当前位置:文档之家› 变频器时序图及说明

变频器时序图及说明

变频器时序图及说明
变频器时序图及说明

变频器时序图及说明

1) 变频器启、停时序图:

电机转速

停机指令

主控就绪

冷却风扇

高压开关请求启动

变频就绪

变频运行

请求运行

运行指令

高压电源

图8 变频器启、停时序图

2)时序说明:

A 、 变频器在系统条件允许(柜门已关、控制电源正常、风扇开关正常和没有其它电气故

障)情况下,延时30秒发出“请求启动”信号;

B 、

DCS 在接收到“请求启动”信号后,便可以启动变频器即合10kV 高压开关; C 、 变频器在接收到10kV 高压开关已合信号后,启动冷却风扇,风扇启动延时20秒后变

频器给DCS 一个“请求运行”信号;

D 、 DCS 在接受到“请求运行”信号后,发出“运行指令”。在接收到“运行指令”信号

后变频器开始运行,同时给DCS 一个“变频运行”状态信号,运行频率从0Hz 按照设定的时间升频至给定频率值;

E 、

DCS 可以在变频器启动以前将“频率给定信号”给定到预定值。

3)正常停机时序说明:

A 、 在运行时需要正常停机时,DCS 给出“停机命令”信号;

B、变频器接收到“停机”信号后,运行频率按照设定的时间降至0Hz,然后断开“变频

运行”信号,同时给出“断10kV高压开关”信号;

C、DCS在接收到“运行状态”信号断开后,延时2秒断开停机指令信号。(时序图中的

180秒是指电机装转速从0升到额定转速的时间和从额定转速降到0时的时间,而实际运行时转速随时可以调整,不一定是额定转速,所以停机命令的脉宽不是固定的,需要检测到“变频运行”状态信号断开后延时2秒方可断开。)

4)紧急停机时序说明

在运行时需要紧急停机时,用户可以直接断开10kV高压开关,建议用户一般情况不要进行此项操作。

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

(整理)变频器的主回路

1、变频器的主回路 电压型变频器主电路包括:整流电路、中间直流电路、逆变电路三部分组,交-直-交型变频器结构见附图1 1)整流电路:VD1~VD6组成三相不可控整流桥,220V系列采用单相全波整流桥电路;380V系列采用桥式全波整流电路。 2)中间滤波电路:整流后的电压为脉动电压,必须加以滤波;滤波电容CF除滤波作用外,还在整流与逆变之间起去耦作用、消除干扰、提高功率因素,由于该大电容储存能量,在断电的短时间内电容两端存在高压电,因而要在电容充分放电后才可进行操作。 3)限流电路:由于储能电容较大,接入电源时电容两端电压为零,因而在上电瞬间滤波电容CF的充电电流很大,过大的电流会损坏整流桥二极管,为保护整流桥上电瞬间将充电电阻RL串入直流母线中以限制充电电流,当CF充电到一定程度时由开关SL将RL短路。 4)逆变电路:逆变管V1~V6组成逆变桥将直流电逆变成频率、幅值都可调的交流电,是变频器的核心部分。常用逆变模块有:GTR、BJT、GTO、IGBT、IGCT等,一般都采用模块化结构有2单元、4单元、6单元 5)续流二极管D1~D6:其主要作用为: (1)电机绕组为感性具有无功分量,VD1~VD7为无功电流返回到直流电源提供通道 (2)当电机处于制动状态时,再生电流通过VD1~VD7返回直流电路。 (3)V1~V6进行逆变过程是同一桥臂两个逆变管不停地交替导通和截止,在换相过程中也需要D1~D6提供通路。 6)缓冲电路 由于逆变管V1~V6每次由导通切换到截止状态的瞬间,C极和E极间的电压将由近乎0V上升到直流电压值UD,这过高的电压增长率可能会损坏逆变管,吸收电容的作用便是降低V1~V6关断时的电压增长率。 7)制动单元 电机在减速时转子的转速将可能超过此时的同步转速(n=60f/P)而处于再生制动(发电)状态,拖动系统的动能将反馈到直流电路中使直流母线(滤波电容两端)电压UD不断上升(即所说的泵升电压),这样变频器将会产生过压保护,甚至可能损坏变频器,因而需将反馈能量消耗掉,制动电阻就是用来消耗这部分

