Nanomaterials with enzyme-like characteristics (nanozymes)_ next-generation artificial enzymes
- 格式:pdf
- 大小:11.13 MB
- 文档页数:35
纳米材料基本词汇Nanovector ?nanoswimmerNanosyringeNanopinNanodropletNanomedicine 纳米医学/纳米药物nanocube 纳米立方体纳米尺度 nanoscale纳米基元 nano-unit纳米结构单元 nanostructure unit纳米材料 nanomaterial纳米技术 nanotechnology纳米结构体系 nanostructure system纳米组装体系 nanostructure assembling system 纳米器件 nanodevice碳纳米管 carbon nanotubes,CNTs原子团簇 atom cluster单分散颗粒[系] monodispersed particle纳米颗粒 nanoparticle团粒 aggregate纳米粉体 nano-powder纳米纤维 nano-fibre/Nanofiber纳米薄膜 nano-film纳米块体 nano-bulk纳米孔 nano-pore纳米晶体材料 nanocrystalline material纳米非晶材料 amorphous nanomaterial纳米准晶材料 quasi-crystal nanomaterial金属纳米材料 metallic nanomaterial无机非金属纳米材料 inorganic non-metallic nanomaterial高分子纳米材料 polymer nanomaterial纳米复合材料 nanocomposites结构纳米材料 structured nanomaterial功能纳米材料 functional nanomaterial生物医用纳米材料 biomedical nanomaterial小尺寸效应 small-size effect表面效应 surface effect量子尺寸效应 quantum size effect宏观量子隧道效应 macroscopic quantum tunneling effect,MQT 惰性气体沉积法 inert gas deposition物理粉碎法 physics grinding高能球磨法 high energy ball mill溅射法 sputtering物理粉碎法 physics grinding爆炸法 explosion喷雾法 spraying冷冻干燥法 freeze drying化学气相沉积法 chemical vapor deposition,CVD沉淀法 precipitation水热合成法 hydrothermal synthesis溶胶-凝胶法 sol-gel辐射化学合成法 radiation chemical synthesis快速凝固法 rapidly quenching强烈塑性变形法 severe(intense) plastic deformation 非晶晶化法 amorphous solid crystallization溅射法 sputtering非晶晶化法 crystallization of amorphous solid原位复合法 in-situ composite插层复合法 intercalation hybrids微乳液法 micro emulsion模板合成法 template synthesis自组装法 self-assembly石墨电弧放电法 graphite arc discharge快速凝固法 rapidly quenching表面处理 surface treatment表面修饰 surface decoration稳定化处理 passivating treatmentX射线衍射法 X-ray diffractometry ,XRD扫描探针显微镜 scanning probe microscopy, SPM扫描隧道显微镜 scanning tunneling microscopy, STM扫描近场光学显微镜 scanning near-field optical microscopy, SNOM 原子力显微镜 atomic force microscopy, AFM扫描电容显微镜 scanning capacitance microscopy, SCM磁力显微镜 magnetic force microscopy, MFM扫描热显微镜 scanning thermal microscopy, STHMX射线衍射法 X-ray diffractometry ,XRDX射线衍射线宽化法 X-ray diffractometry line broadening, XRD-LB X射线小角度散射法 small angle X-ray scattering, SAXS透射电子显微镜法 transmission electron microscopy ,TEM透射电镜法 TEM method扫描电子显微镜法 scanning electron microscopy , SEM扫描电镜法 SEM method拉曼光谱法 raman spectrometry红外吸收光谱法 infrared absorption spectroscopy穆斯堡尔谱法 mossbauer spectrometry光子相关谱法 photon correlation spectroscopyBET法 BET压汞仪法 mercury porosimetry纳米压痕仪 nano impress,NI4.6.16扫描探针显微法 scanning probe microscopy, SPM扫描隧道电子显微法 scanning tunneling electron microscopy,STM 扫描近场光学显微法 scanning near-field optical microscopy,SNOM 原子力显微法 atomic force microscopy,AFM扫描电容显微法 scanning capacitance microscopy, SCM扫描热显微法 scanning thermal microscopy, STHM场离子显微法 field ion microscopy, FIM磁力显微法 magnetic force microscopy, MFM激光干涉仪 laser interferometer激光衍射/散射法 laser diffraction and scattering离心沉降法 centrifugal sedimentation。
序号期刊全称缩写1Nature Reviews Materials NAT REV MATER2NATURE MATERIALS NAT MATER3Nature Nanotechnology NAT NANOTECHNOL4Materials Today MATER TODAY5MATERIALS SCIENCE & ENGINEERING R-REPORTSMAT SCI ENG R6PROGRESS IN MATERIALS SCIENCE PROG MATER SCI7ADVANCED MATERIALS ADV MATER8Advanced Energy Materials ADV ENERGY MATER9Annual Review of Materials Research ANNU REV MATER RES 10ADVANCED FUNCTIONAL MATERIALS ADV FUNCT MATER11Materials Horizons MATER HORIZ12Nano Energy NANO ENERGY13INTERNATIONAL MATERIALS REVIEWS INT MATER REV14ACS Energy Letters ACS ENERGY LETT15Journal of Materials Chemistry A J MATER CHEM A16CHEMISTRY OF MATERIALS CHEM MATER17Small SMALL18npj Computational Materials NPJ COMPUT MATER19BIOMATERIALS BIOMATERIALS20ACS Applied Materials & Interfaces ACS APPL MATER INTER 21Advanced Optical Materials ADV OPT MATER22Nano-Micro Letters NANO-MICRO LETT23NPG Asia Materials NPG ASIA MATER242D Materials2D MATER25JOURNAL OF POWER SOURCES J POWER SOURCES26Biofabrication BIOFABRICATION27CURRENT OPINION IN SOLID STATE &MATERIALS SCIENCECURR OPIN SOLID ST M28Acta Biomaterialia ACTA BIOMATER29Materials Research Letters MATER RES LETT30ACTA MATERIALIA ACTA MATER31Journal of Materials Chemistry C J MATER CHEM C32Biomaterials Science BIOMATER SCI-UK33Advanced Healthcare Materials ADV HEALTHC MATER 34Advanced Electronic Materials ADV ELECTRON MATER 35CEMENT AND CONCRETE RESEARCH CEMENT CONCRETE RES 36COMPOSITES SCIENCE AND TECHNOLOGY COMPOS SCI TECHNOL37Materials Science & Engineering C-Materials for Biological ApplicationsMAT SCI ENG C-MATER38SOLAR ENERGY MATERIALS AND SOLAR CELLS SOL ENERG MAT SOL C 39COMPOSITES PART B-ENGINEERING COMPOS PART B-ENG40CORROSION SCIENCE CORROS SCI41Advanced Materials Interfaces ADV MATER INTERFACES 42MRS BULLETIN MRS BULL43SCIENCE AND TECHNOLOGY OF ADVANCEDMATERIALSSCI TECHNOL ADV MAT44Journal of Materials Chemistry B J MATER CHEM B45CEMENT & CONCRETE COMPOSITES CEMENT CONCRETE COMP 46Advanced Materials Technologies ADV MATER TECHNOL-US47MATERIALS & DESIGN MATER DESIGN48COMPOSITES PART A-APPLIED SCIENCE ANDMANUFACTURINGCOMPOS PART A-APPL S49APPLIED SURFACE SCIENCE APPL SURF SCI50ACS Biomaterials Science & Engineering ACS BIOMATER SCI ENG51PARTICLE & PARTICLE SYSTEMSCHARACTERIZATIONPART PART SYST CHAR52Science China-Materials SCI CHINA MATER 53SCRIPTA MATERIALIA SCRIPTA MATER 54APL Materials APL MATER55COMPOSITE STRUCTURES COMPOS STRUCT 56Liquid Crystals Reviews LIQ CRYST REV 57CELLULOSE CELLULOSE58JOURNAL OF THE EUROPEAN CERAMICSOCIETYJ EUR CERAM SOC59JOURNAL OF ALLOYS AND COMPOUNDS J ALLOY COMPD60Soft Matter SOFT MATTER61EUROPEAN CELLS & MATERIALS EUR CELLS MATER62MICROPOROUS AND MESOPOROUS MATERIALS MICROPOR MESOPOR MAT63JOURNAL OF MATERIALS PROCESSINGTECHNOLOGYJ MATER PROCESS TECH64JOURNAL OF MATERIALS SCIENCE &TECHNOLOGYJ MATER SCI TECHNOL65Nanomaterials NANOMATERIALS-BASEL 66CONSTRUCTION AND BUILDING MATERIALS CONSTR BUILD MATER 67INTERMETALLICS INTERMETALLICS68MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIESMICROSTRUCTURE AND PROCESSINGMAT SCI ENG A-STRUCT69NANOTECHNOLOGY NANOTECHNOLOGY70Journal of Materials Research andTechnology-JMR&TJ MATER RES TECHNOL71JOURNAL OF BIOMEDICAL MATERIALSRESEARCH PART B-APPLIED BIOMATERIALSJ BIOMED MATER RES B72Materials Science and Engineering B-Advanced Functional Solid-StateMaterialsMATER SCI ENG B-ADV73HYDROMETALLURGY HYDROMETALLURGY74Journal of the Mechanical Behavior ofBiomedical MaterialsJ MECH BEHAV BIOMED75JOURNAL OF BIOMEDICAL MATERIALSRESEARCH PART AJ BIOMED MATER RES A76ChemNanoMat CHEMNANOMAT 77INTERNATIONAL JOURNAL OF FATIGUE INT J FATIGUE 78CERAMICS INTERNATIONAL CERAM INT79MRS Communications MRS COMMUN80JOURNAL OF MATERIALS SCIENCE J MATER SCI80Journal of Biobased Materials andBioenergyJ BIOBASED MATER BIO82Beilstein Journal of Nanotechnology BEILSTEIN J NANOTECH 83Smart Materials and Structures SMART MATER STRUCT84WEAR WEAR85JOURNAL OF THE AMERICAN CERAMICSOCIETYJ AM CERAM SOC86PROGRESS IN ORGANIC COATINGS PROG ORG COAT87Nanoscience and Nanotechnology Letters NANOSCI NANOTECH LET 88SURFACE & COATINGS TECHNOLOGY SURF COAT TECH89Biomedical Materials BIOMED MATER90MATERIALS CHARACTERIZATION MATER CHARACT91Electronic Materials Letters ELECTRON MATER LETT 92MATERIALS RESEARCH BULLETIN MATER RES BULL93Particuology PARTICUOLOGY94NDT & E INTERNATIONAL NDT&E INT95JOURNAL OF SANDWICH STRUCTURES &MATERIALSJ SANDW STRUCT MATER96MECHANICS OF MATERIALS MECH MATER97MACROMOLECULAR MATERIALS ANDENGINEERINGMACROMOL MATER ENG98MATERIALS LETTERS MATER LETT99MATERIALS AND MANUFACTURING PROCESSES MATER MANUF PROCESS100MECHANICS OF ADVANCED MATERIALS ANDSTRUCTURESMECH ADV MATER STRUC101INTERNATIONAL JOURNAL OF REFRACTORYMETALS & HARD MATERIALSINT J REFRACT MET H102MATERIALS SCIENCE IN SEMICONDUCTORPROCESSINGMAT SCI SEMICON PROC103JOURNAL OF COMPOSITES FOR CONSTRUCTION J COMPOS CONSTR 104ADVANCED ENGINEERING MATERIALS ADV ENG MATER105Progress in Natural Science-MaterialsInternationalPROG NAT SCI-MATER106Optical Materials Express OPT MATER EXPRESS107FATIGUE & FRACTURE OF ENGINEERINGMATERIALS & STRUCTURESFATIGUE FRACT ENG M108COMPUTATIONAL MATERIALS SCIENCE COMP MATER SCI 109Materials MATERIALS110Biointerphases BIOINTERPHASES111JOURNAL OF MATERIALS SCIENCE-MATERIALSIN MEDICINEJ MATER SCI-MATER M112Physical Mesomechanics PHYS MESOMECH 113Coatings COATINGS114Advances in Nano Research ADV NANO RES115JOURNAL OF MATERIALS SCIENCE-MATERIALSIN ELECTRONICSJ MATER SCI-MATER EL116OPTICAL MATERIALS OPT MATER117MATERIALS AND STRUCTURES MATER STRUCT118POLYMER TESTING POLYM TEST119DIAMOND AND RELATED MATERIALS DIAM RELAT MATER 120CHEMICAL VAPOR DEPOSITION CHEM VAPOR DEPOS121JOURNAL OF INTELLIGENT MATERIALSYSTEMS AND STRUCTURESJ INTEL MAT SYST STR122MATERIALS CHEMISTRY AND PHYSICS MATER CHEM PHYS 123Journal of Nanomaterials J NANOMATER124Journal of Energetic Materials J ENERG MATER125REVIEWS ON ADVANCED MATERIALS SCIENCE REV ADV MATER SCI 126JOM JOM-US127Crystals CRYSTALS128International Journal of PolymericMaterials and Polymeric BiomaterialsINT J POLYM MATER PO128JOURNAL OF NANOPARTICLE RESEARCH J NANOPART RES 130MICROSCOPY AND MICROANALYSIS MICROSC MICROANAL131Surface Topography-Metrology andPropertiesSURF TOPOGR-METROL132VACUUM VACUUM133INTERNATIONAL JOURNAL OF ADHESION ANDADHESIVESINT J ADHES ADHES134SURFACE ENGINEERING SURF ENG135Nondestructive Testing and Evaluation NONDESTRUCT TEST EVA 136METALS AND MATERIALS INTERNATIONAL MET MATER INT137JOURNAL OF THERMAL SPRAY TECHNOLOGY J THERM SPRAY TECHN 138POLYMER COMPOSITES POLYM COMPOSITE139THIN SOLID FILMS THIN SOLID FILMS140International Journal of MaterialFormingINT J MATER FORM140JOURNAL OF ADHESION J ADHESION140SCIENCE AND TECHNOLOGY OF WELDING ANDJOININGSCI TECHNOL WELD JOI143CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRYCALPHAD144CORROSION CORROSION-US145International Journal of Applied GlassScienceINT J APPL GLASS SCI146JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITIONJ BIOMAT SCI-POLYM E147Nanotechnology Reviews NANOTECHNOL REV148International Journal of Mechanics andMaterials in DesignINT J MECH MATER DES149METALLURGICAL AND MATERIALSTRANSACTIONS A-PHYSICAL METALLURGY ANDMATERIALS SCIENCEMETALL MATER TRANS A150JOURNAL OF POROUS MATERIALS J POROUS MAT151METALLURGICAL AND MATERIALSTRANSACTIONS B-PROCESS METALLURGY ANDMATERIALS PROCESSING SCIENCEMETALL MATER TRANS B152MATERIALES DE CONSTRUCCION MATER CONSTRUCC152MATERIALS SCIENCE AND TECHNOLOGY MATER SCI TECH-LOND154TRANSACTIONS OF NONFERROUS METALSSOCIETY OF CHINAT NONFERR METAL SOC155MODELLING AND SIMULATION IN MATERIALSSCIENCE AND ENGINEERINGMODEL SIMUL MATER SC156GOLD BULLETIN GOLD BULL157JOURNAL OF VACUUM SCIENCE & TECHNOLOGYAJ VAC SCI TECHNOL A158JOURNAL OF SOL-GEL SCIENCE ANDTECHNOLOGYJ SOL-GEL SCI TECHN159Nanomaterials and Nanotechnology NANOMATER NANOTECHNO 160Metals METALS-BASEL161JOURNAL OF NONDESTRUCTIVE EVALUATION J NONDESTRUCT EVAL 162CORROSION REVIEWS CORROS REV163GRANULAR MATTER GRANUL MATTER164AIP Advances AIP ADV165WELDING JOURNAL WELD J166KONA Powder and Particle Journal KONA POWDER PART J 167PHILOSOPHICAL MAGAZINE PHILOS MAG168Journal of Coatings Technology andResearchJ COAT TECHNOL RES169JOURNAL OF COMPOSITE MATERIALS J COMPOS MATER 170Journal of Advanced Ceramics J ADV CERAM 170STRAIN STRAIN172JOURNAL OF BIOACTIVE AND COMPATIBLEPOLYMERSJ BIOACT COMPAT POL173Materials Express MATER EXPRESS174MICROSYSTEM TECHNOLOGIES-MICRO-ANDNANOSYSTEMS-INFORMATION STORAGE ANDPROCESSING SYSTEMSMICROSYST TECHNOL175RESEARCH IN NONDESTRUCTIVE EVALUATION RES NONDESTRUCT EVAL 176JOURNAL OF ELECTRONIC MATERIALS J ELECTRON MATER177OXIDATION OF METALS OXID MET178TEXTILE RESEARCH JOURNAL TEXT RES J179Korean Journal of Metals and Materials KOREAN J MET MATER 180RARE METALS RARE METALS181JOURNAL OF MATERIALS RESEARCH J MATER RES182MAGAZINE OF CONCRETE RESEARCH MAG CONCRETE RES183FIRE TECHNOLOGY FIRE TECHNOL184Frontiers of Materials Science FRONT MATER SCI185Recent Patents on Nanotechnology RECENT PAT NANOTECH186JOURNAL OF REINFORCED PLASTICS ANDCOMPOSITESJ REINF PLAST COMP187Carbon Letters CARBON LETT188Image Analysis & Stereology IMAGE ANAL STEREOL 188STEEL RESEARCH INTERNATIONAL STEEL RES INT190MATERIALS AT HIGH TEMPERATURES MATER HIGH TEMP191JOURNAL OF WOOD CHEMISTRY ANDTECHNOLOGYJ WOOD CHEM TECHNOL192European Journal of Wood and WoodProductsEUR J WOOD WOOD PROD193Journal of Mining and MetallurgySection B-MetallurgyJ MIN METALL B194Journal of Applied Biomaterials &Functional MaterialsJ APPL BIOMATER FUNC195Advances in Materials Science andEngineeringADV MATER SCI ENG196MECHANICS OF TIME-DEPENDENT MATERIALS MECH TIME-DEPEND MAT197JOURNAL OF NANOSCIENCE ANDNANOTECHNOLOGYJ NANOSCI NANOTECHNO198FIBERS AND POLYMERS FIBER POLYM 199ISIJ INTERNATIONAL ISIJ INT 200Green Materials GREEN MATER201Acta Metallurgica Sinica-EnglishLettersACTA METALL SIN-ENGL202JOURNAL OF MATERIALS ENGINEERING ANDPERFORMANCEJ MATER ENG PERFORM203APPLIED COMPOSITE MATERIALS APPL COMPOS MATER 203JOURNAL OF PLASTIC FILM & SHEETING J PLAST FILM SHEET 205Science of Advanced Materials SCI ADV MATER206JOURNAL OF VACUUM SCIENCE & TECHNOLOGYBJ VAC SCI TECHNOL B207Current Nanoscience CURR NANOSCI 208JOURNAL OF FIRE SCIENCES J FIRE SCI 209Journal of Industrial Textiles J IND TEXT210PROCEEDINGS OF THE INSTITUTION OFMECHANICAL ENGINEERS PART L-JOURNAL OFMATERIALS-DESIGN AND APPLICATIONSP I MECH ENG L-J MAT211Surface Innovations SURF INNOV212International Journal of MineralsMetallurgy and MaterialsINT J MIN MET MATER213MATERIALS AND CORROSION-WERKSTOFFE UND KORROSIONMATER CORROS214ACI