是高斯的且是加性的,噪声和信号相互独立,这样能得到最小均方误差意义下的最优滤波。对于实际问题中遇到的非加性噪声,也能通过基于维纳滤波器的思想计算,求出适合的滤波器算式[3]。比如在处理乘性噪声时使用的方法就是基于维纳滤波器的思想[4],还有在处理图像运动模糊复原时的频域估计算法中也使用到基于维纳滤波器的一些推广算法[5]。同时,维纳滤波还是一种常见的图像复原方法,其思想是使复原的图像与原图像的均方误差最小原则采复原图像[6]。 2.3在桩基检测中的应用[7] 高层建筑、桥梁、海工结构及特殊建筑结构,都需采用深桩基础,即使普通

卡尔曼滤波的基本原理及应用

卡尔曼滤波的基本原理及应用卡尔曼滤波在信号处理与系统控制领域应用广泛,目前,正越来越广泛地应用于计算机应用的各个领域。为了更好地理解卡尔曼滤波的原理与进行滤波算法的设计工作,主要从两方面对卡尔曼滤波进行阐述:基本卡尔曼滤波系统模型、滤波模型的建立以及非线性卡尔曼滤波的线性化。最后,对卡尔曼滤波的应用做了简单介绍。 卡尔曼滤波属于一种软件滤波方法,其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。 最初的卡尔曼滤波算法被称为基本卡尔曼滤波算法,适用于解决随机线性离散系统的状态或参数估计问题。卡尔曼滤波器包括两个主要过程:预估与校正。预估过程主要是利用时间更新方程建立对当前状态的先验估计,及时向前推算当前状态变量和误差协方差估计的值,以便为下一个时间状态构造先验估计值;校正过程负责反馈,利用测量更新方程在预估过程的先验估计值及当前测量变量的基础上建立起对当前状态的改进的后验估计。这样的一个过程,我们称之为预估-校正过程,对应的这种估计算法称为预估-校正算法。以下给出离散卡尔曼滤波的时间更新方程和状态更新方程。 时间更新方程: 状态更新方程: 在上面式中,各量说明如下: A:作用在X k-1上的n×n 状态变换矩阵 B:作用在控制向量U k-1上的n×1 输入控制矩阵 H:m×n 观测模型矩阵,它把真实状态空间映射成观测空间 P k-:为n×n 先验估计误差协方差矩阵 P k:为n×n 后验估计误差协方差矩阵 Q:n×n 过程噪声协方差矩阵 R:m×m 过程噪声协方差矩阵 I:n×n 阶单位矩阵K k:n×m 阶矩阵,称为卡尔曼增益或混合因数 随着卡尔曼滤波理论的发展,一些实用卡尔曼滤波技术被提出来,如自适应滤波,次优滤波以及滤波发散抑制技术等逐渐得到广泛应用。其它的滤波理论也迅速发展,如线性离散系统的分解滤波(信息平方根滤波,序列平方根滤波,UD 分解滤波),鲁棒滤波(H∞波)。 非线性样条自适应滤波:这是一类新的非线性自适应滤波器,它由一个线性组合器后跟挠性无记忆功能的。涉及的自适应处理的非线性函数是基于可在学习

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

扩展卡尔曼滤波和粒子滤波算法比较

扩展卡尔曼滤波和粒子滤波算法比较上海大学2013 , 2014学年秋季学期 研究生课程小论文 课程名称: 随机信号导论课程编号: 07SB17002 论文题目: 扩展卡尔曼滤波和粒子滤波算法比较 研究生姓名: 班孝坤 (33%) 学号: 13720843 研究生姓名: 倪晴燕 (34%) 学号: 13720842 研究生姓名: 许成 (33%) 学号: 13720840 论文评语: 成绩: 任课教师: 刘凯 评阅日期: 扩展卡尔曼滤波和粒子滤波算法比较 第一章绪论 在各种非线性滤波技术中, 扩展卡尔曼滤波是一种最简单的算法, 它将卡尔曼滤波局部线性化,适用于弱非线性、高斯环境下。卡尔曼滤波用一系列确定样本来逼近状态的后验概率密度, 适用于高斯环境下的任何非线性系统。粒子滤波用随机样本来近似状态的后验概率密度, 适用于任何非线性非高斯环境, 但有时选择的重要性分布函数与真实后验有较大差异, 从而导致滤波结果存在较大误差, 而粒子滤