各种变频器操作方法

变频器操作简明手册 (第二版) 沈阳第一机床厂 沈阳机床集团

变频器简明手册第二版 目录 目录 (1) 一、富士变频器 (2) 1、富士变频器的操作: (2) 2、富士变频器设定: (2) 二、安川变频器 (4) 1、安川变频器的操作: (4) 2、安川变频器的设定 (11) 三、日立变频器 (12) 1、日立变频器的操作 (12) 2、日立变频器的设定 (12) 四、艾默生变频器 (14) 1、艾默生变频器的操作 (14) 2、艾默生变频器的设定: (14) 五、Vacon变频器 (16) 1、Vacon变频器的操作 (16) 2、Vacon变频器的设定 (16) 六、汇川变频器 (18) 1、汇川变频器的设定: (18) 沈阳第一机床厂 1

第二版 变频器简明手册 沈阳第一机床厂 2 一、富士变频器 1、富士变频器的操作: 2、富士变频器设定: 首先,按PRG 键显示菜单——按FUNC 键显示菜单明细——按∧ ,∨键可移动游标选择项目——按FUNC 键显示相应的内容——输入数据,用SHIFT 》键任意选择要改变数据的位——按FUNC 键将它存入存贮器——按RESET 和PRG 键可返回到原来的状态。 自学习时参数的设置步骤与上述相同,将参数F02设为0即可,然后按FWD 或RWD 键——机床主轴自动运转至停止后按STOP 键——再将参数F02设为1即完成变频器的运行。 其中各项参数设置如下: F00=0 F01=1(频率设定)

变频器简明手册第二版F02=1(自学习=0) F03=155(最高频率)(90:6140V) F04=33或50(基本频率) F05=380(额定电压) F06=380(最高电压) F05=380(额定电压) F10=1(热继电器1) F11=11.6或15.6(OL设定值) F13=2 F15=160(上限频率) F16=0(下限频率) F23=0.5(起动频率) E20=9(零速信号) P01=4(极数) P02=5.5或7.5(容量) P03=11.6或15.6(额定电流) P04=2(自学习时设2) E01=9(外部故障信号连接时设) E02=8(外部故障信号连接时设) 沈阳第一机床厂 3

变频器的工作原理

变频器工作原理 主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。整流器 最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路 在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器 同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm 逆变器为例示出开关时间和电压波形。 控制电路 是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。 (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。 (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg 等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

变频器主回路设计及计算

变频器主回路 ·设计、计算 ·要点及一些经验 主要内容 ·变频器主回路构成; ·主回路参数及所用元件的选择计算; ·主回路设计的要点及经验; ·主回路的保护; ·主回路设计的造成问题及对策; 变频器组成 变频器描述: 变频器是一种将输入固定电压和固定频率(通常为3相380V,50HZ)的电能转化为可调整电压和频率电能输出(Variable Voltage Variable Frequency,VVVF)的交流电气传动设备。 变频器分类: 交交变频器,交直交变频器; 交直交变频器分类: 电压源型变频器和电流源型变频器 产品构成 1、结构 壳体、电气部件和机械连接 涉及设计类型:产品设计、结构设计、热设计 2、电气(主回路) 主回路器件选型、计算 3、控制部分(控制回路) 主控制板(功能实现、波形发生,各种控制逻辑,……) 驱动板(主回路器件驱动和控制,各种参数检测和保护,辅助电源)人机界面(键盘)

变频器主回路构成及作用 主回路参数计算 输出容量:UoIo Po 3= 式中,Io :变频器输出电流 Uo :变频器输出电流 直流环节电压: UAC UAC UD 35.12 3== π 式中,UAC 为三相输出线电压 直流环节电流:IO IO ID 283.16 == π 式中,IO 为变频器额定输出电流 实用的近似关系: 1、三相380V 等级变频器额定输出电流与额定输出功率的关系 I=2*P 2、单相220V 等级变频器额定输出功率与输出电流的关系 I=5*P