MATERIALS JOURNAL ACI MATER J215MATERIALE PLASTICE MATER PLAST216Silicon SILICON-NETH217JOURNAL OF ELECTROCERAMICS J ELECTROCERAM 218Advances in Concrete Construction ADV CONCR CONSTR 219MATERIALS TECHNOLOGY MATER TECHNOL 220FIRE AND MATERIALS FIRE MATER221Frontiers in Materials FRONT MATER222Welding in the World WELD WORLD223IRONMAKING & STEELMAKING IRONMAK STEELMAK 224BioResources BIORESOURCES225JOURNAL OF THE TEXTILE INSTITUTE J TEXT I226NEW CARBON MATERIALS NEW CARBON MATER227International Journal of AppliedCeramic TechnologyINT J APPL CERAM TEC228Processing and Application of Ceramics PROCESS APPL CERAM 229Materials Research Express MATER RES EXPRESS230Journal of Advanced ConcreteTechnologyJ ADV CONCR TECHNOL231SOFT MATERIALS SOFT MATER232JOURNAL OF VINYL & ADDITIVE TECHNOLOGY J VINYL ADDIT TECHN 232NORDIC PULP & PAPER RESEARCH JOURNAL NORD PULP PAP RES J234JOURNAL OF IRON AND STEEL RESEARCHINTERNATIONALJ IRON STEEL RES INT235ADVANCED COMPOSITE MATERIALS ADV COMPOS MATER236Materials Research-Ibero-americanJournal of MaterialsMATER RES-IBERO-AM J237Advances in Applied Ceramics ADV APPL CERAM 238Functional Materials Letters FUNCT MATER LETT 239Journal of Natural Fibers J NAT FIBERS240CORROSION ENGINEERING SCIENCE ANDTECHNOLOGYCORROS ENG SCI TECHN241Journal of Ceramic Science andTechnologyJ CERAM SCI TECHNOL242ADVANCES IN CEMENT RESEARCH ADV CEM RES243BOLETIN DE LA SOCIEDAD ESPANOLA DECERAMICA Y VIDRIOBOL SOC ESP CERAM V244COMPOSITE INTERFACES COMPOS INTERFACE245JOURNAL OF ADHESION SCIENCE ANDTECHNOLOGYJ ADHES SCI TECHNOL246Maderas-Ciencia y Tecnologia MADERAS-CIENC TECNOL 247CELLULAR POLYMERS CELL POLYM248Journal of Renewable Materials J RENEW MATER249AMERICAN CERAMIC SOCIETY BULLETIN AM CERAM SOC BULL 250Autex Research Journal AUTEX RES J251BULLETIN OF MATERIALS SCIENCE B MATER SCI252JOURNAL OF THERMOPLASTIC COMPOSITEMATERIALSJ THERMOPLAST COMPOS253TRANSACTIONS OF THE INDIAN INSTITUTEOF METALST INDIAN I METALS254POWDER METALLURGY POWDER METALL255JOURNAL OF THE CERAMIC SOCIETY OFJAPANJ CERAM SOC JPN256MATERIALS SCIENCE-POLAND MATER SCI-POLAND 257PLASTICS RUBBER AND COMPOSITES PLAST RUBBER COMPOS258JOURNAL OF ENGINEERING MATERIALS ANDTECHNOLOGY-TRANSACTIONS OF THE ASMEJ ENG MATER-T ASME259INTERNATIONAL JOURNAL OF MATERIALS &PRODUCT TECHNOLOGYINT J MATER PROD TEC260PHYSICS OF METALS AND METALLOGRAPHY PHYS MET METALLOGR+ 261CANADIAN METALLURGICAL QUARTERLY CAN METALL QUART261Journal of Laser Micro Nanoengineering J LASER MICRO NANOEN263RUSSIAN JOURNAL OF NONDESTRUCTIVETESTINGRUSS J NONDESTRUCT+264JOURNAL OF ELASTOMERS AND PLASTICS J ELASTOM PLAST 265International Journal of Metalcasting INT J METALCAST 266CELLULOSE CHEMISTRY AND TECHNOLOGY CELL CHEM TECHNOL 267Journal of Central South University J CENT SOUTH UNIV267Transactions of the Indian CeramicSocietyT INDIAN CERAM SOC269International Journal of MaterialsResearchINT J MATER RES270ACTA METALLURGICA SINICA ACTA METALL SIN 271GLASS PHYSICS AND CHEMISTRY GLASS PHYS CHEM+ 271INORGANIC MATERIALS INORG MATER+271JOURNAL OF THE AMERICAN LEATHERCHEMISTS ASSOCIATIONJ AM LEATHER CHEM AS274Physics and Chemistry of Glasses-European Journal of Glass Science andTechnology Part BPHYS CHEM GLASSES-B275Protection of Metals and PhysicalChemistry of SurfacesPROT MET PHYS CHEM+276CERAMICS-SILIKATY CERAM-SILIKATY277Journal of Engineered Fibers andFabricsJ ENG FIBER FABR278MATERIALS TRANSACTIONS MATER TRANS279Digest Journal of Nanomaterials andBiostructuresDIG J NANOMATER BIOS280JOURNAL OF TESTING AND EVALUATION J TEST EVAL 281SCIENCE OF SINTERING SCI SINTER 282Journal of Nano Research J NANO RES-SW283Revista Romana de Materiale-RomanianJournal of MaterialsREV ROM MATER284INTERNATIONAL JOURNAL OF CAST METALSRESEARCHINT J CAST METAL RES285WOOD RESEARCH WOOD RES-SLOVAKIA 286KOVOVE MATERIALY-METALLIC MATERIALS KOVOVE MATER287Journal of Superhard Materials J SUPERHARD MATER+ 288ARCHIVES OF METALLURGY AND MATERIALS ARCH METALL MATER288MATERIALWISSENSCHAFT UNDWERKSTOFFTECHNIKMATERIALWISS WERKST290SCIENCE AND ENGINEERING OF COMPOSITEMATERIALSSCI ENG COMPOS MATER291Journal of Ovonic Research J OVONIC RES 292Drvna Industrija DRVNA IND293Journal of Fiber Science andTechnologyJ FIBER SCI TECHNOL294Materiali in Tehnologije MATER TEHNOL294TRANSACTIONS OF THE INSTITUTE OF METALFINISHINGT I MET FINISH296Journal of the Australian CeramicSocietyJ AUST CERAM SOC297FIBRES & TEXTILES IN EASTERN EUROPE FIBRES TEXT EAST EUR 298Journal of Friction and Wear J FRICT WEAR+298Metallurgical Research & Technology METALL RES TECHNOL300International Journal of ClothingScience and TechnologyINT J CLOTH SCI TECH301Progress in Rubber Plastics andRecycling TechnologyPROG RUBBER PLAST RE302HIGH TEMPERATURES-HIGH PRESSURES HIGH TEMP-HIGH PRESS 303REFRACTORIES AND INDUSTRIAL CERAMICS REFRACT IND CERAM+304JOURNAL OF WUHAN UNIVERSITY OFTECHNOLOGY-MATERIALS SCIENCE EDITIONJ WUHAN UNIV TECHNOL305STRENGTH OF MATERIALS STRENGTH MATER+ 306Materials Testing MATER TEST307TAPPI JOURNAL TAPPI J308International Journal ofNanotechnologyINT J NANOTECHNOL309Journal of Materials Education J MATER EDUC310JOURNAL OF INORGANIC MATERIALS J INORG MATER310MECHANICS OF COMPOSITE MATERIALS MECH COMPOS MATER 312Pigment & Resin Technology PIGM RESIN TECHNOL 313SENSORS AND MATERIALS SENSOR MATER314JOURNAL OF THE SOCIETY OF LEATHERTECHNOLOGISTS AND CHEMISTSJ SOC LEATH TECH CH315J-FOR-Journal of Science & Technologyfor Forest Products and ProcessesJ-FOR316GLASS AND CERAMICS GLASS CERAM+317Cement Wapno Beton CEM WAPNO BETON318POLYMERS & POLYMER COMPOSITES POLYM POLYM COMPOS 319ANTI-CORROSION METHODS AND MATERIALS ANTI-CORROS METHOD M 320Materials Science-Medziagotyra MATER SCI-MEDZG321Russian Journal of Non-Ferrous Metals RUSS J NON-FERR MET+ 322Industria Textila IND TEXTILA323HIGH TEMPERATURE MATERIALS ANDPROCESSESHIGH TEMP MAT PR-ISR324METALLURGIA ITALIANA METALL ITAL325ADVANCED COMPOSITES LETTERS ADV COMPOS LETT326REVISTA DE METALURGIA REV METAL MADRID 327SAMPE JOURNAL SAMPE J328METAL SCIENCE AND HEAT TREATMENT MET SCI HEAT TREAT+329JOURNAL OF OPTOELECTRONICS ANDADVANCED MATERIALSJ OPTOELECTRON ADV M330MATERIALS SCIENCE MATER SCI+331Optoelectronics and AdvancedMaterials-Rapid CommunicationsOPTOELECTRON ADV MAT332PRAKTISCHE METALLOGRAPHIE-PRACTICALMETALLOGRAPHYPRAKT METALLOGR-PR M333INDIAN JOURNAL OF FIBRE & TEXTILERESEARCHINDIAN J FIBRE TEXT334China Foundry CHINA FOUNDRY335METALLURGIST METALLURGIST+336AATCC Journal of Research AATCC J RES336Materia-Rio de Janeiro MATERIA-BRAZIL338AATCC REVIEW AATCC REV339JOURNAL OF CERAMIC PROCESSING RESEARCH J CERAM PROCESS RES 340POWDER METALLURGY AND METAL CERAMICS POWDER METALL MET C+341JOURNAL OF THE JAPAN INSTITUTE OFMETALSJ JPN I MET342Drewno DREWNO343RARE METAL MATERIALS AND ENGINEERING RARE METAL MAT ENG344TETSU TO HAGANE-JOURNAL OF THE IRONAND STEEL INSTITUTE OF JAPANTETSU TO HAGANE345Glass Technology-European Journal ofGlass Science and Technology Part AGLASS TECHNOL-PART A346Tekstil ve Konfeksiyon TEKST KONFEKSIYON 347Emerging Materials Research EMERG MATER RES348Soldagem & Inspecao SOLDAGEM INSP349JOURNAL OF NEW MATERIALS FORELECTROCHEMICAL SYSTEMSJ NEW MAT ELECTR SYS350APPITA APPITA351INTERNATIONAL JOURNAL OF POWDERMETALLURGYINT J POWDER METALL352MATERIALS EVALUATION MATER EVAL353ADVANCED MATERIALS & PROCESSES ADV MATER PROCESS 354MATERIALS PERFORMANCE MATER PERFORMANCE 355SEN-I GAKKAISHI SEN-I GAKKAISHI356PULP & PAPER-CANADA PULP PAP-CANADA357ZKG INTERNATIONAL ZKG INT358MOKUZAI GAKKAISHI MOKUZAI GAKKAISHI 359JCT COATINGSTECH JCT COATINGSTECH 360WOCHENBLATT FUR PAPIERFABRIKATION WOCHENBL PAPIERFABR 361SURFACE COATINGS INTERNATIONAL SURF COAT INTISSN影响因子2058-843751.941 1476-112239.235 1748-338737.49 1369-702124.5370927-796X24.480079-642523.75 0935-964821.95 1614-683221.875 1531-733115.846 1616-301X13.325 2051-634713.183 2211-285513.12 0950-660812.703 2380-819512.277 2050-74889.931 0897-47569.89 1613-68109.598 2057-39608.941 0142-96128.806 1944-82448.097 2195-10717.43 2311-67067.381 1884-40497.208 2053-15837.042 0378-7753 6.945 1758-5082 6.838 1359-0286 6.5481742-7061 6.383 2166-3831 6.161 1359-6454 6.036 2050-7526 5.976 2047-4830 5.831 2192-2640 5.609 2199-160X 5.466 0008-8846 5.43 0266-3538 5.16 0928-4931 5.080927-0248 5.018 1359-8368 4.92 0010-938X 4.862 2196-7350 4.834 0883-7694 4.788 1468-6996 4.7872050-750X 4.776 0958-9465 4.66 2365-709X 4.6220264-1275 4.525 1359-835X 4.514 0169-4332 4.439 2373-9878 4.432 0934-0866 4.384 2095-8226 4.318 1359-6462 4.163 2166-532X 4.127 0263-8223 4.101 2168-0396 4.091 0969-0239 3.809 0955-2219 3.794 0925-8388 3.779 1744-683X 3.709 1473-2262 3.667 1387-1811 3.649 0924-0136 3.6471005-0302 3.609 2079-4991 3.504 0950-0618 3.485 0966-9795 3.420921-5093 3.4140957-4484 3.404 2238-7854 3.398 1552-4973 3.373 0921-5107 3.316 0304-386X 3.3 1751-6161 3.239 1549-3296 3.231 2199-692X 3.173 0142-1123 3.132 0272-8842 3.057 2159-6859 3.008 0022-2461 2.993 1556-6560 2.993 2190-4286 2.968 0964-1726 2.9630043-1648 2.960002-7820 2.9560300-9440 2.955 1941-4900 2.917 0257-8972 2.906 1748-6041 2.897 1044-5803 2.892 1738-8090 2.882 0025-5408 2.873 1674-2001 2.785 0963-8695 2.7811099-6362 2.7760167-6636 2.6971438-7492 2.690167-577X 2.687 1042-6914 2.669 1537-6494 2.6450263-4368 2.606 1369-8001 2.593 1090-0268 2.592 1438-1656 2.576 1002-0071 2.572 2159-3930 2.566 8756-758X 2.533 0927-0256 2.53 1996-1944 2.467 1934-8630 2.455 0957-4530 2.448 1029-9599 2.38 2079-6412 2.35 2287-237X 2.333 0957-4522 2.324 0925-3467 2.32 1359-5997 2.271 0142-9418 2.247 0925-9635 2.232 0948-1907 2.227 1045-389X 2.211 0254-0584 2.21 1687-4110 2.2070737-0652 2.183 1606-5131 2.172 1047-4838 2.145 2073-4352 2.1440091-4037 2.1271388-0764 2.127 1431-9276 2.124 2051-672X 2.074 0042-207X 2.067 0143-7496 2.065 0267-0844 1.978 1058-9759 1.957 1598-9623 1.952 1059-9630 1.949 0272-8397 1.943 0040-6090 1.939 1960-6206 1.936 0021-8464 1.936 1362-1718 1.9360364-5916 1.935 0010-9312 1.927 2041-1286 1.912 0920-5063 1.911 2191-9089 1.904 1569-1713 1.8961073-5623 1.887 1380-2224 1.858 1073-5615 1.834 0465-2746 1.803 0267-0836 1.803 1003-6326 1.795 0965-0393 1.793 0017-1557 1.767 0734-2101 1.7610928-0707 1.7451847-9804 1.73 2075-4701 1.704 0195-9298 1.69 0334-6005 1.66 1434-5021 1.658 2158-3226 1.653 0043-2296 1.652 0288-4534 1.638 1478-6435 1.6321945-9645 1.6190021-9983 1.613 2226-4108 1.605 1475-1305 1.605 0883-9115 1.598 2158-5849 1.5970946-7076 1.581 0934-9847 1.567 0361-5235 1.566 0030-770X 1.547 0040-5175 1.54 1738-8228 1.518 1001-0521 1.5 0884-2914 1.495 0024-9831 1.488 0015-2684 1.483 2095-025X 1.478 1872-2105 1.4750731-6844 1.471 1976-4251 1.432 1580-3139 1.424 1611-3683 1.424 0960-3409 1.4230277-3813 1.418 0018-3768 1.401 1450-5339 1.4 2280-8000 1.397 1687-8434 1.372 1385-2000 1.3641533-4880 1.354 1229-9197 1.353 0915-1559 1.35 2049-1220 1.344 1006-7191 1.3411059-9495 1.34 0929-189X 1.333 8756-0879 1.333 1947-2935 1.318 1071-1023 1.314 1573-4137 1.306 0734-9041 1.296 1528-0837 1.2831464-4207 1.2812050-6252 1.268 1674-4799 1.261 0947-5117 1.259 0889-325X 1.252 0025-5289 1.248 1876-990X 1.246 1385-3449 1.238 2287-5301 1.237 1066-7857 1.232 0308-0501 1.22 2296-8016 1.211 0043-2288 1.206 0301-9233 1.205 1930-2126 1.202 0040-5000 1.174 1007-8827 1.1711546-542X 1.165 1820-6131 1.152 2053-1591 1.151 1346-8014 1.134 1539-445X 1.132 1083-5601 1.131 0283-2631 1.131 1006-706X 1.126 0924-3046 1.1241516-1439 1.103 1743-6753 1.092 1793-6047 1.084 1544-0478 1.076 1478-422X 1.0712190-9385 1.069 0951-7197 1.063 0366-3175 1.049 0927-6440 1.048 0169-4243 1.039 0718-221X 1.014 0262-48931 2164-63250.986 0002-78120.98 1470-95890.957 0250-47070.925 0892-70570.9120972-28150.91 0032-58990.893 1882-07430.887 2083-134X0.854 1465-80110.848 0094-42890.8280268-19000.802 0031-918X0.79 0008-44330.789 1880-06880.789 1061-83090.785 0095-24430.783 1939-59810.779 0576-97870.764 2095-28990.761 0371-750X0.7611862-52820.748 0412-19610.704 1087-65960.699 0020-16850.6990002-97260.6991753-35620.6962070-20510.681 0862-54680.68 1558-92500.678 1345-96780.675 1842-35820.673 0090-39730.669 0350-820X0.667 1662-52500.665 1583-31860.6611364-04610.643 1336-45610.642 0023-432X0.636 1063-45760.633 1733-34900.6250933-51370.625 0792-12330.619 1842-24030.618 0012-67720.616 2189-76540.605 1580-29490.59 0020-29670.59 2510-15600.587 1230-36660.577 1068-36660.574 2271-36460.574 0955-62220.569 1477-76060.559 0018-15440.544 1083-48770.542 1000-24130.524 0039-23160.522 0025-53000.521 0734-14150.5161475-74350.5120738-79890.5 1000-324X0.49 0191-56650.49 0369-94200.486 0914-49350.4820144-03220.476 1927-63110.475 0361-76100.473 1425-81290.468 0967-39110.461 0003-55990.46 1392-13200.45 1067-82120.446 1222-53470.438 0334-64550.433 0026-08430.432 0963-69350.422 0034-85700.412 0091-10620.4 0026-06730.397 1454-41640.39 1068-820X0.387 1842-65730.3860032-678X0.384 0971-04260.366 1672-64210.36 0026-08940.347 2330-55170.34 1517-70760.34 1532-88130.333 1229-91620.327 1068-13020.326 0021-48760.312 1644-39850.311 1002-185X0.29 0021-15750.2841753-35460.282 1300-33560.266 2046-01470.2540104-92240.244 1480-24220.243 1038-68070.186 0888-74620.182 0025-53270.162 0882-79580.147 0094-14920.144 0037-98750.109 0316-40040.098 0949-02050.091 0021-47950.057 1547-00830.035 0043-71310.005 1754-09250。
