当前位置:文档之家› 贯流式水轮机基本结构

贯流式水轮机基本结构

贯流式水轮机基本结构
贯流式水轮机基本结构

第六节贯流式水轮机基本结构

一、贯流式水轮机的特点

贯流式水轮机是开发低水头水力资源的一种新型机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水流在流道基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。

此外,与其它机型相比,它还有其它一些显著特点:

(1)从进水到出水向轴向贯通形状简单,过流通道的水力损失减小,施工便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。

(2)贯流式机组有较高的过滤能力和比转速,所以在水头与功率相同的条件下,贯流式的要比转桨式的直径小10%左右。

(3)贯流式水轮机适合作了逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用围比较广泛。

(4)贯流式水电站一般比立轴的轴流式水电站建设期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。

二、贯流式水轮机的分类

根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式:

1.轴伸贯流式

这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口,

出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房。

轴伸贯流式机组按主轴布置式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不便。所以一般只用于小型机组。

2.竖井贯流式

这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

图7-1 轴伸贯流式水轮机组剖面图

(b、后伸轴;)

(a、前伸轴;)

)

(c、斜伸轴

该机组除具有一般贯流式水轮机的优点外,因发电机和增速装置布置在开敞的竖井,通风、防潮条件良好,运行和维护便,机组结构简单,造价低廉。例如省幸福洋潮汐电站建于80年代末,采用竖井式机组,单位千瓦投资为2107元。如果采用灯泡式机组,单位千瓦投资将达到4760元,是竖井式的2. 26倍。由于竖井式具有以上优点,所以广泛应用于小型电站机组上。这种机组的缺点为因竖井的存在把进水流道分成两侧进水,增加了引水流道的水力损失,一般竖井式机组的水力效率比灯泡式的要降低3%左右,如果要作为反向发电,

其效率下降更多。单机容量较大时,一般不采用此种机组,以采用灯泡贯流式机组为宜。

图7-2 竖井贯流式机组剖面图

3.灯泡贯流式

这种机组的发电机密封安装在水轮机上游侧一个灯泡型的金属壳体中,发电机主轴与水轮机转轮水平连接。水流基本上轴向通过流道,轴对称流过转轮叶片,然后流出直锥形尾水管,参见图1-11所示。机组的轴系支承结构、导轴承、推力轴承都布置在灯泡体。由于贯流式机组水流畅直,水力效率比较高,有较大的单位流量和较高的单位转速,在同一水头,同一出力下,发电机与水轮机尺寸都较小,从而缩小了厂房尺寸,减少土建工程量。但是发电机装在水下密闭的灯泡体,给电机的通风冷却、密封、轴承的布置和运行检修带来困难,对电机的设计制造提出了特殊要求,增加了造价。即使如此它与立式轴流式机组相比仍具有明显的优点。灯泡式机组虽然是一种新型机组,但近20年来也积累了多成功的经验,并逐渐向较高水头和较大容量发展,在国外得到了广泛应用。

4.全贯流式

这种机组采用卧式布置,发电机的转子磁极与水轮机的转轮叶片合为一体,发电机磁极直接安装在水轮机叶片的边缘上,密封隔离磁极与流道的水流,防止渗漏,参见图1-8。

该机型主要特点为:取消了水轮机与发电机的传动轴,缩短了轴线尺寸,结构紧凑,厂房尺寸减小,使整个工程造价降低,而且增大了机组的转动惯量,有利于机组的稳定运行。但叶片与发电机转子连接结构比较特殊,制造工艺要求很高,转子轮缘密封复杂且不可靠。虽然在上世纪五十年代就出现了这样的机组,但至今未得推广。当前某些外国公司,在密封结构型式和材料等面的研制工作已取得进展,并已将这种机型应用在某些大型潮汐水电站上。目前,我国对全贯流式水轮机尚处于试验研究阶段。

5.其它形式

贯流式水轮机除了以上几种型式外,还有明槽式和虹吸式等。其特点类似于轴伸式水轮机:容量不大,应用水头较低,机组结构简单,发电机布置在水面以上,运行、安装、检修较为便。同轴伸贯流式机组一样,通常只用于小型水电站上。

我国对贯流式水轮机的研究起步较晚,且进展缓慢。除灯泡贯流式机组已有大型机组外,其他各类贯流式机组的单机规模基本上还限于小型,同时各类贯流式水轮机的转轮品种很少。因此贯流式水轮机的型谱尚未正式编制出来。现参考国外有关资料列出各类贯流式水轮机的适用围于表7-1,供使用中参考。表7-1仅是根据一般情况分类,实际应用时各类水轮