波正好克服了这一不足, 它先通过UKF产生重要性分布, 再运用PF 算法。通过仿真实验, 对其的性能进行比较。 严格说来,所有的系统都是非线性的,其中许多还是强非线性的。因此,非线性系统估计问题广泛存在于飞行器导航、目标跟踪及工业控制等领域中,具有重要的理论意义和广阔的应用前景。 系统的非线性往往成为困扰得到最优估计的重要因素,为此,人们提出了大量次优的近似估计方法。包括EKF,基于UT变换的卡尔曼滤波(UKF),粒子滤波,等等。 第二章扩展卡尔曼滤波介绍 2.1 扩展卡尔曼滤波的理论(EKF) 设非线性状态空间模型为: xfxv,(,)(1)ttt,,11 yhxn,(,)(2)ttt 式中和分别表示在t时刻系统的状态和观测,和 xR,yR,vR,nR,tttt分别表示过程噪声和观测噪声,f和h表示非线性函数。 扩展卡尔曼滤波(Extended kalman filter,以下简称EKF)是传统非线性估计的代表,其基本思想是围绕状态估值对非线性模型进行一阶Taylor展开,然后应用线性系统Kalman滤波公式。 EKF是用泰勒展开式中的一次项来对式(1)和 ( 2 ) 中的非线性函数f和h 进行线性化处理, 即先计算f和h 的雅克比矩阵, 然后再在标准卡尔曼滤波框架下进行递归滤波。和均为零均值的高斯白噪声。 vntt 2.2 扩展卡尔曼滤波的算法 EKF的算法同KF 一样, 也可分为两步预测和更新。如图2.1所示

维纳滤波与卡尔曼滤波

第二章 维纳滤波与卡尔曼滤波 § 引言 信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。 维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。 实际上这种线性滤波问题,可以看成是一种估计问题或一种线性估计问题。 一个线性系统,如果它的单位样本响应为h (n ),当输入一个随机信号x (n ),且 )()()(n n s n x υ+= 其中s (n )表示信号,)(n υ表示噪声,则输出y (n )为 ∑-=m m n x m h n y )()()( 我们希望x (n )通过线性系统h (n )后得到的y (n )尽量接近于s (n ),因此称y (n )为s (n )的估计值,用 )(?n s 表示,即 )(?)(n s n y = 图 维纳滤波器的输入—输出关系 如图所示。这个线性系统)(?h 称为对于s (n )的一种估计器。 实际上,式的卷积形式可以理解为从当前和过去的观察值x (n ),x (n -1),x (n -2)…x (n -m ),… 来估计信号的当前值)(?n s 。因此,用)(?h 进行过滤的问题可以看成是一个估计问题。由于我们现在涉及的信号是随机信号,所以这样一种过滤问题实际上是一种统计估计问题。 一般,从当前的和过去的观察值x (n ),x (n -1),x (n -2),…估计当前的信号值)(?)(n s n y =称为过滤或滤波;从过去的观察值,估计当前的或将来的信号值)0)((?)(≥+=N N n s n y 称为预测或外推;从过去的观察值,估计过去的信号值)1)((?)(>-=N N n s n y 称为平滑或内插。因此维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。这里所谓“最佳”与“最优”是以最小均方误差为准则的。本章仅讨论过滤与预测问题。 如果我们以s s ?与分别表示信号的真值与估计值,而用e (n )表示它们之间的误差,即 )(?)()(n s n s n e -= 显然,e (n )可能是正的,也可能是负的,并且它是一个随机变量。因此,用它的均方值来表达误差是合理的,所谓均方误差最小即它的平方的统计平均值最小:

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

卡尔曼滤波的原理及应用自己总结

卡尔曼滤波的原理以及应用 滤波,实质上就是信号处理与变换的过程。目的是去除或减弱不想要成分,增强所需成分。卡尔曼滤波的这种去除与增强过程是基于状态量的估计值和实际值之间的均方误差最小准则来实现的,基于这种准则,使得状态量的估计值越来越接近实际想要的值。而状态量和信号量之间有转换的关系,所以估计出状态量,等价于估计出信号量。所以不同于维纳滤波等滤波方式,卡尔曼滤波是把状态空间理论引入到对物理系统的数学建模过程中来,用递归方法解决离散数据线性滤波的问题,它不需要知道全部过去的数据,而是用前一个估计值和最近一个观察数据来估计信号的当前值,从而它具有运用计算机计算方便,而且可用于平稳和不平稳的随机过程(信号),非时变和时变的系统的优越性。 卡尔曼滤波属于一种软件滤波方法,概括来说其基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。其所得到的解是以估计值的形式给出的。 卡尔曼滤波过程简单来说主要包括两个步骤:状态变量的预估以及状态变量的校正。预估过程是不考虑过程噪声和量测噪声,只是基于系统本身性质并依靠前一时刻的估计值以及系统控制输入的一种估计;校正过程是用量测值与预估量测值之间的误差乘以一个与过程

噪声和量测噪声相关的增益因子来对预估值进行校正的,其中增益因子的确定与状态量的均方误差有关,用到了使均方误差最小的准则。而这一过程中体现出来的递归思想即是:对于当前时刻的状态量估计值以及均方误差预估值实时进行更新,以便用于下一时刻的估计,使得系统在停止运行之前能够源源不断地进行下去。 下面对于其数学建模过程进行详细说明。 1.状态量的预估 (1)由前一时刻的估计值和送给系统的可控制输入来预估计当前时刻状态量。 X(k|k-1)=A X(k-1|k-1)+B U(k) 其中,X(k-1|k-1)表示前一时刻的估计值,U(k)表示系统的控制输入,X(k|k-1)表示由前一时刻估计出来的状态量的预估计值,A表示由k-1时刻过渡到k时刻的状态转移矩阵,B表示控制输入量与状态量之间的一种转换因子,这两个都是由系统性质来决定的。 (2)由前一时刻的均方误差阵来预估计当前时刻的均方误差阵。 P(k|k-1)=A P(k-1|k-1)A’+Q 其中,P(k-1|k-1)是前一时刻的均方误差估计值,A’代表矩阵A 的转置,Q代表过程噪声的均方误差矩阵。该表达式具体推导过程如下: P(k|k-1)=E{[Xs(k|k)-X(k|k-1)][Xs(k|k)-X(k|k-1)]’}------ 其中Xs(k|k)=A Xs(k-1|k-1)+B U(k)+W(k-1)表示当前时刻的实际值,Xs(k-1|k-1)表示前一时刻的实际值,可以看出与当前时刻的预估计值

粒子滤波的基本原理笔记

粒子滤波的基本原理 粒子滤波算法广泛应用在视觉跟踪领域、通信与信号处理领域、机器人、图像处理、金融经济、以及目标定位、导航、跟踪领域,其本质是利用当前和过去的观测量来估计未知量的当前值。在粒子滤波算法中使用了大量随机样本,采用蒙特卡洛仿真来完成递推贝叶斯滤波过程,其核心是使用一组具有相应权值的随机样本(粒子)来表示状态的后验分布。该方法的基本思路是选取一个重要性概率密度函数并从中进行随机抽样,得到一些带有相应权值的随机样本后,在状态观测的基础上调节权值的大小和粒子的位置,再使用这些样本来逼近状态后验分布,最后通过这组样本的加权求和作为状态的估计值。粒子滤波不受系统模型的线性和高斯假设约束,采用样本形式而不是函数形式对状态概率密度进行描述,使其不需要对状态变量的概率分布作过多的约束,适用于任意非线性非高斯动态系统,是目前最适合于非线 性、非高斯系统状态的滤波方法【Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2):174-188.】 1 动态系统的状态空间模型 状态空间模型包括系统状态方程和观测方程,其通用的表示方法分别为【梁军. 粒子滤波算法及其应用研究[D]. 哈尔滨工业大学, 2009.】【黄小平, 王岩, 廖鹏程. 粒子滤波原理及应用——MATLAB 仿真[M].电子工业出版社. 2017】 ()1,k k k f -=X X W (1) (),k k k h =Z X V (2) 其中()f ?和()h ?为已知函数, k W 和k V 是概率密度已知的随机变量,k X 代表k 时刻的状态量,k Z 代表k 时刻的观测量,k W 和k V 是相互独立的。 关于系统的状态方程和观测方程,通常也可用()1k k p -X X 表示状态转移模型;()k k p Z X 表示观测似然模型;()0p X 表示初始状态的先验分布;()0:1:k k p X Z 表示系统的后验密度; ()1:k k p X Z 表示边沿后验密度,或称为后验滤波密度。卡尔曼滤波以及粒子滤波算法的本质即是利用观测序列1:k Z 对当前状态进行优化,从而得到k 时刻的后验滤波密度,进而得到k 时刻的状态值。【Merwe R V D, Doucet A, Freitas N D, et al. The unscented particle filter[C]// International Conference on Neural Information Processing Systems. MIT Press, 2000:563-569.】