MAC4LDFpis Rev 04/221Product InformationMetaPolyzyme, DNA freeSuitable for Microbiome researchMAC4LDFSynonym: Multilytic Enzyme Mix Storage Temperature –20 °CProduct DescriptionMetagenomics investigates all DNA that has been isolated directly from given single samples, such as environmental samples or biological organisms.1,2Metagenomics allows for the investigation of microbes that exist in extreme environments, and which have been historically difficult to isolate, culture, andstudy.3 Metagenomics has revealed the existence of novel microbial species.4 Applications ofmetagenomics work include public health dataanalysis,5,6 discovery of novel proteins, enzymes and natural products,7,8 environmental studies,9,10 and agricultural investigations.11,12Microbes are difficult to disrupt because the cell walls may form capsules or resistant spores. DNA can be extracted by using lysing enzymes such as lyticase, chitinase, zymolase, and gluculase to induce partial spheroplast formation. Spheroplasts are subsequently lysed to release DNA.MetaPolyzyme products (Cat. Nos. MAC4L, MAC4LDF) are based on a multi-lytic enzyme mixture, originally developed by Scott Tighe, for use in microbiome and DNA extraction efficiency studies, and formulated for effective lysis of microbiome samples from extreme environments. MetaPolyzyme was originally evaluated and developed in consultation and collaboration with the Association of Biomolecular Resource Facilities (ABRF) Metagenomics and Microbiome ResearchGroup (MMRG; formerly the Metagenomics Research Group, MGRG).13-16Studies of microbial communities have beenenhanced by the use of culture-independent analytical techniques such as 16S rRNA gene sequencing and metagenomics. DNA contamination during sample preparation is a major problem of sequence-based approaches. Extraction reagents free of DNA contaminants are thus essential. MetaPolyzyme, DNA free was developed to address the need for DNA-free reagents, to minimize microbial DNA contamination from reagents. This productundergoes strict quality control testing to ensure the absence of detectable levels of contaminatingmicrobial DNA using 35 cycles PCR amplification of 16S and 18S rDNA using universal primer sets.Precautions and DisclaimerFor R&D use only. Not for drug, household, or other uses. Please consult the Safety Data Sheet for information regarding hazards and safe handling practices.ReagentThe enzymes in MetaPolyzyme, DNA free are:• Mutanolysin • Achromopeptidase • Lyticase • Chitinase • Lysostaphin •LysozymeAll the enzymes are individually tested for theabsence of contaminating DNA using 16S and 18S PCR amplification.Mutanolysin (from Streptomyces globisporus )Mutanolysin is a muralytic enzyme (muramidase) that cleaves the β-N -acetylmuramyl-(1→4)-N -acetylglucosamine linkage of the bacterial cell wall peptidoglycan-polysaccharide, particularly the β(1→4) bond in MurNAc-GlcNAc.17 Mutanolysin particularly acts on many Gram-positive bacteria, where the enzyme’s carboxy -terminal moietiesparticipate in the recognition and binding of unique cell wall structures.MAC4LDFpis Rev 04/22AchromopeptidaseAchromopeptidase (known also as β-lytic protease 18) has potent bacteriolytic activity on many Gram-positive aerobic bacteria 19 with high lytic activity, against bacterial strains with the A1α chemotype (such as Aerococcus viridans ), and the A3αchemotype (such as Staphylococcus epidermidis ) for cell wall peptidoglycan structures. The enzyme has been reported to have particular recognition for Gly-X sites in peptide sequences, and for Gly-Gly and ᴅ-Ala-X sites in peptidoglycans.20Lyticase (from Arthrobacter luteus )Lyticase is useful in digestion of linear glucosepolymers with β(1→3) linkages, of yeast glycan coats and for spheroplast formation, and of the cell wall of active yeast cells.Chitinase (from Streptomyces griseus )Chitinase degrades chitin by enzymatic hydrolysis to N-acetyl-D-glucosamine. Degradation occurs via two consecutive enzyme reactions: •Chitodextrinase-chitinase, apoly(1,4-β-[2-acetamido-2-deoxy-D-glucoside])-glycanohydrolase, removes chitobiose units from chitin.•N-acetylglucosaminidase-chitobiase cleaves the disaccharide to its monomer subunits, N-acetyl-D-glucosamine (NAGA).Lysostaphin (from Staphylococcus staphylolyticus )Lysostaphin is a lytic enzyme with activity against Staphylococcus species, including S. aureus . Lysostaphin has hexosaminidase, amidase, and endopeptidase activities. It cleaves polyglycine crosslinks in the cellular wall of Staphylococcus species, which leads to cell lysis.21,22Lysozyme (from chicken egg white)Lysozyme hydrolyzes β(1→4) linkages betweenN -acetylmuraminic acid and N -acetyl-D-glucosamine residues in peptidoglycan, and betweenN -acetyl-D-glucosamine residues in chitodextrin. Lysozyme lyses the peptidoglycan cell wall of Gram-positive bacteria.23Storage/StabilityThis product ships at cooler temperature conditions. Long-term storage at –20 °C is recommended. Reconstituted solutions of MetaPolyzyme, DNA free may be stored at –20 °C, but long-term solution stability has not been examined.Preparation InstructionsBecause of the great diversity of samples formetagenomics studies, it will be necessary for each researcher to work out particular conditions for optimal sample preparation and treatment. It is recommended to reconstitute MetaPolyzyme, DNA free in sterile PBS buffer, pH 7.5 (no EDTA, calcium or magnesium present in solution). The following is a sample procedure, to be scaled appropriately:1. Add 100 µL of sterile PBS (pH 7.5) to 1 vial ofMetaPolyzyme, DNA free.1.1. Resuspend by gentle agitation or pipetting. 1.2. Set solution aside at 2-8 °C until Step 7. 2. Thoroughly suspend sample in sterile PBS(pH 7.5). 3. Add 200 µL of sample in PBS to a 2 mLpolypropylene microcentrifuge tube. 4. Optional pellet wash:4.1. To sample tube, add 1 mL of PBS (pH 7.5). 4.2. Vortex, centrifuge and remove supernatant. 4.3. Repeat pellet wash two more times ifneeded. 5. Resuspend pelleted sample in 150 µL of PBS(pH 7.5). Vortex thoroughly.6. Optional: if solution will sit for more than 4 hours,sodium azide may be added to 0.02%. 7. Add 20 µL (*) of MetaPolyzyme, DNA free tosample solution. 8. Incubate at 35 °C for 2-24 hours.9. Continue with standard DNA extraction protocol. (*) The optimal volume and concentration of MetaPolyzyme, DNA free may vary in different experiments.References1. Gilbert, J.A., and Dupont, C.L., Ann. Rev. MarineSci., 3, 347-371 (2011). 2. Kang, H.S., and Brady, S.F., J. Am. Chem. Soc.,136(52), 18111-18119 (2014). 3. Ufarté, L. et al., Biotechnol. Adv., 33(8),1845-1854 (2015). 4. Davison, M. et al., Photosynth. Res., 126(1),135-146 (2015). 5. Afshinnekoo, E. et al., Cell Syst., 1(1), 72-87(2015).The life science business of Merck operatesas MilliporeSigma in the U.S. and Canada.Merck and Sigma-Aldrich are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates.All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources.© 2022 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved.MAC4LDFpis Rev 04/22 DK,DT,GCY,TJ,RBG,SBC,MAM36.The MetaSUB International Consortium,Microbiome, 4, 24 (2016). [Erratum inMicrobiome, 4, 45 (2016).]7.Trinidade, M. et al., Front. Microbiol., 6, 890(2015).8.Coughlan, L.M. et al., Front. Microbiol., 6, 672(2015).9.Palomo, A. et al., ISME J., 10(11), 2569-2581(2016).10.Pold, G. et al., Appl. Environ. Microbiol., 82(22),6518-6530 (2016).11.Mitra, N. et al., J. Gen. Virol., 97(8), 1771-1784(2016).12.Theuns, S. et al., Infect. Genet. Evol., 43,135-145 (2016).13.Baldwin, D.A. et al., "Life at the Extreme", ABRFMetagenomics Research Group Poster 2015,presented at the ABRF 2015 Conference, St.Louis, MO, USA, March 28-31, 2015.14.Baldwin, D.A. et al., "Implementing NewStandards in Metagenomics and the ExtremeMicrobiome Project", ABRF MetagenomicsResearch Group Poster 2016, presented at theABRF 2016 Conference, Fort Lauderdale, FL, USA, February 20-23, 2016.15.McIntyre, A. et al., "Life at the Extreme: TheABRF Metagenomics Research Group", ABRFMetagenomics Research Group Poster 2017,presented at the ABRF 2017 Conference, SanDiego, CA, March 25-28, 2017.16.Tighe, S. et al., J. Biomol. Tech., 28(1), 31-39(2017).17.Gründling, A., and Schneewind, O., J. Bacteriol.,188(7), 2463-2472 (2006).18.Li, S.L. et al., J. Bacteriol., 172(11), 6506-6511(1990).19.Ezaki, T., and Suzuki, S., J. Clin. Microbiol.,16(5), 844-846 (1982). 20.Li, S. et al., J. Biochem., 124(2), 332-339(1998).21.Browder, H.P. et al., Biochem. Biophys. Res.Commun., 19, 383-389 (1965).22.Robinson, J.M. et al., J. Bacteriol., 137(3),1158-1164 (1979).23.Vocaldo, D.J. et al., Nature, 412(6849), 835-838(2001).NoticeWe provide information and advice to our customers on application technologies and regulatory matters to the best of our knowledge and ability, but without obligation or liability. Existing laws and regulations are to be observed in all cases by our customers. This also applies in respect to any rights of third parties. Our information and advice do not relieve our customers of their own responsibility for checking the suitability of our products for the envisaged purpose. The information in this document is subject to change without notice and should not be construed as a commitment by the manufacturing or selling entity, or an affiliate. We assume no responsibility for any errors that may appear in this document.Technical AssistanceVisit the tech service page at/techservice.Standard WarrantyThe applicable warranty for the products listed in this publication may be found at /terms. Contact InformationFor the location of the office nearest you, go to /offices.。
第23卷第2期2024年3月杭州师范大学学报(自然科学版)J o u r n a l o f H a n g z h o uN o r m a l U n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n )V o l .23N o .2M a r .2024收稿日期:2023-05-25 修回日期:2023-06-07基金项目:浙江省自然科学基金项目(L Q 20B 060003);杭州师范大学科研启动经费项目(2018Q D L 040).通信作者:汪红娣(1989 ),女,讲师,博士,主要从事靶向纳米药物的设计和控缓释研究.E -m a i l :w a n g .h o n gd i @h z n u .e d u .c n D O I :10.19926/j.c n k i .i s s n .1674-232X.2023.05.251文献引用:朱曙霞,王美玲,许紫宁,等.基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究[J ].杭州师范大学学报(自然科学版),2024,23(2):113-123.Z HU S h u x i a ,WA N G M e i l i n g ,X UZ i n i n g ,e t a l .S t u d y o n c o l o n -t a r ge t e d o r a l n a n o m e d i c i n e b a s e d o nZ e i n -H Ac a r r i e r [J ].J o u r n a l o fH a n g z h o uN o r m a lU n i v e r s i t y(N a t u r a l S c i e n c eE d i t i o n ),2024,23(2):113-123.基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究朱曙霞,王美玲,许紫宁,庾远龙,潘建林,汪红娣(杭州师范大学材料与化学化工学院,浙江杭州311121)摘 要:设计基于玉米醇溶蛋白(Z e i n )-透明质酸(HA )的口服纳米载体用于结肠靶向的药物递送.使用超声透析法制备玉米醇溶蛋白-透明质酸-羟基喜树碱(H C P T )纳米药物(Z e i n -HA@H C P T ),利用渴望函数分析法优化纳米药物制备条件,考察纳米药物的微结构㊁药物释放行为㊁细胞毒性和靶向摄取能力.Z e i n -HA@H C P T具有95%以上的药物包封率,有优异的生物学稳定性㊁生物相容性和独特的抗胃酸分解特性,结肠环境下的药物累积释放显著提升.Z e i n -HA@H C P T 通过C D 44受体介导的内吞作用被结肠癌细胞靶向摄取,可提高药物抗肿瘤疗效.关键词:玉米醇溶蛋白;透明质酸;羟基喜树碱;结肠靶向中图分类号:T Q 46 文献标志码:A 文章编号:1674-232X (2024)02-0113-11结直肠癌是常见的消化道恶性肿瘤,具有早期症状不明显㊁死亡率高㊁易复发等特点[1-2].抗癌口服药物制剂由于不受时空限制,易被患者接受和使用,具有极大的市场潜力[3].目前,因溶解度低㊁渗透性差或口服生物利用度低等原因,上市的化疗药物的相关产品多为静脉注射给药药物,如羟基喜树碱[4]㊁盐酸阿霉素[5]㊁紫杉醇[6]㊁吉西他滨[7]等.相较于注射给药,口服给药需考虑避免胃肠道p H ㊁消化酶和黏膜等多重生理屏障对药物活性和吸收率的影响[8],这就要求口服药物应具有良好的稳定性.此外,难溶或低渗类药物的溶解度低且不易跨过小肠上皮细胞膜,其口服制剂的开发最具挑战[9].将药物活性成分与合适载体材料结合,制备药物递送系统(d r u g d e l i v e r y s y s t e m ,D D S )是解决口服给药难题的重要技术手段.D D S 中的药物通常以分子态或无定形态存在,使药物溶解度显著提高.同时,D D S 中载体材料的合理选用可实现药物的跨膜递送㊁主动靶向和控缓释,从而提高治疗效果和安全性.玉米醇溶蛋白(Z e i n)具有独特的自组装特性㊁良好的抗胃酸分解特性和生物相容性,被广泛用作药物载体材料.但由于较强的疏水特性和缺乏靶向性,限制了玉米醇溶蛋白在纳米药物精准递送领域的应用[10].透明质酸(h ya l u r o n i ca c i d ,H A )是一种天然多糖,具有良好的亲水性,可被肿瘤细胞中过表达的411杭州师范大学学报(自然科学版)2024年C D44受体特异性识别[11].本研究利用超声透析法制备了具有独特抗胃酸分解特性和主动靶向能力的Z e i n-H A基纳米载体.结合超声乳化和透析技术的超声透析法(图1A),可有效避免Z e i n-H A纳米颗粒的聚集,提高产品分散性,同时可有效控制过程参数(如温度㊁溶剂㊁载材浓度㊁超声条件),调控玉米醇溶蛋白的自组装,获得高产品收率的纳米颗粒.在此基础上,利用纳米载体与羟基喜树碱(H C P T)之间的亲疏水作用,采用一步法获得高效封装的玉米醇溶蛋白-透明质酸基纳米药物,探究Z e i n-H A@H C P T的理化性质(形貌㊁化学结构㊁载药能力)㊁模拟胃肠道环境药物释放能力(图1B)和生化性质(生物稳定性㊁细胞毒性㊁靶向摄取能力等).A:超声透析法制备Z e i n-HA基纳米颗粒;B:口服纳米颗粒的胃肠道环境,依次经过胃酸环境(p H=1.2)㊁小肠流体(p H=7.4)和结肠流体(p H=6.0).图1玉米醇溶蛋白-透明质酸基纳米药物制备及递送F i g.1P r e p a r a t i o na n dd e l i v e r y r o u t e o fZ e i n-H Ab a s e dn a n o m e d i c i n e1材料与方法1.1主要试剂和仪器玉米醇溶蛋白购自美国S i g m a-A l d r i c h公司,透明质酸购自西安百川生物科技有限公司,D M E M细胞培养基㊁青霉素-链霉素购自赛澳美细胞技术(北京)有限公司,胰蛋白酶购自浙江吉诺生物医药技术有限公司,胎牛血清购自依科赛生物科技(太仓)有限公司,其余试剂(分析纯)均购自国药集团化学试剂有限公司.S U P R A T M55扫描电子显微镜㊁L S M710激光共聚焦显微镜㊁37081正置荧光显微镜均购自德国Z e i s s公司,H i t a c h iH T-7700透射电子显微镜购自日本日立公司,Z e t a s i z e rN a n oS90马尔文粒度仪购自德国M a l v e r n公司,D8A D V A N C EX射线衍射仪购自德国B r u h k e r公司,N i c o l e t i S50傅里叶变换红外光谱仪购自美国T h e r m oF i s h e r S c i e n t i f i c公司,S C I E N T Z-ⅡD超声波细胞粉碎机购自宁波新芝生物科技股份有限公司,L a m b d a750紫外分光光度计购自美国P e r k i n E l m e r公司,i M a r k1681130酶标仪购自美国B i o-R a d公司.1.2玉米醇溶蛋白-透明质酸纳米颗粒的合成玉米醇溶蛋白-透明质酸纳米颗粒(Z e i n-H A)使用超声透析的方法进行制备.超声透析技术装置主要包括超声细胞粉碎机㊁透析袋㊁夹套烧杯㊁恒温槽和隔音箱,如图1A所示.将2m g的H A溶于3m L的超纯水中,超声使H A充分溶解.随后,在此溶液中加入7m L无水乙醇和10m g玉米醇溶蛋白,充分混合溶解.将上述溶液置于透析袋中,悬挂于超声波细胞粉碎机中,设定超声功率为150W,o n/o f f=2s/2s, 20ħ反应20m i n.通过梯度离心(3000r/m i n5m i n,8000r/m i n10m i n,3次)收集Z e i n-H A.将收集得到的Z e i n -H A 进行冷冻干燥,获得淡黄色样品.1.3 羟基喜树碱的包载利用羟基喜树碱(H C P T )与Z e i n -HA 之间的亲疏水作用,制备Z e i n -H A@H C P T.将2m g 的H A 溶于3m L 的超纯水中,加入7m L 无水乙醇㊁10m g 玉米醇溶蛋白和3m g H C P T.将上述溶液置于透析袋中,悬挂于超声波细胞粉碎机中,以150W 的功率,o n /o f f =2s /2s ,20ħ反应20m i n ,制备得到Z e i n -H A@H C P T.1.4 载药前后纳米颗粒的储存稳定性测试将新鲜制备的Z e i n -H A 和Z e i n -H A@H C P T 纳米颗粒分别置于p H7.4的磷酸盐缓冲溶液(P B S )中重悬,分别在第1天㊁第3天㊁第7天㊁第14天时取出部分样品,使用动态光散射仪(D L S )测定粒径㊁粒度分布指数(p o l y d i s p e r s i t yi n d e x ,P D I )和Z e t a 电位.1.5 纳米颗粒的形貌表征使用扫描电子显微镜(S E M )在15k V 的加速电压下,观察纳米颗粒的表面形貌结构和粒径大小.