电气连接 1、PCB 走线: 小功率(≤22KW ,西门子做到90KW )机型普遍采用。 优点:成本低,电感小,工艺好。 注意产品要求的通流能力,PCB 铜箔厚度和一致性。 2、塑胶绝缘导线: 输入:功率因数≤0.8时3Amm 2功率因数≥0.96(加直流电抗器)时4A/mm 2 输出:3A~3.5A/mm 2 优点:成本低,电感大,工艺上需注意固定等绝缘问题。 3、铜排: 6A~8Amm 2 成本高,电感大小与部线方式有关,常用于18.5KW 以上功率等级。 整流桥计算 流过整流管的电流有效值: ℃),满足设计要求(的查)(变频器的整流管:例:选择为变频器输出额定电流式中:过载系数αα)(整流管电流选择:的值标称值时对应导通的值,整流管手册值为平均值:)))() ))(1001901729.186176283.1368.05.15.16 368 .02~1908 .1~5.1.6 368.02~1368.032 3180120637.02577.03((120(180()(120A I MDD A Io I KW Io Io I I I I I I I I I I I Ir AV Vr AV vr AV Vr D D AV T AV T AV T D D AV T D D ==????=??==??=== = ??= =???π απ ππ 整流管电压额定值RRM U α???≥1.12AC RRM U U

变频器工作原理

1 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 2变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

变频器原理经典图集

要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动! 变频器维修入门--电路分析图 对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。图2.1是它的结构图。 1)驱动电路 驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。 对驱动电路的各种要求,因换流器件的不同而异。同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。有些品牌、型号的变频器直接采用专用驱动模块。但是,大部分的变频器采用驱动电路。从修理的角度考虑,这里介绍较典型的驱动电路。图2.2是较常见的驱动电路(驱动电路电源见图2.3)。

驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。 2)保护电路 当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。 在变频器保护功能的领域,厂商可谓使尽解数,作好文章。这样,也就形成了变频器保护电路的多样性和复杂性。有常规的检测保护电路,软件综合保护功能。有些变频器的驱动电路模块、智能功率模块、整流逆变组合模块等,内部都具有保护功能。 图2.4所示的电路是较典型的过流检测保护电路。由电流取样、信号隔离放大、信号放大输出三部分组成。

变频控制柜操作说明

变频控制柜操作说明 1运行前准备 开前门先将空气断路器QF上推,接通主电源,“停机”红信号灯HLR亮。将前门关紧,旋转“电压测量”SA1转换开关,检查各线电压是否正常。 2变频调速器送电 在前柜门上按“变频上电”按钮SB2,电磁接触器KM闭合,“变频上电”绿信号灯HLG亮,同时红信号灯HLR熄灭,主电源送至变频调速器输入端,同时面板有显示。 3变频调速器工作 请按变频调速器的使用说明书进行操作。按“控制面板”的操作面板上“功能数据”键或旋转电位器R,将各工作参数设定好。将“正转/停/反转”转换开关SA2置于正转位后,再按操作面板上“运行”键控制风机电机从起动频率上升至50Hz进行运行,操作面板上运行指示灯亮。操作面板上可从LED显示屏幕上显示变频器输出频率、输出电压、输出电流、同步转速、负载率及电机状态。一旦变频调速器及风机电机出现故障,变频调速器操作面板有故障代码及报警显示外,同时“故障”黄信号灯HLR亮,变频调速器停止工作。在得知故障类型后再切断变频调速器的输入电源,即操作“停机”按钮SB1,