Kalman滤波原理及程序(手册)解析

Kalman 滤波原理及仿真手册 KF/EKF/UKF 原理+应用实例+MATLAB 程序 本手册的研究内容主要有Kalman 滤波,扩展Kalman 滤波,无迹Kalman 滤波等,包括理论介绍和MATLAB 源程序两部分。本手册所介绍的线性滤波器,主要是Kalman 滤波和α-β滤波,交互多模型Kalman 滤波,这些算法的应用领域主要有温度测量、自由落体,GPS 导航、石油地震勘探、视频图像中的目标检测和跟踪。 EKF 和UKF 主要在非线性领域有着重要的应用,目标跟踪是最主要的非线性领域应用之一,除了讲解目标跟踪外,还介绍了通用非线性系统的EKF 和UKF 滤波处理问题,相信读者可以通过学习本文通用的非线性系统,能快速掌握EKF 和UKF 滤波算法。 本文所涉及到的每一个应用实例,都包含原理介绍和程序代码(含详细的中文注释)。 一、四维目标跟踪Kalman 线性滤波例子 在不考虑机动目标自身的动力因素,将匀速直线运动的船舶系统推广到四 维,即状态[]T k y k y k x k x k X )() ()()()( =包含水平方向的位置和速度和纵向的位置和速度。则目标跟踪的系统方程可以用式(3.1)和(3.2)表示, )()()1(k u k X k X Γ+Φ=+ (2-4-9) )()()(k v k HX k Z += (2-4-10) 其中,? ? ???? ??? ???=Φ10 00 1000010 001 T T ,???? ???????? ??=ΓT T T T 05.00005.022,T H ?? ??????????=00100001 ,T y y x x X ? ????? ??????= ,??? ???=y x Z ,u ,v 为零均值的过程噪声和观测噪声。T 为采样周期。为了便于理解, 将状态方程和观测方程具体化:

扩展卡尔曼滤波和粒子滤波算法比较

上海大学2013 ~2014学年秋季学期 研究生课程小论文 课程名称:随机信号导论课程编号:07SB17002 论文题目: 扩展卡尔曼滤波和粒子滤波算法比较 研究生姓名: 班孝坤(33%)学号: 13720843 研究生姓名: 倪晴燕(34%)学号: 13720842 研究生姓名: 许成(33%)学号: 13720840 论文评语: 成绩: 任课教师: 刘凯 评阅日期:

扩展卡尔曼滤波和粒子滤波算法比较 第一章绪论 在各种非线性滤波技术中, 扩展卡尔曼滤波是一种最简单的算法, 它将卡尔曼滤波局部线性化,适用于弱非线性、高斯环境下。卡尔曼滤波用一系列确定样本来逼近状态的后验概率密度, 适用于高斯环境下的任何非线性系统。粒子滤波用随机样本来近似状态的后验概率密度, 适用于任何非线性非高斯环境, 但有时选择的重要性分布函数与真实后验有较大差异, 从而导致滤波结果存在较大误差, 而粒子滤波正好克服了这一不足, 它先通过UKF产生重要性分布, 再运用PF 算法。通过仿真实验, 对其的性能进行比较。 严格说来,所有的系统都是非线性的,其中许多还是强非线性的。因此,非线性系统估计问题广泛存在于飞行器导航、目标跟踪及工业控制等领域中,具有重要的理论意义和广阔的应用前景。 系统的非线性往往成为困扰得到最优估计的重要因素,为此,人们提出了大量次优的近似估计方法。包括EKF,基于UT变换的卡尔曼滤波(UKF),粒子滤波,等等。