使用透射电子显微镜(T E M )在亮场模式㊁100k V 的加速电压下,观察纳米颗粒的内部形貌特征.1.6 载药前后纳米颗粒的粒径和Z e t a 电位表征将Z e i n -HA 和Z e i n -H A@H C P T 离心重悬后分散于超纯水中,使用D L S 测定载药前后纳米颗粒的粒径㊁P D I 和Z e t a 电位.1.7 纳米颗粒的化学结构与晶型结构分析使用傅里叶红外光谱仪(F T I R )分析不同纳米颗粒的化学结构,设置扫描范围为4000c m -1~500c m -1.使用X 射线衍射仪(X R D )分析不同样品的晶型结构,设定仪器参数:在40m A 和40k V 下产生C u -K α辐射,扫描速度为10ʎ/m i n ,扫描范围为5ʎ~80ʎ.1.8 Z e i n -H A @H C P T 的载药量和包封率表征图2 H C P T 的标准曲线F i g.2 S t a n d a r d c u r v e o fH C P T 在Z e i n -HA@H C P T 中加入二甲基亚砜(D M S O ),超声使药物溶出,离心后取上清液.使用紫外分光光度计测定384n m 处H C P T 的吸光度,根据图2的标准曲线计算上清液中H C P T 的质量浓度.分别计算纳米颗粒的包封率E 和载药量L ,计算公式为E =m (被封装的H C P T )m (总H C P T )ˑ100%,(1)L =m (被封装的H C P T )m (总纳米颗粒)ˑ100%.(2)1.9 Z e i n -H A @H C P T 的体外释放药物实验准确称取5m g Ze i n -HA@H C P T 分散于透析袋中,置于透析液为模拟胃液的烧杯中,透析2h .2h 后将透析袋取出,置于透析液为模拟小肠液的烧杯中,继续透析4h .最后置于透析液为模拟结肠液的烧杯中,透析18h .每隔一段时间,在透析液中取出2m L 液体,采用紫外分光光度计测定吸光度,同时补充2m L 相应的透析液.根据图2标准曲线,确定Z e i n -H A@H C P T 的体外累积药物释放百分比.1.10 细胞培养在37ħ㊁含5%C O 2的湿润条件培养基中培养小鼠结直肠癌细胞(C T 26,C D 44受体高度表达).条件培养基为含有10%胎牛血清和1%抗生素(100U /m L 青霉素和100μg/m L 链霉素)的D M E M 培养基.1.11 纳米颗粒的细胞毒性实验通过C C K -8比色法确定H C P T ㊁Z e i n -H A 和Z e i n -H A@H C P T 对C T 26细胞生长的影响.将C T 26细胞接种在96孔板中(每孔5ˑ103个细胞),给予条件培养基贴壁培养24h .用不同质量浓度(H C P T 等511 第2期朱曙霞,等:基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究同质量浓度0㊁0.001㊁0.01㊁0.125㊁0.25㊁0.50㊁1㊁2.5㊁5㊁10μg/m L )的上述纳米颗粒分别处理细胞.培养24h 后,加入10μLC C K -8,继续在37ħ㊁5%C O 2的潮湿环境中孵育1h .用酶标仪读取450n m 下的吸光度值.1.12 纳米颗粒的细胞摄取实验和H A 竞争实验将C T 26细胞接种在6孔板中(每孔1.5ˑ106个细胞),孵育24h .分别给予0.5μg /m L H C P T 或Z e i n -H A@H C P T (H C P T 等同质量浓度为0.5μg/m L )孵育4h .随后,用细胞核染料D A P I 染色,P B S 清洗后封片.使用正置荧光显微镜观察细胞摄取情况.将C T 26细胞与游离0.50m g /m L HA 预处理1h 后,更换新鲜培养基.加入0.5μg/m L H C P T 或Z e i n -H A@H C P T (H C P T 等同质量浓度为0.5μg/m L ),与细胞共同孵育4h .去除培养基后,用D A P I 染色,使用正置荧光显微镜观察竞争实验结果.2 结果与讨论2.1 不同因素对Z e i n -H A 粒径㊁P D I 和Z e t a 电位的影响使用正交试验设计O A 16(44)探索不同实验条件对Z e i n -H A 尺寸的影响,并优化超声透析制备Z e i n -H A 纳米颗粒的操作参数.如表1所示,实验设置了4个因素,即玉米醇溶蛋白质量浓度㊁H A 分子量㊁反应温度和超声功率.每个因素的水平范围基于预实验结果确定,通过超声透析制备的Z e i n -H A 的粒径范围为201.5~2299.3n m.表1 O A 16(44)的正交实验结果T a b .1 R e s u l t s o f t h eO A 16(44)m a t r i x o f o p e r a t i n g co n d i t i o n s 实验序号Z e i n质量浓度/(m g /m L )HA分子量/k D a 反应温度/ħ超声功率/WZ e t a 电位/m V粒径/n m 粒度分布指数渴望函数指数S E M 对应图序号11.010020100-21.0ʃ0.8201.5ʃ0.20.2040.903图3a 21.040030125-8.7ʃ1.2265.5ʃ0.10.1180.99631.010*******-24.8ʃ2.0243.8ʃ0.30.2340.862图3b 41.0150050175-14.2ʃ0.6373.6ʃ0.20.1770.926图3c52.510030150-55.4ʃ0.7405.5ʃ0.30.1460.61162.540020175-46.7ʃ1.3432.9ʃ0.30.2740.663图3d 72.5100050100-57.3ʃ0.8430.7ʃ0.20.2240.56582.5150040125-58.8ʃ0.1573.2ʃ0.10.2380.526图3e 95.010040175-49.5ʃ0.31120.3ʃ0.60.1980.566105.040050150-44.1ʃ0.7844.2ʃ0.40.1800.659图3f115.010*******-43.0ʃ0.61190.7ʃ0.30.4560.526图3g125.0150030100-46.7ʃ1.1573.5ʃ0.40.4380.589137.510050125-71.5ʃ1.41216.4ʃ0.40.9460147.540040100-49.7ʃ0.3734.2ʃ0.70.4490.542157.5100030175-39.5ʃ0.72299.3ʃ0.50.1850图3h 167.5150020150-41.5ʃ0.21219.0ʃ0.60.3150.576图3i最优条件1.040020150-36.4ʃ0.6344.9ʃ0.30.248不同实验组制备得到的典型Z e i n -H A 的扫描电子显微镜图见图3.当Z e i n 质量浓度为1.0m g/m L 时,能得到粒径较小但团聚交联明显的胶束状颗粒;当Z e i n 质量浓度为2.5m g /m L 时,Z e i n -HA 的交联情况得到一定改善;随着Z e i n 质量浓度进一步提高至5.0m g /m L 时,Z e i n -H A 表现为均一且分散性较好的球形形态;当Z e i n 质量浓度为7.5m g/m L 时,Z e i n -H A 的形貌虽呈球形形态,但粒径较大(2μm ).因此,通过调节操作参数,可获得均匀粒度和良好球形形貌的Z e i n -H A.611杭州师范大学学报(自然科学版)2024年a i 分别对应实验序号1,3,4,6,8,10,11,15和16.图3 Z e i n -H A 纳米颗粒的扫描电子显微镜图F i g .3 S E Mi m a g e s o fZ e i n -H An a n o pa r t i c l e s 采用单因素分析法和渴望函数分析法对正交实验结果进行分析,综合考虑对产品性能影响较大的各评价指标,获取最佳操作条件,如表2所示.根据渴望函数分析法结果,得到不同因素对纳米颗粒表型的重要性顺序为Z e i n 质量浓度>H A 分子量>超声功率>反应温度.根据k i 值,确定使用超声透析法制备Z e i n -H A 纳米颗粒的最佳参数水平:Z e i n 质量浓度为1.0m g/m L ㊁H A 分子量为400k D a ㊁反应温度为20ħ㊁超声功率为150W.使用最优参数条件制备的Z e i n -H A 纳米颗粒的粒径为344.9n m ,在正交表的粒径数据范围内.表2 不同评价指标的极差分析结果T a b .2 R a n g e a n a l ys i s r e s u l t s f o r e v a l u a t i o n i n d i c a t o r s 影响因素Z e i n 质量浓度HA 分子量反应温度超声功率 粒径 k 1271.1735.9761.0485.0 k 2460.6569.2886.0811.4 k 3932.21041.1667.9678.1k 41367.2684.8716.21056.5 R 4384.51887.7872.22286.2 Z e t a 电位 k 1-17.2-49.4-38.0-43.7 k 2-54.5-37.3-37.6-45.5 k 3-45.8-41.1-45.7-41.5 k 4-50.6-40.3-46.8-37.5 R149.448.436.732.1 粒度分布指数 k 10.1830.3740.3120.329 k 20.2210.2550.2210.440 k 30.3180.2750.2800.219711 第2期朱曙霞,等:基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究811杭州师范大学学报(自然科学版)2024年表2(续)影响因素Z e i n质量浓度HA分子量反应温度超声功率k40.4740.2920.3820.209R1.1630.4730.6420.924渴望函数指数k10.9220.5200.6670.650k20.5910.7150.5490.512k30.5850.4880.6240.677k40.2800.6540.5370.539R2.5690.9090.5180.660在最优条件下制备得到的Z e i n-H A的扫描电子显微镜图和动态光散射仪图如图4所示,结果表明通过超声透析法获得的Z e i n-H A纳米颗粒尺寸较小且分布较窄.a:扫描电子显微镜图;b:动态光散射仪图;D p50:中值粒径;P D I:粒径分布指数.图4使用最优条件制备的Z e i n-H A的扫描电子显微镜和动态光散射仪图F i g.4S E Mi m a g e a n dD L S r e s u l t s o fZ e i n-H A p r e p a r e du n d e r t h e o p t i m a l c o n d i t i o n2.2Z e i n-H A的药物负载与理化性质2.2.1Z e i n-H A@H C P T的形貌与化学结构使用超声透析法一步制备得到Z e i n-H A@H C P T.如图5所示,制备得到的Z e i n-H A@H C P T纳米药物为表面光滑的球形颗粒,粒径比Z e i n-H A增加了约30n m,平均粒径为383.5n m.a:扫描电子显微镜图;b:动态光散射仪图;D p50:中值粒径;P D I:粒径分布指数.图5Z e i n-H A@H C P T的扫描电子显微镜和动态光散射仪图F i g.5S E Mi m a g e a n dD L S r e s u l t s o fZ e i n-H A@H C P T使用傅里叶红外光谱仪研究了不同纳米颗粒的化学结构成分.如图6所示,H C P T在1740c m-1处表现出内酯环结构中酯键的红外特征峰[12].与Z e i n-HA的红外光谱相比,Z e i n-H A@H C P T具有1740c m-1处的H C P T特征峰,表明H C P T被成功包封在Z e i n-H A中.图6 H C P T ㊁Z e i n -H A @H C P T ㊁Z e i n -H A 和Z e i n 的傅里叶红外光谱仪图F i g .6 F T I Rs pe c t r a o fH C P T ,Z e i n -H A @H C P T ,Z e i n -H Aa n dZ e i n图7 H C P T ㊁Z e i n -H A @H C P T 和Z e i n -H A 的紫外分光光度计图F i g .7 U V -v i s s p e c t r a o fH C P T ,Z e i n -H A @H C P Ta n dZ e i n -H A 为进一步确保药物被封装在Z e i n -HA 中,对载药前后的纳米颗粒进行紫外分光光度计分析.如图7所示,游离H C P T 的紫外吸收峰为384n m ,Z e i n -H A@H C P T 中可以清晰地观察到该特征峰,而Z e i n -H A 中没有紫外特征吸收峰.实验结果表明,H C P T 被有效地包封在Z e i n -HA 中.2.2.2 Z e i n -H A@H C P T 的载药量和包封率H C P T 通过疏水作用被装载到Z e i n -HA 纳米颗粒中.使用D M S O 使纳米颗粒溶出并释放包封药物,测定溶出上清液中的H C P T 质量浓度,计算得到Z e i n -H A@H C P T 的包封率为95.85%,载药量为7.98%.结果表明,Z e i n -H A@H C P T 具有较高的包封率,可能是由于HA 的交联网状结构在一定程度上提高了纳米颗粒的包封率,或者H A 分子可以通过氢键作用将生物活性分子包封[13].图8 H C P T ㊁Z e i n -H A @H C P T ㊁Z e i n -H A 和Z e i n 的X 射线衍射图F i g.8 X R Dc u r v e s o fH C P T ,Z e i n -H A @H C P T ,Z e i n -H Aa n dZ e i n 2.3 不同纳米颗粒的晶型分析通过X 射线衍射仪表征,发现H C P T 原料药具有尖锐的晶型峰.当H C P T 原料药被封装在Z e i n -H A 中时,尖锐的晶型峰消失了,如图8所示,表明当封装在Z e i n -H A 中时,H C P T 以无定形的形式存在,这有助于提高H C P T 的溶解度和生物利用度[14].2.4 模拟胃肠道液的体外释药研究口服药物在胃肠道中的累积释放情况是评估药物疗效的重要指标.本研究根据药物口服后在各消化部位的停留时间,模拟观察了纳米药物在胃肠道消化液中911 第2期朱曙霞,等:基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究021杭州师范大学学报(自然科学版)2024年H C P T的释放情况.如图9所示,游离H C P T在前30分钟表现出明显的药物突释现象,随着时间的增加, H C P T的释放速率显著降低,这主要由于晶型态的H C P T原药在水溶液中的溶解度很低,H C P T原药快速达到了溶解平衡.Z e i n-H A@H C P T在胃液(S G F)中的释放量(小于10%)显著低于H C P T原药(约30%),这得益于Z e i n载体优异的抗胃酸分解特性.Z e i n-H A@H C P T在结肠液(S C F)环境下,表现出显著的药物释放(约60%),表明Z e i n-H A@H C P T具备优异的结肠靶向性,主要原因可能是Z e i n载体的控缓释作用和p H响应的Z e i n载体的溶胀行为.据文献[15-16]报道,结肠中的肠道微生物能有效降解Z e i n基载体,有助于目标药物在结肠病灶部位的靶向释放.图9H C P T和Z e i n-H A@H C P T在模拟胃肠道消化液中的体外释药曲线F i g.9I nv i t r od r u g r e l e a s e c u r v e o fH C P Ta n dZ e i n-H A@H C P T i n s i m u l a t e d g a s t r o i n t e s t i n a l f l u i d s分别取出部分在胃液(S G F)消化后㊁小肠液(S I F)消化后和结肠液(S C F)消化后的Z e i n-H A@ H C P T,使用扫描电子显微镜观察其表面形貌的变化.如图10所示,未经消化的Z e i n-H A@H C P T呈光滑的球形且粒径均一;经S G F消化后,其形貌和粒径未发生明显变化;经S I F消化后,Z e i n-H A@H C P T的表面形貌发生了轻微变化,其表面出现部分溶胀粘连,由立体球形转变为扁平球形;经S C F消化后,Z e i n-H A@H C P T失去完整的球形,呈现大片黏连,这可能是由于S C F使Z e i n-H A载体发生明显溶胀,从而释放H C P T,造成了Z e i n-H A@H C P T形态的改变.R a w:原始样品;S G F:模拟胃液流体;S I F:模拟小肠流体;S C F:模拟结肠流体.图10不同胃肠道液环境下Z e i n-H A@H C P T的扫描电子显微镜图F i g.10S E Mi m a g e s o fZ e i n-H A@H C P Ta f t e r t r e a t m e n tw i t hSG F,S I Fa n dS C F2.5 Z e i n -H A @H C P T 的生物稳定性生物稳定性是评估纳米颗粒在生物体内利用效率的关键因素.本研究对制备得到的Z e i n -H A@H C P T 进行了储存稳定性测试.将制备得到的Z e i n -H A@H C P T 置于p H 7.4的P B S 中,使用动态光散射仪测定粒径㊁粒度分布指数和Z e t a 电位在14d 内的变化.如表3所示,2周内,Z e i n -H A@H C P T 的粒径㊁粒度分布指数和Z e t a 电位均无显著变化,表明Z e i n -H A@H C P T 具有良好的生物稳定性.表3 P B S 缓冲液(pH 7.4)中Z e i n -H A @H C P T 的颗粒性能T a b .3 P a r t i c l e p r o p e r t i e s o fZ e i n -H A @H C P Ta f t e r d i f f e r e n t s t o r a g e t i m e s i nP B Sb u f f e r (p H 7.4)存储时间平均粒径/n m 粒度分布指数Z e t a 电位/m V 新鲜制备383.5ʃ1.40.274-36.9ʃ1.91d 390.1ʃ2.60.226-42.5ʃ2.73d 396.8ʃ2.90.248-36.0ʃ0.87d 400.4ʃ2.50.232-31.9ʃ1.514d395.3ʃ3.20.333-30.4ʃ0.32.6 纳米颗粒的体外细胞毒性实验选用小鼠结肠癌细胞(C T 26细胞,C D 44高表达)探究Z e i n -H A@H C P T 对结肠癌细胞生长的影响.如图11所示,Z e i n -H A 空白载体对C T 26细胞几乎没有细胞毒性;随着载体浓度的增加,细胞活性呈现一定程度的增加,这可能是由于Z e i n -H A 的降解产物有助于C T 26的增殖.Z e i n -H A@H C P T 显示出比游离H C P T 更低的I C 50值,说明Z e i n -H A@H C P T 的细胞毒性更强,这可能是由于肿瘤细胞对纳米颗粒的摄取能力高于游离药物,且包封在Z e i n -H A@H C P T 中的H C P T 呈无定形形态,溶解度相较于游离H C P T 有所提高,进而使H C P T 的生物利用度提高;同时Z e i n -H A@H C P T 优异的C D 44靶向能力使C D 44受体高表达的C T 26肿瘤细胞对Z e i n -H A@H C P T 的摄取增加,从而表现出更强的细胞毒性.图11 C T 26细胞毒性实验结果F i g .11 I nv i t r o c y t o t o x i c i t y ofH C P T ,Z e i n -H A @H C P Ta n dZ e i n -H At oC T 26c e l l s 2.7 纳米颗粒对肿瘤细胞的靶向摄取能力为探究C T 26细胞对Z e i n -H A@H C P T 的摄取能力,本研究使用正置荧光显微镜观察Z e i n -H A@H C P T 的细胞摄取情况.如图12所示,随着H C P T 和Z e i n -H A@H C P T 与细胞的孵育时间从1h 延长至4h ,细胞内的荧光强度也逐渐增强,这表明H C P T 和Z e i n -H A@H C P T 被细胞内化的过程是时间依赖性的摄取过程.4h 时,H C P T 与Z e i n -H A@H C P T 的摄取能力差异与细胞毒性的结果吻合.为探究Z e i n -H A@H C P T 的C D 44靶向能力,通过设置H A 竞争实验,对贴壁生长24h 的C T 26细胞使用游离H A (0.5m g /m L )预处理1h 后,再给予不同的药物共同孵育4h ,观察肿瘤细胞对药物摄取能力的变化.如图12所示,C T 26细胞与Z e i n -H A@H C P T 共孵育的实验组中,细胞内几乎没有绿色荧121 第2期朱曙霞,等:基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究221杭州师范大学学报(自然科学版)2024年光;缺少C D44靶向配体的游离药物H C P T,即使在H A预处理后,细胞内仍显示出强烈的绿色荧光,具有较高的摄取能力.实验结果表明,Z e i n-H A@H C P T纳米颗粒是通过C D44受体介导的通路进行细胞摄取的.A:H C P T处理组;B:Z e i n-HA@H C P T处理组;标尺:40μm.图12C T26细胞中纳米颗粒的摄取能力F i g.12U p t a k e a b i l i t y o f n a n o p a r t i c l e s i nC T26c e l l s3结论抗结肠癌口服药物克服肠胃道p H㊁消化酶和黏膜等多重生理屏障,实现结肠病灶部位的靶向蓄积是当前面临的重要挑战.本研究使用超声透析法构建基于玉米醇溶蛋白-透明质酸的纳米复合载体,利用四因素四水平的正交实验优化实验参数,使用渴望函数法评价操作参数对多指标的影响.获取制备纳米颗粒的最优条件:Z e i n质量浓度为1.0m g/m L,HA分子质量为400k D a,反应温度为20ħ,超声功率为150W.使用一步法制备Z e i n-H A@H C P T纳米药物(包封率达95.85%),具备优异的抗胃酸分解特性,利用时间依赖性药物控制释放机制实现结肠靶向递送.通过考察Z e i n-H A@H C P T的生物稳定性㊁细胞毒性㊁细胞摄取等生物学性能,表明Z e i n-H A@H C P T纳米药物具有良好的生物稳定性㊁高效的细胞毒性和C D44受体靶向能力,可实现对结肠癌的靶向治疗.参考文献:[1]R E A C T TC O L L A B O R A T I V E ,Z A B O R OW S K IA M ,A B D I L EA ,e t a l .C h a r a c t e r i s t i c s o f e a r l y -o n s e t v s l a t e -o n s e t c o l o r e c t a l c a n c e r :a r e v i e w [J ].J AMAS u r g,2021,156(9):865-874.[2]C A O M M ,L IH ,S U NDQ ,e t a l .C a n c e r b u r d e n o fm a j o r c a n c e r s i nC h i n a :a n e e d f o r s u s t a i n a b l e a c t i o n s [J ].C a n c e r C o m m u n ,2020,40(5):205-210.[3]B O Z T E P E H ,ÖZ D E M I R H ,K A R A B A B A Ç,e t a l .D i f f i c u l t i e s e x p e r i e n c e dd u r i n gp r e p a r a t i o na n da d m i n i s t r a t i o no f o r a l d r u g s [J ].T u r kP e d i a t r iA r s ,2014,49(3):231-237.[4]Z H A N G K F ,F UJX ,L I U X R ,e t a l .M i t o c h o n d r i a l -t a r g e t e dt r i p h e n y l p h o s p h o n i u m -h y d r o x y c a m p t o t h e c i nc o n j u g a t ea n d i t sn a n o -f o r m u l a t i o n s f o r b r e a s t c a n c e r t h e r a p y :i nv i t r o a n d i nv i v o i n v e s t i g a t i o n [J ].P h a r m a c e u t i c s ,2023,15(2):388.[5]WA N G M Y ,X U HZ ,L ITF ,e t a l .S o n o d y n a m i c t h e r a p y o f g l i o b l a s t o m am e d i a t e d b y p l a t e l e t sw i t h u l t r a s o u n d -t r i g g e r e d d r u g r e l e a s e [J ].D r u g De l i v ,2023,30(1):2219429.[6]B R U C ESF ,C H O K ,N O I A H ,e t a l .G A S 6-A X L i n h i b i t i o nb y A V B -500o v e r c o m e s r e s i s t a n c e t o p a c l i t a x e l i ne n d o m e t r i a l c a n c e r b y d e c r e a s i n g t u m o r c e l l g l y c o l y s i s [J ].M o l C a n c e rT h e r ,2022,21(8):1348-1359.[7]K AM I S AWA T ,WO O DLD ,I T O IT ,e t a l .P a n c r e a t i c c a n c e r [J ].L a n c e t ,2016,388(10039):73-85.[8]S O S N I K A ,A U G U S T I N ER.C h a l l e n g e s i n o r a l d r u g d e l i v e r y o f a n t i r e t r o v i r a l s a n d t h e i n n o v a t i v e s t r a t e g i e s t o o v e r c o m e t h e m [J ].A d v D r u g De l i vR e v ,2016,103:105-120.[9]MA C E WA NSR ,C H I L K O T IA.F r o mc o m p o s i t i o nt oc u r e :as y s t e m se n g i n e e r i n g a p p r o a c ht oa n t i c a n c e rd r u g c a r r i e r s [J ].A n g e w C h e mI n tE dE n gl ,2017,56(24):6712-6733.[10]G I T E R U S G ,A L I M A ,O E YI .R e c e n t p r o g r e s si nu n d e r s t a n d i n g f u n d a m e n t a l i n t e r a c t i o n sa n da p p l i c a t i o n so fz e i n [J ].F o o d H yd r o c o l l ,2021,120:106948.[11]L E IC ,L I U XR ,C H E N QB ,e t a l .H y a l u r o n i c a c i d a n da l b u m i nb a s e dn a n o p a r t i c l e sf o r d r ug d e l i v e r y [J ].JC o n t r o lR e l e a s e ,2021,331:416-433.[12]J I N X ,A S G H A RS ,Z HU X T ,e t a l .I nv i t r o a n d i nv i v o e v a l u a t i o no f 10-h y d r o x y c a m p t o t h e c i n -l o a d e d p o l y (n -b u t y l c y a n o a c r y l a t e )n a n o p a r t i c l e s p r e p a r e db y m i n i e m u l s i o n p o l y m e r i z a t i o n [J ].C o l l o i d sS u r f BB i o i n t e r f a c e s ,2018,162:25-34.[13]C H E N S ,M C C L E M E N T S D J ,J I A N L ,e ta l .C o r e -s h e l lb i o p o l y m e rn a n o p a r t i c l e sf o rc o -d e l i v e r y o fc u r c u m i na n d p i pe r i n e :s e q u e n t i a l e l e c t r o s t a t i c d e p o s i t i o nof h y a l u r o n i c a c i d a n d c h i t o s a n s h e l l s o n t h e z e i n c o r e [J ].A C SA p p lM a t e r I n t e r f a c e s ,2019,11(41):38103-38115.