“变频上电”绿信号灯HLG熄灭,“停机”红信号灯HLR亮。 4停机操作 正常停机操作:须先操作面板上“停止”键使变频调速器运行频率从50Hz下降至停止频率,面板上运行指示灯熄灭,电机也将停止运转。再按门上“停机”按钮SB1,电磁接触器KM断电,“变频上电”绿信号灯HLG熄灭,“停机”红信号灯HLR亮。开前门将空气断路器QF下扳断总电源,红信号灯HLR熄灭,关好前门,再将“电压测量”转换开关SA1置于0位。 5反风操作 先按“停止”键使变频调速器运行频率从50Hz下降至停止频率,面板上运行指示灯熄灭,电机也将停止运转。再将“正转/停/反转”转换开关SA2置于反转位,再按操作面板上“运行”键进行起动。6温度检测 通过“温度显示”窗的智能巡检仪TW检测与显示风机电机轴承和绕组的工作温度,并可事先根据需要的保护值先设置好温度报警值,进行过温度报警进行提醒。建议停止工作。具体操作步骤详见智能巡检仪说明书。出厂设定值:轴承报警温度为85℃,定子绕组报警温度为125℃。

变频器工作原理_0

变频器工作原理 要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成 通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200;-;1600V,最大整流电流为变频器额定电流的两倍。 滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的

变频器定义及工作原理概述

变频器定义及工作原理概述 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS 控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 VVVF:改变电压、改变频率 CVCF:恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中 n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性

变频器操作说明完整版

变频器操作说明 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

S120操作说明 1、面板(BOP)操作: 1)、传动对象的选择: 面板显示屏左上角显示的数字是被激活的传动对象,对应控制单元CU320及其控制下的功率模块。 同时按“FN”和“向上”键,可以该数字闪烁,通过上下键的选择,即可显示选择的传动对象。 其中,对于1#控制单元(+Z2DKG02柜): 01代表1#控制单元CU320; 02代表整流单元; 03代表1#步进冷床前回转臂拨料机控制系统; 04代表2#步进冷床前回转臂拨料机控制系统。 对于1#控制单元(+Z2DKG04柜): 01代表2#控制单元CU320; 02代表4#链式冷床控制系统; 03代表1#链式冷床控制系统; 04代表1#步进冷床控制系统; 05代表2#步进冷床控制系统。 选择操作对象,即可对相应对象进行操作,以及查看状态等。 注意:传动对象在显示参数值时不可更改,即显示“P”或“r”时方可更改。 2)、参数的更改: 在选择好传动对象后,可以进入想要查找的参数。改变参数值,须先按动“FN”键,相应的参数位闪烁后方可通过上下键更改,按“P”键确认。 如果不能找到想要查看的参数,须回到传动对象为控制单元(即传动对象显示01),将参数P0003=3,可显示完全参数列表。 参数改动后,显示屏中“S”出现,说明参数存储区“RAM”和“ROM”不一致,此时须常按“P”键三秒钟,将参数写入ROM。 3)、故障复位: 控制单元报故障,面板上方红色故障灯点亮,需按“FN”键进行复位。 2、常用参数: r21 输出频率 r27 输出电流 r31 电机输出转矩 r61 编码器实际值 r26 直流母线电压 r2090 由自动化发送的控制字1(位显示) 由自动化发送的控制字2(速度给定) 发送给自动化的状态字1(位显示) 发送给自动化的状态字2(位显示)

变频器主回路结构图及故障经验

下面先来说说变频器硬件故障如何判断技术人员凭借数字式万用表根据上图可简单判断主回路器件是否损坏。(主要是整流桥,IGBT,IPM) 为了人身安全,必须确保机器断电,并拆除输入电源线R 、S、T和输出线U、V、W后放可操作!首先把万用表打到?二级管?档,然后通过万用表的红色表笔和黑色表笔按以下步骤检测: 1、黑色表笔接触直流母线的负极P(+),红色表笔依次接触R、S、T,记录万用表上的显示值;然后再把