第二章 扩展卡尔曼滤波介绍 2.1 扩展卡尔曼滤波的理论(EKF ) 设非线性状态空间模型为: 11(,)(1)(,) (2) t t t t t t x f x v y h x n --== 式中t x R ∈和t y R ∈分别表示在t 时刻系统的状态和观测,t v R ∈和t n R ∈ 分别表示过程噪声和观测噪声,f 和h 表示非线性函数。 扩展卡尔曼滤波(Extended kalman filter,以下简称EKF)是传统非线性估计的代表,其基本思想是围绕状态估值对非线性模型进行一阶Taylor 展开,然后应用线性系统Kalman 滤波公式。 EKF 是用泰勒展开式中的一次项来对式(1)和 ( 2 ) 中的非线性函数f 和h 进行线性化处理, 即先计算f 和h 的雅克比矩阵, 然后再在标准卡尔曼滤波框架下进行递归滤波。t v 和t n 均为零均值的高斯白噪声。 2.2 扩展卡尔曼滤波的算法 EKF 的算法同KF 一样, 也可分为两步预测和更新。如图2.1所示 图 2.1

卡尔曼滤波文献综述

华北电力大学 毕业设计(论文)文献综述 所在院系电力工程系 专业班号电自0804 学生姓名崔海荣 指导教师签名黄家栋 审批人签字 毕业设计(论文)题目基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究

基于卡尔曼滤波原理的电网频率综合检测和预测方法的研究 一、前言 “频率”概念源于针对周期性变化的事物的经典物理学定义,由于电力系统中许多物理变量具有(准)周期性特征,故这一概念得到广泛应用【1】。 电网频率是电力系统运行的主要指标之一,也是检测电力系统工作状态的重要依据,频率质量直接影响着电力系统安全、优质、稳定运行。因此,频率检测和预测在电网建设中起着至关重要的作用。 随着大容量、超高压、分布式电力网网络的形成以及现代电力电子设备的应用,基于传统概念的电力系统频率和测量技术在解决现代电网频率问题上遇到了诸多挑战。 目前,用于频率检测和预测的方法很多,主要有傅里叶变换法、卡尔曼滤波法、最小均方误差法、正交滤波器法、小波变换法、自适应陷波滤波器以及它们和一些算法相结合来解决电网频率检测和预测问题。 本文着重讲述卡尔曼滤波原理、分类以及它在电力系统频率检测中的应用历程进行系统性分析,并对今后的研究方向做出展望。 二、主题 1 常规卡尔曼滤波 常规卡尔曼滤波是卡尔曼等人为了克服维纳滤波的不足,于60年代初提出的一种递推算法。卡尔曼滤波不要求保留用过的观测数据,当测得新的数据后,可按照一套递推公式算出新的估计量,不必重新计算【2】。 下面对其进行简单介绍: 假设线性离散方程为 1k k k k x A x ω+=+(1) k k k k z H x ν=+ (2) 式子中:k x n R ∈为状态向量;m k z R ∈为测量向量;k ωp R ∈为系统噪声或过程噪 声向量;k νm R ∈为量测噪声向量;k A 为状态转移矩阵;k H 为量测转移转移矩阵。假设系统噪声和量测噪声是互不相关的高斯白噪声,方差阵为k Q 、k R ,定义/1k k x ∧ -=1(|)k k E x y - 其他递推,则卡尔曼滤波递推方程如下: 状态1步预测为 /1k k x ∧ -=k A 1k x ∧ -(3) 1步预测误差方差阵为 /1k k P -=1k A -1k P -1T k A -+1k Q -(4) 状态估计为 k x ∧=/1k k x ∧-+k K (k z -k H /1k k x ∧ -)(5)

卡尔曼滤波简介及其算法MATLAB实现代码

卡尔曼滤波简介说明及其算法MATLAB实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.doczj.com/doc/bf10081233.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

相关主题
文本预览
相关文档 最新文档