[14]T OMA RD ,S I N G H PK ,H O Q U ES ,e t a l .A m o r p h o u s s y s t e m s f o r d e l i v e r y o f n u t r a c e u t i c a l s :c h a l l e n g e s o p p o r t u n i t i e s [J ].C r i tR e v F o o dS c iN u t r ,2022,62(5):1204-1221.[15]S I N HA V R ,K UM R I A R.M i c r o b i a l l y t r i g g e r e dd r u g d e l i v e r y to t h e c o l o n [J ].E u r JP h a r mS c i ,2003,18(1):3-18.[16]P A T E L M ,AM I N A.R e c e n t t r e n d s i nm i c r o b i a l l y a n d /o r e n z y m a t i c a l l y d r i v e n c o l o n -s p e c i f i c d r u g d e l i v e r y s ys t e m s [J ].C r i tR e vT h e r D r u g C a r r i e r S y s t ,2011,28(6):489-552.S t u d y o nC o l o n -t a r ge t e dO r a lN a n o m e d i c i n eB a s e do nZ e i n -H AC a r r i e r Z HUS h u x i a ,WA N G M e i l i n g ,X UZ i n i n g ,Y U Y u a n l o n g ,P A NJ i a n l i n ,WA N G H o n gd i (C o l le g e o fM a t e r i a l ,C h e m i s t r y a n dC h e m i c a l E n g i n e e r i n g ,H a n g z h o uN o r m a lU n i v e r s i t y ,H a n gz h o u311121,C h i n a )A b s t r a c t :O r a l n a n o c a r r i e r s f o r c o l o n -t a r g e t e dm e d i c i n ed e l i v e r y b a s e do nZ e i n -h y a l u r o n i ca c i d (HA )w e r ed e s i gn e d i n t h i s s t u d y .T h e n a n o m e d i c i n e o f Z e i n -HA -h y d r o x y c a m p t o t h e c i n (Z e i n -HA@H C P T )w a s p r e p a r e db y t h e u l t r a s o u n d d i a l y s i s m e t h o d .T h e p r e p a r a t i o n c o n d i t i o n s o f t h en a n o m e d i c i n ew e r eo p t i m i z e db y d e s i r a b i l i t y f u n c t i o n .T h em i c r o s t r u c t u r e ,d r u gr e l e a s e b e h a v i o r ,c y t o t o x i c i t y a n d t a r g e t e d c e l l u l a r u p t a k e a b i l i t y o f t h e n a n o m e d i c i n ew e r e i n v e s t i g a t e d .T h e r e s u l t s s h o w e d t h a t Z e i n -HA@H C P T p o s s e s s e dah i g hd r u g e n c a p s u l a t i o ne f f i c i e n c y o v e r 95%.M e a n t i m e ,i t e x h i b i t e d e x c e l l e n t b i o l o g i c a l s t a b i l i t y ,b i o c o m p a t i b i l i t y ,a n du n i q u e g a s t r i ca c i dr e s i s t a n c e .T h ec u m u l a t i v er e l e a s eo fd r u g s i nt h ec o l o n i ce n v i r o n m e n t w a s s i g n i f i c a n t l y i m p r o v e d .F u r t h e r m o r e ,Z e i n -HA@H C P T w a s t a r g e t e da n d t a k e nu p b y c o l o nc a n c e r c e l l s t h r o u ghC D 44r e c e p t o rm e d i a t e de n d o c y t o s i s ,w h i c hc a n i m p r o v e t h e a n t i -t u m o r e f f i c a c y o f d r u gs .K e y wo r d s :Z e i n ;h y a l u r o n i c a c i d ;h y d r o x y c a m p t o t h e c i n ;c o l o n -t a r g e t e d 321 第2期朱曙霞,等:基于玉米醇溶蛋白-透明质酸载体的结肠靶向口服纳米药物研究。
2 DOI:10.3969/j.issn.1001-5256.2023.01.028细胞器之间相互作用在非酒精性脂肪性肝病发生发展中的作用刘天会首都医科大学附属北京友谊医院肝病中心,北京100050通信作者:刘天会,liu_tianhui@163.com(ORCID:0000-0001-6789-3016)摘要:细胞器除了具有各自特定的功能外,还可与其他细胞器相互作用完成重要的生理功能。
细胞器之间相互作用的异常与疾病的发生发展密切相关。
近年来,细胞器之间相互作用在非酒精性脂肪性肝病(NAFLD)发生发展中的作用受到关注,特别是线粒体、脂滴与其他细胞器之间的相互作用。
关键词:非酒精性脂肪性肝病;细胞器;线粒体;脂肪滴基金项目:国家自然科学基金面上项目(82070618)RoleoforganelleinteractioninthedevelopmentandprogressionofnonalcoholicfattyliverdiseaseLIUTianhui.(LiverResearchCenter,BeijingFriendshipHospital,CapitalMedicalUniversity,Beijing100050,China)Correspondingauthor:LIUTianhui,liu_tianhui@163.com(ORCID:0000-0001-6789-3016)Abstract:Inadditiontoitsownspecificfunctions,anorganellecanalsointeractwithotherorganellestocompleteimportantphysiologicalfunctions.Thedisordersoforganelleinteractionsarecloselyassociatedthedevelopmentandprogressionofvariousdiseases.Inrecentyears,theroleoforganelleinteractionshasattractedmoreattentionintheprogressionofnonalcoholicfattyliverdisease,especiallytheinteractionsbetweenmitochondria,lipiddroplets,andotherorganelles.Keywords:Non-alcoholicFattyLiverDisease;Organelles;Mitochondria;LipidDropletsResearchfunding:NationalNaturalScienceFoundationofChina(82070618) 细胞器可以通过膜接触位点与其他细胞器相互作用,完成物质与信息的交换,形成互作网络[1]。
化工进展Chemical Industry and Engineering Progress2022年第41卷第8期纳米纤维素构建超疏水材料研究进展詹洵,陈健,杨兆哲,吴国民,孔振武,沈葵忠(中国林业科学研究院林产化学工业研究所,江苏省生物质能源与材料重点实验室,国家林业和草原局林产化学工程重点实验室,林木生物质低碳高效利用国家工程研究中心,江苏省林业资源高效加工利用协同创新中心,江苏南京210042)摘要:纳米纤维素表面富含活性羟基,具有高度的亲水性和吸水性,这在很大程度上成为影响纳米纤维素在工业上大规模应用的主要因素。
对纳米纤维素表面的活性羟基进行化学修饰提高其疏水性,日益成为国内外学者研究的热点。
本文在简要阐述超疏水材料基本特征和制备方法的基础上,对比了不同超疏水材料制备方法(模板法、喷涂法、沉积法、刻蚀法)的优劣,重点介绍了国内外学者利用纳米纤维素构建超疏水材料(气凝胶、纸张、涂层、薄膜等)在生物医学、造纸工业、油水分离、食品包装、储能材料等不同领域的研究进展,归纳并分析了目前纳米纤维素构建超疏水材料在改性方式和性能提升等方面仍存在的问题,同时指出了纳米纤维素构建超疏水材料未来将朝着过程无污染化、工艺简化、稳定性优化等方向发展。
关键词:纳米纤维素;超疏水材料;气凝胶;涂层;薄膜中图分类号:TQ35文献标志码:A文章编号:1000-6613(2022)08-4303-11Progress on superhydrophobic materials from nanocelluloseZHAN Xun ,CHEN Jian ,YANG Zhaozhe ,WU Guomin ,KONG Zhenwu ,SHEN Kuizhong(Institute of Chemical Industry of Forest Products,Chinese Academy of Forestry;Key Laboratory of Biomass Energy andMaterial,Jiangsu Province;Key Laboratory of Chemical Engineering of Forest Products,National Forestry and Grassland Administration;National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass;Jiangsu Co -Innovation Center of Efficient Processing and Utilization of Forest Resources,Nanjing 210042,Jiangsu,China)Abstract:Due to the abundant hydroxyl groups on the surface,nanocellulose has high hydrophilicity and water absorption,which has become the main factor affecting its large-scale application.Functional modification of the active hydroxyl groups on the surface of nanocellulose to improve its hydrophobicity has increasingly become an attractive research area.Based on a brief description of superhydrophobic materials and a comparison of different preparation methods of superhydrophobic materials,this article focused on the research progress on using nanocellulose to construct superhydrophobic materials (aerogels,paper,coatings and films)in the fields of biomedical,papermaking,oil-water separation,food packaging,energy storage materials,etc .,and summarized and analyzed the problems in the application of nanocellulose superhydrophobic materials.At the same time,it was pointed out that the future development direction of nanocellulose to construct superhydrophobic materials would focus on the pollution-free process,process simplification and stability optimization.综述与专论DOI :10.16085/j.issn.1000-6613.2021-2005收稿日期:2021-09-23;修改稿日期:2021-12-03。
DOI:10.1021/la904014z 6083Langmuir 2010,26(9),6083–6085Published on Web 03/18//Langmuir ©2010American Chemical SocietyGraphene Oxide as a Matrix for Enzyme ImmobilizationJiali Zhang,†,§Feng Zhang,‡,§Haijun Yang,†Xuelei Huang,‡Hui Liu,‡Jingyan Zhang,*,‡andShouwu Guo*,††National Key Laboratory of Micro/Nano Fabrication Technology,Research Institute of Micro/Nano Science and Technology,Shanghai Jiao Tong University,Shanghai,200240China,and ‡State Key Laboratory of Bioreactor Engineering,School of Pharmacy,East China University of Science &Technology,Shanghai,200237China.§These authors contributed equally to this work.Received October 16,2009.Revised Manuscript Received January 25,2010Graphene oxide (GO),having a large specific surface area and abundant functional groups,provides an ideal substrate for study enzyme immobilization.We demonstrated that the enzyme immobilization on the GO sheets could take place readily without using any cross-linking reagents and additional surface modification.The atomically flat surface enabled us to observe the immobilized enzyme in the native state directly using atomic force microscopy (AFM).Combining the AFM imaging results of the immobilized enzyme molecules and their catalytic activity,we illustrated that the conformation of the immobilized enzyme is mainly determined by interactions of enzyme molecules with the functional groups of GO.IntroductionGraphene oxide (GO),as a basic material for the preparation of individual graphene sheets in bulk-quantity,has attracted great attention in recent years.1-3In addition,the incredibly large specific surface area (two accessible sides),the abundant oxygen-containing surface functionalities,such as epoxide,hydroxyl,and carboxylic groups,and the high water solubility afford GO sheets great promise for many more applications.1,2For instance,the GO nanosheets modified with polyethylene glycol have been employed as aqueous compatible carriers for water-insoluble drug delivery.4The intrinsic oxygen-containing functional groups were used as initial sites for deposition of metal nanoparticles and organic macromolecules,such as porphyrin,on the GO sheets,which opened up a novel route to multifunctional nanometer-scaled catalytic,magnetic,and optoelectronic materials.5-7How-ever,few studies about the binding of biomacromolecules,such as enzymes,to GO have been reported to date.Since the discovery of the advantageous property of immobi-lized enzymes,the challenges in this area have been to explore new substrate materials with appropriate structures (including the morphology and surface functionality)and compositions to deepen the understanding of enzyme immobilization and thus to improve the catalytic efficiency of the immobilizedenzymes.8-11Recently,along with the development of nano-structured materials,a range of nanomaterials with different sizes and shapes have been utilized as the substrates for enzyme immobilization.12-14It has been demonstrated that the enzymes immobilized on the nanostructured materials have some advan-tages over the bulk solid substrates.8,15However,similar to bulk solid substrates,to efficiently immobilize enzymes on nanostruc-tured material surfaces,in many cases,labored work was required to modify/functionalize the substrate surface.16,17Moreover,for most of the nanostructured materials,it is hard to fully char-acterize their surfaces using conventional surface analytical tools.This limits the deep understanding of enzyme immobilization.Consequently,new nanostructured materials that not only can immobilize the enzyme enthusiastically but also can enable insight into the interactions between enzymes and the substrate are still in need of exploration.GO sheets should be an ideal substrate for the study of enzyme immobilization on nanostructured materials.As aforementioned,the individual GO sheet is enriched with oxygen-containing groups,which makes it possible to immobilize enzymes without any surface modification or any coupling reagents.The atomi-cally flat surface of GO should provide a platform to characterize the immobilized enzyme using conventional surface imaging techniques,such as atomic force microscopy (AFM),and to further study the interactions between enzyme molecules and the GO surface.We describe herein the immobilization of horse-radish peroxidase (HRP)and lysozyme,as model enzymes,on the GO.The enzyme immobilization was characterized in situ with AFM in a liquid cell,and the catalytic activity of the immobilized HRP was assayed using phenol and hydrogen peroxide as catalytic reaction substrates.*To whom correspondence should be addressed.E-mail:swguo@ (S.G.);jyzhang@ (J.Z.).(1)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallance,G.G.Nature Nanotechnol.2008,3,101–105.(2)Park,S.;Ruoff,R.S.Nature Nanotechnol.2009,4,217–223.(3)Tung,V.C.;Allen,M.J.;Yang,Y.;Kaner,R.B.Nature Nanotechnol.2009,4,25–29.(4)Liu,Z.;Robinson,J.T.;Sun,X.;Dai,H.J.Am.Chem.Soc.2008,130,10876–10877.(5)Lomeda,J.R.;Doyle,C.D.;Kosynkin,D.V.;Hwang,W.;Tour,J.M.J.Am.Chem.Soc.2008,130,16201–16206.(6)Muszynski,R.;Seger,B.;Kamat,P.V.J.Phys.Chem.C 2008,112,5263–5266.(7)Xu,Y.;Liu,Z.;Zhang,X.;Wang,Y.;Tian,J.;Huang,Y.;Ma,Y.;Zhang,X.;Chen,Y.Adv.Mater.2009,21,1275–1278.(8)Bornscheuer,U.T.Angew.Chem.,Int.Ed.2003,42,3336–3337.(9)Betancor,L.;Luckarift,H.R.Trends Biotechnol.2008,26,566–572.(10)Badalo,A.;Gomez,J.L.;Gomez,E.;Bastida,J.;Maximo,M.F.Chemo-sphere 2006,63,626–632.(11)Chen,B.;Pernodet,N.;Rafailovich,M.H.;Bakhtina,A.;Gross,ngmuir 2008,24,13457–13464.(12)Kim,J.;Grate,J.W.;Wang,P.Chem.Eng.Sci.2006,61,1017–1026.(13)Zhi,C.;Bando,Y.;Tang,C.;Golberg,D.J.Am.Chem.Soc.2005,127,17144–17145.(14)Tsang,S.C.;Yu,C.H.;Gao,X.;Tam,K.J.Phys.Chem.B 2006,110,16914–16922.(15)Takahashi,H.;Li,B.;Sasaki,T.;Miyazaki,C.;Kajino,T.;Inagaki,S.Chem.Mater.2000,12,3301–3305.(16)Lee,Y.M.;Kwon,O.Y.;Yoon,Y.J.;Ryu,K.Biotechnol.Lett.2006,28,39–43.