红色表笔接触N(-),黑色表笔依次接触R、S、T,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器二极管整流或软启电阻无问题,反之相应位臵的整流模块或软启电阻损坏,现象:无显示。 2、红色表笔接触直流母线的负极P(+),黑色表笔依次接触U、V、W,记录万用表上的显示值;然后再把黑色表笔接触N(-),红色表笔依次接触U、V、W,记录万用表的显示值;六次显示值如果基本平衡,则表明变频器IGBT逆变模块无问题,反之相应位臵的IGBT逆变模块损坏,现象:无输出或报故障。 故障经验 一。变频器老是跳硬件保护?OCU1?故障,赶到现场后我静态测试机器无问题,主线路、控制线路也完好。我用万用表量零线和地线是通的,问电工才知道他们工厂的零地是共用的。一般变频器接地时,如果该工厂零线与地线是共用的话,最好另处取地线,把地线取下后故障解除。故障分析:因为该厂的零线与地线是共用的,变频器接地线也等于接了零线,零线一般会传播干扰信号。而我们的变频器报?OCU1?故障有如下几种情况:1。变频器三相输出侧有短路现象;2。逆变模块损坏;3。外部干扰信号进入变频器。由于第一与第二种原因正常排除,就只有第三种外部干扰信号,干扰信号是从地线进入的,所以把地线拆除,就切断了干扰源。这时运行变频器恢复正常。 二。调试一台锅炉引风机55KW的是?OCU1?,通常我们这种?OCU1?故障是:外部干扰,三相输出有短路现象,机器内部故障问题。原因是机器一启动到运行到10HZ左右就报,(变频器是用的自由停车,风机惯性也比较大)用户要经常启停变频器。这说明机器问题不太,是干扰问题,(因为电机线放了几十M长,而且控制线和主电源线是混合在一起的)停下变频器半个小时后,观查引风机还在自转。我就把变频器参数变为?先制动,再启动?(F0-011=1 当然还有一些参数要改,大家可以进我们网站下载技术手册。)然后再启动变频器,故障还有是没有解除,用了几种方案后,最后我们把启动频率提高到3HZ(F0-012=3)问题就解决了。真是什么问题都有呀!三,上位机控制,上位机给启动指令时能启动,但给停止指令时就不能停机。具体如下,40台11-22KW的风机节能改造,每台变频器都用一个上位机DDC模块控制(加拿大生产)。上位机主要是监测变频器的故障报警、过滤网报警、频率、启停、温度等。其它都正常,就是启停时有麻烦。后来到现场检测,故障真是这样,然后查看上位机DDC模块的说明书,最后发现是DDC 模块的干接点不接受直流24V,只接受交流24V或者是无源信号都行,所以才会出现上面这种现象。后来加一个继电器就解决了。 四。也是一台变频器与上位机联机控制的变频器,故障是上位机给运行信号,变频器不接收,其它都正常,而变频器本身就能运行起来,只要一联上位机就不行。我要用户技术员,把控制线路再好好的检查一下,那技术员硬说很好,检查了好几篇都发现什么问题。要求我们公司派技术支持. 后来我们技术员赶到现场处理,检查控制线路,就发现一条控制线与另外一条控制线调换了。难怪不接收指令.其实只有有耐心,什么问题都能查出来. 干扰问题: 1、PLC给信号到变频器时,经常出不必要的故障,比如给假信息,或者变频器不接收信息. 由于客户比较急,也找不到好的处理方法.也没有专业的技术员.只好要求我们技术员赶到现场处理,我们检测了变频器,PLC,电源,设备均正常.初步认定是干扰引起.在PLC的电源模块及输入/输出的电源线上接入滤波器,问题还是得不到明显的改善,后来把变频器和PLC的电源线,控制线分开走线,这时故障才解除.. 2、,由三台变频器组成的调速系统(装在同一个变频柜里),出现如下情况:用外接的电位器调频率时,发现异常,变频器转速产生波动.频率波动也比较大.然后就会报故障. 我们到现场后检查了也是查外围电源,负载,电位器,控制线路都正常.后上电运行变频器,在调试变频器时,当一台单独运行时,工作正常不报故障,当三台同时运行时就会出现异常.这就是干扰引起啊! 对策:将三台变频器移出变频柜,分别装在一个单独的变频柜里,电位器也分开,然后改用屏蔽线。最后干扰清除,三台都能同时运行. 3、多段速运行。(3。7KW)变频器单独运行印刷机很正常,当与印刷机的送纸机同步运行时,报软件过流故障。代理商技术员调了一天,没有调好,就认定是我们的机器有问题,不能用要退货。后来到现场维护处理,检测了线路,变频器都无问题。看了一下设备,印刷机里有两台电机,一台主电机,(就是改造的3。7KW的),还有一台是给送纸机用的,起上下降作用。变频器单独运行印刷机正常,就是与送纸机同