机根据不同的叶片数尚可具体划分水头应用围。国一般认为灯泡贯流机组的应用尚受到灯泡直径的限制,即认为当水轮机转轮直径D≤2.5m时灯泡空间进人比较困难,应考虑选用其他形式的贯流式机组或改用整装灯泡贯流式机组。

表7-1 贯流式水轮机适用围

灯泡贯流式水轮机适用水头围广,效率高,较其它类型贯流式机组有突出的优点,因而在国外得到广泛应用,当前国已有大型机组出现。

灯泡贯流式机组的结构比较复杂,其总体布置大致有两种布置式:一是以管形壳为主要支撑的布置式;二是以水轮机固定导叶(座环)为主要支撑的布置式。两种式各有特点,现分别予以叙述。

1、以管形壳为主要支撑的布置式

如图7-3所示,以管形壳为主要支撑式的布置,整台机组的受力主要通过管形壳传递至厂房基础。发电机灯泡头下的球面支承主要是用来平衡灯泡头定子部分所引起的浮力。发电机定子两侧的支座是为了防止机组在运行中引起振动。整台机组以两支点为主要式,即水轮机端通过水导轴承,发电机端通过组合轴承将机组转动部分的受力传递至管形壳,再传至厂

mm。房基础。发电机灯泡头下的球面支承允发电机灯泡头和定子有微小的位移,一般为1

这样,整台机组结构比较轻巧,受力也简单明了,易于计算。

由图7-3可知,灯泡体的水轮机端,可由管形壳爬梯进人。灯泡体的发电机端可由发电机进人进入。由于灯泡头允有微小的移动,故发电机进人与发电机盖板之间的结构也是允进人的竖井可以有微小的移动。

发电机下盖板为多结构,主要是增加在水流通过时的阻力。也就是当机组关机所形成的水锤,通过多结构的减压,使发电电机盖板的结构可以轻巧一些。

机组安装时,灯泡头和发电机定子转子等可以从发电机盖板中吊入。

机组主轴(包括组合轴承和导轴承)、转轮等均可从转轮室打开后吊入。

.

页脚图7-3灯泡式水轮机组总图

1-管形壳;2-外管形壳;3-前锥体;4-人管;5-框架;6-盖板;7-导水板;8-导流板;9-排水阀;10-转轮室;11-吸出管;12-外配水环;13-配水环;14-导水锥;15-导叶外轴承;16-导叶轴承;17-拐臂;18、19-连杆;20-控制环;21-关闭重锤;22-转轮体;23-叶片;24-泄水锥;25-轴承支持环;26-组合轴承;27-转轮侧导轴承;28-叶片回复装置;29-受油器;30-发电机定子;31-转子;32-冷却套;33-灯泡头;34-中间台板;35-人;36-梯子;37-膨胀水箱;38-基础支撑;39-出人通道;40-导风洞;41-扇形隔板;

42-油箱;43-排水管

.

机组检修时,上游流道的水可通过打开排水阀经排水管排至集水廊道。下游尾水管的积水也可通过排水管排至集水廊道。

2、以固定导叶(座环)为主要支撑的布置式

由图7-4所示,灯泡机组主要通过固定导叶(座环)将转动部分、定子等的受力传至厂房基础。发电机灯泡头(机壳体)的受力由发电机进入(上支柱)和下支柱来承受。其组合轴承双向推力轴承和发电机导轴承所承受的力,可由拉杆直接传至厂房基础。其受油器位于发电机转子与转轮之间,因而需设发电机轴和水轮机轴。

图7-4 以固定导叶(座环)为主要支撑的灯泡贯流机组1-机壳可拆前盖;2-机壳体;3-下支柱;4-发电机转子;5-座环;6-水轮机主轴;7-圆锥式导水机构;8-接力器;9-转轮;10-锥管;11-尾水管;12-基础环;13-转轮室;14-水轮机主轴;15-受油器;16-发电机定子;17-拉杆;18-中环;19-上支柱;20-双向推立轴承;21-发电机轴承;22-发电机轴

由于灯泡头与发电机进人都是预埋的,故安装时的发电机定子和转子均从其上的发电机盖板吊入。水轮机转轮可从转轮室打开后吊入。

对于大型灯泡贯流机组,应选用三轴承结构。如图7-5所示。

.