(17)Lin,Y.;Lu,F.;Tu,Y.;Ren,Z.Nano Lett.2004,4,191–195.Letter Zhang et al.Experimental SectionGO was prepared using natural graphite powder through amodified Hummers method.18,19The as-obtained yellow-brownaqueous suspension of GO was stored at RT on a lab bench,and used for characterizations and enzyme immobilization.Thesamples for Fourier transform infrared(FT-IR)measurementwere prepared by grinding the dried powder of graphene oxidewith KBr together and then compressing the mixture into thinpellets(EQUINOX55,Bruker,Germany).The specimens oftransmission electron microscopy(TEM)(JEM-2010)were pre-pared by placing the aqueous suspension(∼0.02mg/mL)ofgraphene oxide on the carbon-coated copper grids,and blottedafter30s.AFM images of graphene oxide were taken on aMultiMode Nanoscope V scanning probe microscopy system(Veeco).The samples for AFM were prepared by dropping theaqueous suspension(∼0.02mg/mL)of GO on a freshly cleavedmica surface.AFM images of the GO-bound enzymes wereacquired in a liquid cell using tapping mode.To acquire in situAFM images for enzyme immobilization,the liquid cell wascirculated with the fresh enzyme solution during imaging.20Enzyme immobilization was carried out by adding the desiredamount of GO to0.1M phosphate buffer that contained theenzymes to be immobilized.21The mixture was incubated for30min on ice with shaking and then centrifuged.The supernatantwas used to determine the enzyme loading.The immobilized enzy-mes were washed three times with the same buffer to remove physi-cal adsorbed enzymes.The resulting immobilized enzymes werethen subjected to activity assay.A colorimetric assay was employedto evaluate HRP activity.22The initial reaction rates were obtainedvia a linear fit of the curve of the product absorbance at510nmversus the reaction time(Supporting Information Figure S2).23Results and DiscussionThe morphology of as-prepared GO was characterized firstusing AFM(Figure1a).The height of the flat GO sheet is∼1nm(Figure1b),demonstrating a single atomic layer thicknessstructure feature.The thin nanoplate motif of the GO sheetswas also confirmed by TEM(Figure1c).The functional groups (Figure1d)existing on the GO surface were verified by FT-IR spectroscopy(Supporting Information Figure S1).The enzyme immobilization was carried out by incubating the GO(0.5to 1mg/mL aqueous dispersions)with the enzymes in phosphate buffer solution at4°C.We found that HRP can be spontaneously immobilized on GO.Presumably,the amine groups of HRP may form amide bonds with the carboxylic groups of GO;however, without any coupling reagents,this covalent interaction usually happens very slowly.24Therefore,the covalent bonding may not contribute to HRP-GO interaction.To elucidate the contribu-tion of other interactions,the phosphate buffers with pH from4.8 to8.8,were tested.As shown in Figure2,the loading of HRP on the GO decreases with increasing pH.HRP(pI=7.2)has a net positive charge at pH below7.2and a net negative charge at pH above7.2.The GO sheets are negatively charged in the aqueous solution with a pH range from4to11(see Supporting Informa-tion Figure S3).1-3Thus,in the buffer solutions with a pH range from4.8to7.2,the positively charged HRP interacts with the negatively charged GO by electrostatic interaction,while in the buffer solutions from pH7.2to8.8,HRP and GO both are negatively charged,and will repel each other.Therefore,less HRP was loaded.Only an∼30%enzyme loading decrease was observed when the pH of the buffer solutions increased from 4.8to8.8(Figure2),suggesting that other interactions,such as hydrogen bonding between the oxygen-containing functionalities of GO and surface amino acid residues of HRP,may contribute to GO-HRP interaction,too.Owing to the strong electrostatic interactions and hydrogen bonding,the maximum loading of HRP on GO at pH7.0is about100μg/mg of GO,which is much higher than the loadings on many reported materials.25-27To further illustrate the electrostatic interaction between the enzymes and GO,we examined the immobilization of lysozyme,an enzyme with pI=10.3(positively charged at pH7.0).The lysozyme can be spontaneously immobilized on GO,too,with the maximum loading of about700μg/mg of GO at pH7.0.The positively charged surface of lysozyme apparently is favorable for its interaction with GO.The loading difference between HRP and lysozyme indicates that the interactions of substrate-enzymes are determined by the surface charges of the specified enzymes and the substrate.The high enzyme loadings reveal the exceptional potential of GO as a solid substrate for enzyme immobilization. The enzyme immobilization was monitored in situ using AFM. Figure3a and b shows typical AFM images of the GO in a liquid Figure1.(a)Tapping mode AFM image of graphene oxide(GO) on a mica surface,(b)height profile of the AFM image,(c)TEM image of the GO,and(d)schematic model of GO.Figure2.pH influence on HRP loading.Conditions:50μg GO and2μg/mL HRP.(18)Hummers,W.S.;Offerman,R.E.J.Am.Chem.Soc.1958,80,1339–1339.(19)He,H.;Klinowski,J.;Forster,M.;Lerf,A.Chem.Phys.Lett.1998,287,53–56.(20)Guo,S.;Ward,M.D.;Wesson,ngmuir2002,18,4284–4291.(21)Cheng,J.;Ming,Yu,S.;Zuo,P.Water Res.2006,40,283–290.(22)Nicell,J.A.;Wright,H.Enzyme Microb.Technol.1997,21,302–310.(23)Buchanan,I.D.;Nicell,J.A.Biotechnol.Bioeng.1997,54,251–261.(24)Cao,Y.;Kyratzis,I.Bioconjugate Chem.2008,19,1945–1950.(25)Pundir,C.S.;Malik,V.;Bhargava,A.K.;Thakur,M.;Kaliam,V.;Singh, S.;Kuchhal,N.K.J.Plant Biochem.Biotechnol.1999,8,123–126.(26)Azevedo,A.M.;Vojinovic,V.;Cabral,J.M.S.;Gibson,T.D.;Fonseca, L.P.J.Mol.Catal.B:Enzym.2004,28,121–128.(27)G o mez,J.L.;B o dalo,A.;G o mez,E.;Bastida,J.;Hidalgo,A.M.;G o mez, M.Enzyme Microb.Technol.2006,39,1016–1022.6084DOI:10.1021/la904014z Langmuir2010,26(9),6083–6085DOI:10.1021/la904014z6085Langmuir 2010,26(9),6083–6085Zhang et al.Lettercell after being incubated together with HRP in phosphate buffer for 30min.With a lower enzyme loading (HRP/GO =3:500,in weight),the particles (bright spots,presumably the immobilized enzyme molecules)on the GO surface were observed (Figure 3a).The average diameter and height of the particles on the GO surfaceare about 140and 15A,respectively.The dimension size of the immobilized HRP molecule,140Â140Â15A,is roughly con-sistent with the dimension size of free HRP,30Â65Â75A3.28This is the first picture of the native immobilized enzyme.The larger average diameter and shorter height of the immobilized HRP molecules revealed that immobilization induced some conforma-tional changes of the HRP molecules.With a higher enzyme loading (HRP/GO =3:50,in weight),the enzyme molecules tethered densely over all of the GO surface in the AFM image (Figure 3b).The distribution of HRP on the GO surface should be determined by the intrinsic sites of the oxygen functionalities.Except for the carboxylic groups,which are located at the periphery,others,such as hydroxyl and epoxide groups,distributed randomly over the GO surface.19The mole ratio of C/O of the GO used in the work is about 4,and thus,HRP may densely bind on the GO surface.This is in agreement with the AFM image (Figure 3b)where we observed the increased surface coverage with higher enzyme loading.The catalytic property of the HRP immobilized on GO was investigated using phenol as a reducing substrate.We found that the initial catalytic reaction rates of the immobilized HRP were linear to the HRP loading under an excess and constant substrate concentration (Figure 3d),though they are relatively lower than that of free HRP.29This result suggested that the voids presented between the immobilized HRP molecules are enough for the free diffusion of substrate and product into and out of the HRP active sites,though the immobilized enzymes seem crowded on the GO surface (see Figure 3b).Given the single atomic layer feature ofthe GO sheet,the total surface area is about 7.05Â1022A2/g,and assuming the average transverse area of one molecule HRP isabout 3000A2,the HRP molecules cover less than 50%of the surface area of GO even with the higher enzyme loading.The catalytic activities of the HRP immobilized on GO with the lower and higher enzyme loadings were further characterized by turnover number (K cat )and enzyme efficiency (K cat /K m ).K m and K cat values were obtained according to the Lineweaver -Burk equation as described in the Supporting Information (Figure S2).The values of the kinetic parameters K m and K cat are summarized in Table 1.The similar K m values for the GO immobilized HRP with the lower and higher enzyme loadings,and free HRP indicated that they all have a similar affinity to the reducing substrate.However,K cat /K m values of the immobilized HRP are lower than those of free HRP.Noticeably,the comparable K cat /K m values for the HRP immobilized on GO with the higher and lower enzyme loadings confirmed that increasing enzyme loading does not affect the enzyme efficiency.The catalytic reactions of the immobilized HRP (with the higher and lower enzyme loadings)with a bulky reducing substrate,2,4,6-trimethylphenol,exhibited similar activity,further supporting this result.Thus,combined with the AFM imaging results,we believe that the observed lower enzymatic activity for the immobilized HRP is mainly due to the HRP conformational changes induced by its binding to GO.According to the number of oxygen containing groups on the GO surface and the transverse area of one HRP molecule,there should be at least an average of two oxygen containing groups of the GO surface interacting with one HRP molecule (Figure 3c).Multiple interactions between the substrate and the enzyme molecule could change the enzyme conforma-tion.11Thus,to maintain the conformation and catalytic cap-ability of the immobilized enzyme,the distribution,number,and property of the functional groups on the substrate surface must be optimized to match the surface of the enzyme being immobilized.ConclusionIn summary,we have demonstrated that individual GO sheets could be used as substrates to study enzyme immobilization.Pronouncedly,the rich surface functional groups of GO make the immobilization of the enzymes happen quickly through electro-static interaction without using any cross-linking reagents;the unique flat surface of GO made it possible to observe the native immobilized enzyme in situ using AFM.We found that the catalytic performance of the immobilized enzymes is determined by the interaction of enzyme molecules with the surface functional groups of the substrate,but the enzyme specific activity is not influenced by the enzyme loading as far as the substrate surface was not fully covered by the enzyme.Based on the AFM images and enzyme activity assay,we conclude that full retention of the conformation of immobilized enzyme should be the key to improve its catalytic performance.Acknowledgment.This work was supported by the National “973Program”(Nos.2007CB936000and 2010CB933900)and the NSFC of China (Nos.20774029and 20671034).Supporting Information Available:FT-IR spectrum of GO and catalytic data of the immobilized HRP.This material is available free of charge via the Internet at .Figure 3.Tapping mode AFM images of the GO-bound HRPwith (a)lower and (b)higher enzyme loadings acquired in a liquid cell.(c)Schematic model of the GO-bound HRP.(d)Initial reaction rates of GO-bound HRP versus HRP concentration.Table 1sampleK m (mM)K cat (s -1)K cat /K m (mM -1s -1)Free HRP2.27161.7(34.1071.2GO Immobilized HRP (lower loading)1.96(0.2133.6(1.2017.1(1.22GO immobilized HRP (higher loading)1.76(0.1036.6(2.9020.8(0.52(28)Henriksen,A.;Schuller,D.J.;Meno,K.;Smith,A.T.;Gajhede,M.Biochemistry 1998,37,8504–8060.(29)Cooper,V.A.;Nicell,J.A.Water Res.1996,30,954–964.。
纳米酶标准术语作者:高利增梁敏敏温涛魏辉张宇范克龙江冰曲晓刚顾宁庞代文许海燕阎锡蕴来源:《中国科技术语》2020年第06期摘要:纳米酶是一类本身蕴含酶学特性的纳米材料,能够催化酶的底物,产生如同天然酶类似的催化反应,并具有酶促反应动力学等特征,属于一类新型模拟酶。
自2007年首次报道以来,纳米酶已成为多学科交叉的研究热点,其应用研究涉及医学、环境、农业、国防安全等多个领域。
近年来,基于纳米酶的新技术不断涌现,已有纳米酶相关产品问世。
此刻,十分有必要对纳米酶的相关术语进行研讨并形成规范,以便专业人员深入理解和准确评价纳米材料的类酶活性,也有助于促进纳米酶产业化。
关键词:纳米酶;术语;标准化中图分类号:N04文献标识码:ADOI:10.3969/j.issn.1673-8578.2020.06.004Abstract: Nanozyme refers to a class of nanomaterials that possess enzyme-like properties,capable of catalyzing the substrates of enzymes following the similar enzymatic kinetics. Nanozyme is as a new class of enzyme mimics which may be used as enzyme alternatives to improve human health. Since firstly reported in 2007, nanozyme has become an emerging field as a multidisciplinary research hotspot with broad application potential in many important fields such as biomedicine,environment treatment, agriculture and national security. With more and more novel nanozyme-based technologies and products developing, it is essential to make the related terms uniformed and standardized for nanozyme, which would not only be beneficial for scientists in this field to deeply understand and precisely evaluate nanozymes'catalytic activities, but also promote the industrialization of nanozyme.Keywords: nanozyme; vocabulary; standardization引言隨着纳米科技的发展及纳米生物医学研究的不断深入,人们发现很多纳米材料自身具有与天然酶类似的催化活性,能够在生理条件下催化天然酶的底物及其介导的生化反应,表现出类似的反应动力学和催化机理,将这类材料命名为纳米酶[1-2]。