变频器工作原理图解

变频器工作原理图解-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫 IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器的工作原理及作用

变频器的工作原理 1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。 变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? (1) r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,

交-直-交变频器的工作原理

交-直-交变频器的工作原理是什么啊? 悬赏分:0 |解决时间:2008-7-7 12:57 |提问者:287365311 最佳答案 引言 宝钢2050热轧厂是1989年投产的,原设计以直流机为主。随着交流变频和交流机的大幅度使用。为了适应新时期用户的对产品产量的更高要求,我们对现场设备进行了改造。将以前的直流传动改造成交流传动,这种改造从卷取区的卷取机改造开始。先后对1#、2#、3#卷取机传动控制系统进行了交流化改造。下面以2#卷取机为例,将卷取机传动系统改造的情况作一介绍。2#卷取机传动系统采用了带公用整流器结构,如图1所示。各电机用的逆变装置分挂在整流器上,包括一台卷筒电机,两台夹送辊电机和三台助卷辊电机。其中:卷筒电机采用同步电机,夹送辊和助卷辊采用异步机,电机由西门子典型的矢量控制的交-直-交变频器系统供电,卷筒励磁由SD进行调节控制。电机带有脉冲编码器,调速性能优良,空载时速度环静态精度为0.01%,速度调节时间小于100ms,电流环调节时间小于10ms。 字串9 图1 系统结构图 2 传动系统结构 2.1 整流/回馈部分 整流单元使用的功率元件为晶闸管,进线的交流电压通过整流向连接逆变器的直流电压母线提供电动状态能量并构成多电机传动系统。整流单元由4000kVA 6kV/650V整流变压器供电,带有自耦变压器和6脉冲整流/回馈单元,产生890V 直流母线电压。卷筒、夹送辊和助卷辊电机的逆变装置就挂在这个直流母线上,没有设直流开关及断路器。曾经考虑使用直流快开作为直流母线短路保护,由于一般情况下,电机或逆变器短路保护在逆变器内部可以实现。而纯粹的直流母线短路现象几乎难以发生,如果配以快开,每年需要维护,而且维护量很大,故没有采取这种短路保护。 以上控制方式称做共用直流母线的多电机传动控制方式,它具有以下显著的特点: (1) 采用共用直流母线和共用制动单元, 可以减少整流器和制动单元的配置,结构简单合理们; (2) 共用直流母线的中间直流电压恒定, 电容并联储能容量大;

变频器工作原理(基础知识)

1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60H z(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(A C),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值

三相变频器的工作原理

三相变频器的工作原理 变频器(Variable-frequency Drive,VFD)是应用变频技术与微电子技术,通过改变电机工作电源频率方式来控制交流电动机的电力控制设备。变频器主要由整流(交流变直流)、滤波、逆变(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成。变频器靠内部IGBT的开断来调整输出电源的电压和频率,根据电机的实际需要来提供其所需要的电源电压,进而达到节能、调速的目的,另外,变频器还有很多的保护功能,如过流、过压、过载保护等等。随着工业自动化程度的不断提高,变频器也得到了非常广泛的应用。 工作原理概述主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路整流器大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。逆变器同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm逆变器为例示出开关时间和电压波形。控制电路是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。(1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。(2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。(3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。(4)速度检测电路:以装在异步电动机

相关主题
文本预览
相关文档 最新文档