页脚图7-5 三轴承布置的灯泡机组

1-受油器;2-定子冷却水进口;3-发电机轴;4-灯泡头;5、19-发电机轴承;6-发电机定子;7-发电机转子;8-推力轴承;9-水轮机座环;10-水轮机座环;11-锥形导水机构;12-水轮机轴;13-水导轴承;14-操作油管;15-转轮室;16-转轮;17-转轮接力器;18-集油槽

发电机转子两端设导轴承。推力轴承位于下游。水轮机导轴承仍位于水轮机端。其主要支撑由水轮机座环来承受。发电机进人为斜向布置。在发电机上设发电机盖板,以利吊入发电机定、转子等。水轮机上设有可卸的转轮室,以利安装。

以固定导叶(座环)为主要支撑的布置式,其受力式较为复杂,而且结构比较笨重。目前的灯泡式机组的布置,均推荐采用管形壳为主要支撑式。

3、灯泡贯流式机组的结构

灯泡贯流式机组的主要部件可大致分为以下几个部分:

(1)埋设部件

包括尾水管里衬、管形壳(壳体,外壳体)发电机进人框架、盖板、墩子盖板,接力器基础以及下部支承,侧向支承基础板等。

1).尾水管里衬

大型灯泡机组的尾水管里衬,一般分成3~7节,运到现场后再拼焊成整体。如管形壳与尾水管里衬一起安装,则对尾水管的基础环法兰面要求可低一些。因为机组的高程、中心,水平均以管形壳的法兰面为基准。如管形壳晚安装,先装尾水管里衬,以便厂房先盖起留下机坑,则对尾水管基础环的要求高些。大型灯泡机组尾水管基础环是分节运至工地后再拼焊成整体。故在现场拼焊时应用仪器监视变形,以免波浪度超差。

2).管形壳

管形壳分为外壳体及壳体。外壳体由上、下部分,四块侧向块和前锥体组成。壳体由上、下两半组成。外壳体上游面与发电机进人的框架,墩子盖板连接。下游面与外导水环连接。壳体的上游面与定子机座连接,下游面与导水环连接。

管形壳的结构应满足受力要求。先根据机组的外部荷载,确定管形壳的受力情况,然后参考已有相近机组的结构尺寸定出机组管形壳的结构,再按受力分析对各部位进行校核,使其刚、强度均能满足规要求。

3).发电机进人的框架、盖板

发电机进人的框架、盖板,是为了安装检修时吊入发电机定、转子,主轴和灯泡头等部件,并可固定发电机进人竖井。大型灯泡机组的发电机盖板还分为盖板和下盖板。下盖板为多板,目的是减少甩负荷升压时对盖板的升压值。对于能正、反向运行的灯泡机组,框架基础应考虑在反向运行紧急停机时的反水锤压力。框架基础板宜与管形壳的壳体焊为整体。

4).球面支承与侧向支承

灯泡头下的球面支承是承受灯泡头、定子等部件的重量,在充水后承受浮力。并允灯泡体有微小的位移(小于1mm),这可减轻灯泡体的结构。设立侧向支承的目的是可以承受灯泡体的侧向力,并可防止灯泡体在运行时产生振动。

5).围板

在发电机下部支墩与定子外壳之间设立围板,其目的是为了导向水流,并可减少运行中水的阻力。围板下部用螺栓与支墩相连。上部随定子外壳切割而成。

(2)导水机构

灯泡机组的导水机构与立式机组不同,为锥形导水机构。其部件由控制环、连杆、拐臂锥形导叶和、外导水环等组成,各部分结构请参考图7-6。

为防止机组飞逸,在控制环的右侧设有关闭重锤。当调速器失去油压时,可依靠重锤所

形成的关闭力矩,加上导叶水力矩有自关趋势,能可靠的关闭导叶。

但在有油压而调速器的主配压阀卡住时,难以实现快速关闭。因此应设置事故配压阀。当主配压阀卡住时,高压油可直接通过事故配压阀进入接力器,从而关闭导叶。

外导水环均为球面结构,导叶两端面亦为球面,这样能保证导叶在转动时能有效的封水。

图7-6 锥形导水机构

1-导水环;2-轴销;;3-控制环;4-剪断销;5-连杆;

6-拐臂;7-活动导叶;8-外导水环;9-轴套;10-转轮室由于导叶担负着在转轮前,导叶后的水流形成转轮所需要的环量,故导叶形状为空间扭

曲面。为保证导叶间在关闭时能有效的封水,除要求两端面的间隙较小外(一般为6.0mm ),还要求导叶的立面间隙较小,一般为2.0mm。需要将空间扭曲的导叶按

~

2.1

锥形要求加设立面密封。

(3)转轮与转轮室

灯泡式水轮机转轮,按叶片操作式,可采用活塞套筒式,操作架式和缸动式等结构。图7-7为缸动式的结构,也就是活塞不动,活塞缸带动连杆、转臂,操作叶片转角度。这种结构简单,安装便。