ISSN 0306-0012/chemsocrev Volume 42 | Number 14 | 21 July 2013 | Pages 5981–6202 Chemical Society Reviews6060Chem.Soc.Rev.,2013,42,6060--6093This journal iscThe Royal Society of Chemistry 2013Cite this:Chem.Soc.Rev.,2013,42,6060Nanomaterials with enzyme-like characteristics (nanozymes):next-generation artificial enzymes †Hui Wei*z and Erkang Wang*Over the past few decades,researchers have established artificial enzymes as highly stable and low-costalternatives to natural enzymes in a wide range of applications.A variety of materials including cyclodextrins,metal complexes,porphyrins,polymers,dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes.Recently,some nanomaterials have been found to exhibit unexpected enzyme-like activities,and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials.To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes),this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes.We cover their kinetics,mechanisms and applications in numerous fields,frombiosensing and immunoassays,to stem cell growth and pollutant removal.We also summarize several approaches to tune the activities of nanozymes.Finally,we make comparisons between nanozymes and other catalytic materials (other artificial enzymes,natural enzymes,organic catalysts and nanomaterial-based catalysts)and address the current challenges and future directions (302references).1.IntroductionArtificial enzymes,the term coined by Ronald Breslow for enzyme mimics,1is a very important and exciting branch of biomimetic chemistry which is inspired by nature and aims to imitate the essential and general principles of natural enzymes using alter-native materials.2,3Over the past few decades,researchers have established artificial enzymes as highly stable and low-cost alter-natives to natural enzymes in a wide range of applications.Cyclodextrins,metal complexes,porphyrins,polymers,supra-molecules and biomolecules (such as nucleic acids,catalytic antibodies and proteins)have been extensively explored to mimic the structures and functions of natural enzymes through various approaches.1–17To date,remarkable progress has been made in the field of artificial enzymes (Fig.1),and several monographs and numerous excellent reviews have been published.2–4,18–34Recently,some nanomaterials,such as fullerene derivatives,gold nanoparticles,rare earth nanoparticles and ferromagnetic nanoparticles,have been found to exhibit unexpected enzyme-likeactivity.35–48Since then,considerable advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials.49–53These nanomaterial-based artificial enzymes (nanozymes)have already found wide applications in numerous fields,including biosensing,immunoassays,cancer diagnostics and therapy,neuroprotection,stem cell growth,and pollutant removal.The term ‘‘nanozymes’’was initially coined by Scrimin,Pasquato and co-workers to describe their thiol monolayer protected gold clusters with outstanding ribonuclease-like activity.39Here,we adopt the term and extend it to nanomaterials with enzyme-like activities.Although the progress and achievements of classic artificial enzymes have been thoroughly reviewed in the litera-ture,no comprehensive review has been devoted to nano-zymes.51–63To highlight the significant progress of nanozyme research,this review discusses various nanomaterials that mimic natural enzymes and their mechanisms,kinetics and numerous applications.Different approaches to tune the activities of nano-zymes are summarized.We also compare nanozymes to other catalytic materials (such as other artificial enzymes,natural enzymes,organic catalysts and nanomaterial-based catalysts).Finally,we discuss the current challenges facing nanozyme technologies and future directions to realize their great potential.Note:although nanozymes include artificial hydrolytic enzymes and others,the current review mainly focuses on redox-based nanozymes,the intrinsic enzyme-like activities of which are fromState Key Laboratory of Electroanalytical Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun,Jilin 130022,China.E-mail:weihui@,ekwang@†Electronic supplementary information (ESI)available:See DOI:10.1039/c3cs35486e‡Current address:Department of Biomedical Engineering,College of Engineer-ing and Applied Sciences,Nanjing University,Nanjing,Jiangsu,210093,China.Received 28th November 2012DOI:10.1039/c3cs35486e/csrChem Soc RevP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.This journal iscThe Royal Society of Chemistry 2013Chem.Soc.Rev.,2013,42,6060--60936061the nanomaterials cores instead of the functional groups present on the protecting shells.Readers are referred to the monographs and reviews for more comprehensive information regarding other artificial enzymes rather than nanozymes (note:due to the space limit,only a small number of references are cited).2–4,17–32,64–672.Nanomaterials as nanozymes to mimic natural enzymesAt first glance,it seems counterintuitive to imitate natural enzymes with nanomaterials since they are so different in many ways.For example,most natural enzymes,which areproteins,Fig.1A brief timeline for the development of artificial enzymes (natural enzymes are also listed for comparison)(see Table S1,ESI†for relatedreferences).Hui WeiHui Wei is a Professor in College of Engineering and Applied Sciences at Nanjing University.He joined Nanjing University after postdoctoral training with Professors Yi Lu and Shuming Nie,respectively.He received his BS degree from Nanjing University in 2003,where he carried out undergraduate research with Professor Xinghua Xia.In the same year he joined Professor Erkang Wang’s group at Changchun Institute of AppliedChemistry,Chinese Academy of Sciences,and received his PhD degree in 2008.He has published over 30papers in peer-reviewed international journals.His work has been cited more than 1500times with an H-index of 24.His research interests are focused on functional nanomaterials and new methodology for analytical and biomedicalapplications.Erkang WangErkang Wang is a Professor of Chemistry at Changchun Institute of Applied Chemistry,Chinese Academy of Sciences.He is Academicians of the Chinese Academy of Sciences and the Third World Academy of Sciences.He obtained his BS degree from University of Shanghai in 1952and his PhD degree from Czechoslovak Academy of Sciences in 1959under the direction of Professor J.Heyrovsky (Nobel Laureate).Hehas published over 690papers in peer-reviewed journals.His work has been cited more than 15000times with an H-index of 62.His research interests lie in the fields of nanomaterials/nanotechnology,biosensors,electrochemistry and electrochemiluminescence.Review Article Chem Soc RevP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.View Article Online6062Chem.Soc.Rev.,2013,42,6060--6093This journal iscThe Royal Society of Chemistry 2013have exact amino acid sequences and thus well-defined tertiary structures.On the other hand,most nanomaterials are not atomically uniform due to size and shape variations.68Proteins are also considered as soft materials while nanomaterials can be hard with crystalline cores.68However,they share certain similarities,such as overall size,shape and surface charge,which enable nanomaterials to mimic natural enzymes.68In this section,we will survey various nanomaterials that can mimic natural enzymes.2.1Cerium oxide-based nanomaterialsCerium oxide (ceria)is well known for its highly catalytic performance in various applications due to the presence of mixed valence states of Ce 3+and Ce 4+,and the presence of oxygen vacancies.51,53,69Oxygen vacancies compensate the reduction of positive charge by Ce 3+and thus stabilize the chemically active Ce 3+oxidation state.The redox couple can switch between each state in a CeO 22CeO 2Àx +x /2O 2(Ce 4+2Ce 3+)recycle process,which is the key to the catalytic activity.51,53Moreover,nanoceria has dominant Ce 3+and oxygen vacancies on its surface due to a large surface-to-volume ratio.Early studies have shown that cerium complexes have many biological applications.For example,cerium(III )nitrate decreased superoxide content and thus promoted the germination of aged rice seed.70Thus,it was reasonable to investigate the superoxide oxidase (SOD)mimetic activity of nanoceria for catalytic removal of superoxide radicals.The seminal study by Seal et al.showed that vacancy-engineered nanoceria indeed protected normal cells but not tumor cells from radiation-induced damage (Fig.2).41The protective role of the nanoceria was attributed to the elimination of radiation-induced free radicals,which were hypothesized to occur through catalyza-tion via a Ce 3+-Ce 4+-Ce 3+regeneration process.The differ-ential protecting capabilities in normal cells vs .tumor cells might be due to the fact that chromatin in tumors was more loosely packed and thus exposed more bases for free-radical attack.41Following this early work,numerous studies have confirmed the enzyme (including SOD,catalase,oxidase,etc.)mimetic propertiesof nanoceria and have shown promising biomedical applications for scavenging radicals both in vitro and in vivo .43,51,53,71–108Here,we discuss the enzyme mimetic properties of nanoceria and their applications.2.1.1Nanoceria as SOD mimics.SOD catalyzes the dismuta-tion of superoxide anions into hydrogen peroxide and molecular oxygen (Scheme 1).Superoxide anion,one of the reactive oxygen species,has been known to cause tissue injury and associated inflammation.Previous research has revealed that SOD play protective roles in the removal of superoxide anions.Due to the limits of native SOD (such as short term stability and high cost),significant efforts have been made to develop SOD mimics.23,59,64For example,a manganese-containing biscyclo-hexylpyridine complex,M40403,has been developed for this purpose.64Inspired by the work from Seal and co-workers,recent studies have showed that nanoceria exhibits interesting and promising SOD activity.43,71,73,76,80,88,91,102No direct evidence was presented to support the redox regeneration mechanism in the early study.41In a later study,Seal et al.performed a competitive assay against cytochrome c ,which indicated the SOD mimicking activity of the nanoceria.73The superoxide anion elimination capability of the nanoceria was also confirmed by electron paramagnetic resonance (EPR)measurements.76The results showed that nanoceria with a higher ratio of Ce 3+/Ce 4+has better activity.73They also observed the formation of hydrogen peroxide,which is one of the products of the SOD catalyzing reaction.The kinetics measure-ment showed that the nanoceria with a size of 3–5nm was more efficient as a SOD mimic than a native CuZn SOD (with rate constants of 3.6Â109M –1s –1and (1.3–2.8)Â109M –1s –1,respectively).A dismutation mechanism similar to Fe-and Mn-SOD was proposed (Fig.3a).73An alternative mechanism was also proposed as shown in Fig.3b.53None of them clearly involved the auto-regeneration process of Ce 3+on nanoceria,though the second mechanism indicated that nanoceria with a higher ratio of Ce 3+/Ce 4+should have higher activity.If an auto-regeneration process indeed occurred,the ratio of H 2O 2to O 2would be larger than 1.This could be tested and verified experimentally in the putational studies would also help to clarify the detailed mechanism when combined with further experimental results.Though initial studies suggested that nanoceria could also eliminate hydroxyl radicals,43,72later EPR measurements demon-strated that nanoceria does not have such hydroxyl radical elim-ination capability.76This also suggested that nanoceria has some specificity towards superoxide radicals dismutation.Applications.SOD mimics play important roles in many redox-active processes,such as scavenging reactive oxygen species,acting as anti-inflammatory and anti-oxidation agents,and promoting stem cell growth.Below,several selected examples are discussed to show the wide and promising applications of nanoceria based SODmimics.Fig.2Nanoceria with SOD mimicking activity could prevent normal human breast cell line (CRL8798)but not a human breast tumor cell line (MCF-7)from radiation induced damage.Reprinted with permission from ref.41.Copyright (2005)American ChemicalSociety.Scheme 1The reaction catalyzed by SOD.Chem Soc RevReview ArticleP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.View Article OnlineThis journal iscThe Royal Society of Chemistry 2013Chem.Soc.Rev.,2013,42,6060--60936063(a)Anti-inflammatory effects.Similar to native SOD,nano-ceria-based nanozymes exhibit anti-inflammatory effects due to the presence of mixed valence and oxygen defects,rendering them as highly efficient catalysts.Hirst and co-workers reported the anti-inflammatory properties of nanoceria.84Using J774A.1murine macrophage cells as a model,they demonstrated that the nanoceria were benign and were internalized by the cells.Chemiluminescent and fluorescent measurements demon-strated that the nanoceria was able to decrease ROS production in J774A.1cells.They further showed that nanoceria inhibited the production of the free radical nitric oxide,a critical med-iator of inflammation when over-expressed.They also claimed that the nanoparticles did not cause any in vivo lesions in mice when different doses were administered intravenously,but did not further investigate the in vivo activity of the nanozymes.(b)Antioxidants.Nanoceria-based SOD mimics have also been investigated as antioxidants.The antioxidant effects and the biological antioxidant mechanisms of nanoceria were examined by gradual doping of Sm 3+.91Since the doping decreased the Ce 3+concentration without affecting oxygen vacancies,the study confirmed that the Ce 3+/Ce 4+redox reactions were responsible for the nanozymes’outstanding biological activ-ities.91When encapsulated within a ferritin cage,Liu et al.showed that the ROS-scavenging activity of 4.5nm nanoceria was enhanced.99The presence of a ferritin shell also facilitated cellular uptake and improved their biocompatibility.A recent study showed that nanoceria was able to protect cardiac progenitor cells (CPCs),a promising cell source for cardiac regeneration,from hydrogen peroxide-induced cytotoxicity for one week.100The observed protective effects was attributed to the nanozyme’s self-regenerating antioxidant mechanism involving the Ce 3+/Ce 4+redox cycles.(c)Promotion of stem cell growth.Polymeric biomaterials have been extensively used in tissue engineering (such as in directing the growth of stem cells)because of their unique properties.Hybrid materials formed by incorporating inorganic materials into a polymeric matrix have even more promising advantages,such as novel functionalities,enhanced biocom-patibility and improved mechanical and chemical properties.In their interesting study,Mandoli and co-workers showed that when nanoceria was fabricated together with PLGA scaffolds,the as-prepared hybrids exhibited enhanced mechanical prop-erties.87They further cast the hybrids onto pre-patterned molds and demonstrated that the composite scaffold could align murine-derived cardiac and mesenchymal stem cells growth with enhanced bioactivity and better adhesion (Fig.4).They then elucidated the potential mechanism by comparing the nanoceria composites to PLGA films without nanoceria and PLGA films with nanostructured TiO 2.Though nanostructured TiO 2also induced directional cell growth,the cell proliferative activity was lower than the activity observed for nanoceria-loaded PLGA.Since the Ce 3+/Ce 4+redox pair of nanoceria is recyclable while the Ti 3+/Ti 4+redox pair of TiO 2is not,the improved performance of the nanoceria hybrids was attributed to the nanoceria’s anti-oxidation properties.(d)Neuroprotection.Nanoceria as a SOD mimic also exhibited neuroprotective activity.43,72,92In Chen and co-workers’semi-nal study,they showed that the pretreatment of cultured retinal neuron cells with nanoceria eliminated the accumulation of hydrogen peroxide-induced reactive oxygen intermediates.43More importantly,their animal studies have firmly demon-strated that the nanozymes protected rat retina photoreceptor cells from light-induced degeneration after intravitreal injection (Fig.5).Surprisingly,the nanozymes still exhibited protective activity towards photoreceptor cells even when administrated after the light exposure.Again,the reactive oxygen intermediate-scavenging activity was attributed to the switchable feature of the Ce 3+/Ce 4+redox ter studies showed that the nanozymes’neuroprotective activity could be realized in other systems,suchFig.3Proposed mechanisms of nanoceria based SOD mimic:(a)reprinted with permission from ref.73;copyright (2007)Royal Society of Chemistry;(b)reprinted with permission from ref.53;copyright (2011)Royal Society ofChemistry.Fig.4Stem cell aligned growth induced by nanoceria in PLGA scaffolds.Reprinted with permission from ref.87.Copyright (2010)John Wiley and Sons.Review Article Chem Soc RevP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.View Article Online6064Chem.Soc.Rev.,2013,42,6060--6093This journal iscThe Royal Society of Chemistry 2013as adult rat spinal cord neuron and other diseases of the central nervous system.72(e)Other applications.Nanoceria-based SOD nanozymes have been studied for other interesting applications as well.As mentioned above,vacancy engineered nanoceria were able to protect normal human breast cells (but not breast tumor cells)from radiation-induced cell death,suggesting a new application in radiation oncology.41Using diabetic rats as a model system,a recent study also showed that the combination of nanoceria and sodium selenite was more effective than either alone in reducing diabetes-induced oxidative stress.1092.1.2Nanoceria as catalase mimics.Catalase catalyzes the decomposition of hydrogen peroxide into molecular oxygen and water (Scheme 2).Hydrogen peroxide,as the stable end product of superoxide radicals’dismutation (Scheme 1),plays a dual role in biological systems.It can be either a signaling molecule or a non-radical reactive oxygen species.51Though hydrogen peroxide itself is stable and less active,it can be converted into highly active and detrimental hydroxyl radical through Fenton chemistry.In nature,catalase is employed as the most efficient enzyme for the conversion of hydrogen peroxide to less active oxygen.Researchers have found that numerous metal oxide (such as nanoceria),as well as metal,nanomaterials exhibit intrinsic catalase activity.88,95,110,111Inspired by the fact that some SOD mimics,such as manganese porphyrins,can also convert hydrogen peroxide into oxygen and water as catalase mimics,Self and co-workers performed a careful study to explore the catalase-like property of nanoceria.88The results established that catalase-like activity was dominant for nanoceria with a low Ce 3+/Ce 4+ratio while SOD-like activity was dominant for nanoceria with a high Ce 3+/Ce 4+ratio.In a later review from Ghibelli et al.,a possible molecular mechanism was proposed (Fig.6).53So far,there have been no studies reporting the application of a nanomaterial-based catalase mimic.2.1.3Nanoceria as oxidase mimics.For reactions catalyzed by oxidase,a substrate is oxidized by molecular oxygen,which can be converted into either water or hydrogen peroxide (or even superoxide radical in some cases)(Scheme 3).For certain substrates,oxidation can result in a color change,which makes them ideal agents for detection purposes.Recent studies have shown that certain nanomaterials can imitate the catalytic activity of oxidase.40,42,81,90,102,111–119As discussed above,nanoceria acts as an efficient anti-oxidant since it can be either a SOD mimic or a catalase mimic,depending on the Ce 3+/Ce 4+ratio.88Studies by Perez and co-workers have revealed that nanoceria can have additional functionality,reporting nanoceria with oxidase-like activity.81,90The oxidase mimetic activity of the biocompatible dextran-coated nanoceria towards several colorimetric substrates (ABTS,DOPA and TMB)was studied at acidic pH (Fig.7).81The activity of oxidase instead of peroxidase was confirmed since no H 2O 2wasFig.5Intravitreal injection of nanoceria protected rat retina photoreceptor cells from light-induced degeneration.Reprinted with permission from ref.43.Copyright (2006)Nature PublishingGroup.Scheme 2The reaction catalyzed bycatalase.Fig.6Proposed mechanism of nanoceria based catalase mimic.Reprinted with permission from ref.53.Copyright (2011)Royal Society of Chemistry.Chem Soc Rev Review ArticleP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.View Article OnlineThis journal iscThe Royal Society of Chemistry 2013Chem.Soc.Rev.,2013,42,6060--60936065added.This activity was found to be highly dependent on pH,size,and the coating of the nanoceria.The kinetics studies agreed well with the pH-,size-,and coating thickness-dependent activities (i.e.,lower pH,smaller size,and thinner coatings on the nano-zymes led to higher activities).Based on measured values,the nanozymes had a faster rate constant (1–7Â10À7M –1s –1of the nanozyme vs .1Â10À8M –1s –1of HRP).Applications(a)Immunoassays.Similar to traditional enzyme-linked immunosorbent assays (ELISA),several immunoassays using oxidase nanozyme mimics were developed for the detection of important targets,such as tumor cells.81,90Perez and co-workers reported an assay for the determination of tumor cells with poly(acrylic acid)-coated nanoceria as an oxidase mimic.When the nanoparticles were conjugated with folic acid,they could specifically recognize tumor cells,such as A-549lung cancer cells,due to the elevated-expression of folate receptors on the cell surface.The targeting effect was based on the evidence that folate receptors are present in various tumors but absent in most normal tissue except choroid plexus,lung,thyroid and kidney.120The presence of the nanoparticles could then oxidize a colorless substrate to a colored product without H 2O 2.They also evaluated the selectivity using H9c2cardiac myocytes as a control,showing good results.81Several advantages of the nanozyme-based assay were discussed,such as:(a)the nanozyme is more stable and robust,and is less expensive than HRP;(b)the nanozyme oxidizes the substrate without H 2O 2,eliminating the potential stability issue of H 2O 2;and (c)folic acid is used instead of an antibody,eliminating the potential stability issue of antibodies.Note that folate receptor is limited to cancer cells,and cannot differentiate the different cancer cell types.The affinity of folic acid to folate receptor is also lower than that of an antibody to the receptor.In a subsequent study,they showed that for the substrate ampliflu,the oxidase-like activity of the nanoceria could be finetuned by changing the reaction pH (Fig.8).90Different from HRP/H 2O 2at pH 4–7and nanoceria at or below pH 5.0,nanoceria at pH 7mediated mild and controlled oxidation of amplifu to a fluorescent product (resorufin)instead of the further oxidized nonfluorescent product (resazurin).This unique phenomenon was able to provide an assay format for long ELISA readout at neutral pH without the use of H 2O 2.The assay format was then successfully used to detect tumors by employing the nanozyme with protein G and specific anti-bodies (i.e.,folate receptor antibody for A549cells and EpCAM antibody for MCF-7cells).2.2Iron oxide-based nanomaterialsIron oxide nanomaterials,especially magnetic iron oxide nano-materials,have found broad use in many areas,such as the separation and capture of analytes,sensing and imaging.57,121–132They are usually considered chemically and biologically inert,so metal catalysts,enzymes,or antibodies are often conjugated for further functionalization.When magnetite nanoparticles were coated with small peptides,for example,they were shown to have specific tumor targeting activity for magnetic resonance imaging.133They have also been used for (bio)analysis,(bio)electro-catalysis,drug delivery,bacteria inactivation,etc .122–126,128,130–132Unexpectedly,Yan and co-workers have recently discovered that Fe 3O 4magnetic nanoparticles (MNPs)actually exhibit an intrinsic peroxidase-like activity.44,134Since the pioneering study reported by Yan et al.,44a significant amount of research has been focused on imitating peroxidase activity with various nanomaterials and exploring the potential applications.45–47,98,102,110–112,119,135–264Here,we discuss the enzyme mimetic properties of iron oxide nano-materials and their applications.2.2.1Iron oxide as peroxidase mimics.In nature,perox-idase,consisting of a large family of enzymes,catalyzes the oxidation of its substrate with peroxide (hydrogen peroxide in most cases)(Scheme 4).Through this catalysis,peroxidases play many critical roles in biological systems,such as detoxify-ing reactive oxygen species (e.g.glutathione peroxidase)and defending against pathogens (e.g.myeloperoxidase).In addition,peroxidase (especially HRP)has been widely used in bioanalytical and clinical chemistry,where it is usually employed as a conjugate to an antibody for enzymatically catalyzing colorimetric substrates for signaling or imaging.Recent studies from Yan’s and others’groups have shown that certain nanomaterials can imitate perox-idase catalytic activity.44–47,98,102,110–112,119,135–264In Yan’s work,Fe 3O 4MNPs with three different sizes (30,50and 300nm)all oxidized TMB to the blue-colored product in the presence of H 2O 2(Fig.9).44The other two substrates tested (DAB and OPD)were also oxidized to their corresponding products,mimicking the activity of HRP.The catalytic activity of the nano-zyme was size dependent,with smaller sized particles exhibiting higher activity.Like native HRP,the nanozyme performance varies with pH and temperature.However,compared with HRP,the Fe 3O 4MNPs are much more robust as they remain stable and retain their catalytic activity after incubation at a range of tem-peratures (4–901C)and pH (0–12).The robustness oftheScheme 3The reactions catalyzed byoxidase.Fig.7Nanoceria as nanozyme to mimic oxidase.The oxidase mimetic property of the nanoceria was demonstrated by oxidizing colorimetric substrates (TMB,ABTS and DOPA)to form colored products at pH 4.0.Reprinted with permission from ref.81.Copyright (2009)John Wiley and Sons.Review Article Chem Soc RevP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.View Article Online6066Chem.Soc.Rev.,2013,42,6060--6093This journal iscThe Royal Society of Chemistry 2013nanozyme,as well as its low cost,makes it suitable for a wide range of applications.44In the study from Yan’s group,it was suggested that the Fe 3O 4MNP-based peroxidase activity is the result of a ping-pong mechanism (i.e.,no tertiary intermediate of an enzymeand its two substrates forms since one substrate is converted to the product and dissociates before the other one binds).44Their steady state kinetic measurements showed that the substrate concentration dependent Lineweaver–Burk (double-reciprocal)plots were parallel,characteristic of the ping-pong mechanism (Fig.10).Native HRP also has a ping-pong catalytic mechanism.The Michaelis–Menten constants (Km ,measuring the substrate’s binding affinity)from the Lineweaver–Burk plots showed that the nanozyme had less affinity to hydrogen peroxide compared with HRP (154mM for the nanozyme vs .3.70mM for HRP),butFig.8Schematic showing the HRP/H 2O 2and nanoceria mediated oxidation of ampliflu.(a)In the pH range 4–7,HRP/H 2O 2oxidizes ampliflu to a nonfluorescent final product (resazurin).(b)In contrast,nanoceria oxidizes ampliflu to the intermediate oxidation fluorescent product (resorufin)at pH 7,(c)while at or below pH 5.0,nanoceria yields the terminal oxidized nonfluorescent product resazurin.(d,e)The ability of nanoceria to oxidize ampliflu to a stable fluorescent product in the pH range 6–8will facilitate its use in ELISA without the use of H 2O 2.Reprinted with permission from ref.90.Copyright (2011)American ChemicalSociety.Scheme 4The reaction catalyzed by peroxidase.Chem Soc Rev Review ArticleP u b l i s h e d o n 05 J u n e 2013. D o w n l o a d e d o n 02/09/2014 09:23:42.。