转轮叶片一般采用不锈钢制造。常用材质为ZG0Cr13Ni4MO,ZGOCr13Ni6MO和ZGOG r16Ni15等。

图7-7 转轮结构(缸动结构)

1-转轮体;2-联杆;3-转臂;4-叶片;5-活塞缸;6-活塞;

7-泄水锥;8-泄水锥头;9-操作油管;10-水封

为防止叶片与转轮室间的间隙空蚀,设有抗空蚀边。

为防止水进入转轮体腔,一般设有重力油箱,其高程使进人转轮体腔的油压略高于外部水压力。

转轮的叶片与转轮体间设有密封,常用的有λ形和Y形密封。轮轮叶片的操作油压常用为40MPa。转轮在正式吊入机坑前,组装好的转轮应做耐压试验,要求每小时转动叶片2~3次,检查叶片密封处有无漏油现象,一般允有滴状渗油现象。

转轮室分上下两瓣。上部设有观察,下部设有进人,以利检修。为防止汽蚀,一般在上半部1/4圆上堆焊不锈钢或用不锈钢整铸。

(4)水导轴承

水轮机导轴承位于水轮机转轮侧。由于水轮机转轮为悬臂形式,故要求水导轴承除承受径向力外,还应适应悬臂引起的挠度(转角)变化。目前适应以上要求的导轴承结构有两种:一是图7-8所示结构,二是如图7-9所示的结构。

图7-8 水轮机侧导轴承

由图7-8可知,水导轴承分两瓣。上部两边各留一段巴氏合金以封住油。径向力通过轴承的凸缘和扇形支承板传至管形壳。安装时,先根据厂家设计计算提供的尺寸和管形壳安装的实际位置来调整轴线。轴线调整好后再加工扇形支承与连接法兰凸缘之间的配合片。为适应轴的倾斜位移,法兰凸缘与扇形支承连接时的套管应比凸缘长0.2mm,套管外径应比凸缘螺直径小2mm。这样,在运行时主轴产生较小的挠度变形,可由法兰凸缘和轴承套管来承受。较大的变形则应由扇形支承板来承担。

图7-9所示为水导轴承,其为球面轴承。通过球面支承可以直接承受轴挠度引起的大小位移。

图7-9 球面导轴承

1-1-1-球面座;2-球面支撑;3-绝缘层;4-轴瓦;5-轴承盖;6-油封圈;7-温度计8-O形

密封圈

(5)组合轴承

如图7-5所示,对于双支点结构的灯泡机组,以电机侧的导轴承与正反向推力轴承组

合在一起成为承受径向力又受力轴向力的组合轴承,图7-10为组合轴承结构图。

发电机导轴承是承受发电机转子和偏心磁拉力等所引起的径向力。由于发电机转子为悬臂结构,为适应轴线倾斜,在导轴承与轴承支承环的组合面上设有配合片,根据轴线计算的挠值来选择配合片的楔形厚度。

推力轴承设有正反向推力瓦。正反向推力瓦可以互换,每块瓦通过抗重螺丝支承在分两瓣的轴承壳上。正反向推力瓦面与镜板之间的总间隙为0.3~0.5mm。间隙的调整可以在轴承壳体外通过修刮调整垫片来实现。

图7-10 组合轴承结构

1-顶轴千斤顶;2-发电机导轴瓦;3-轴承支持环;4-配合垫片;5-发电机导轴承壳体;6-反推力瓦;

7-护板;8-推力环;9-正推力瓦;10-推立轴承壳体;11-抗重螺钉;12-主轴为便于轴线调整,组合轴承设有千斤顶也可用在安装时支承主轴。

由于主轴挠度计算以及轴承支承环安装精度难以保证,配合片的配置比较困难。因此,组合轴承中的导轴承采用球面支承结构,用球面支承来适应主轴挠度的变化。

另外,为解决正反向推力瓦受力调整和适应主轴挠度引起的推力瓦对中偏移,受力分配不均等问题,可采用支柱螺丝加托盘的结构式。

全贯流式水轮机基本结构

贯流式水轮机基本结构 一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种新型机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过滤能力和比转速,所以在水头与功率相同的条件下,贯流式的要比转桨式的直径小10%左右。 (3)贯流式水轮机适合作了逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

贯流式水轮机的特点

贯流式水轮机的特点 贯流式水电站是开发低水头水力资源较好的方式,一般应用于25m水头以下。它低水头立轴的轴流式水电站相比,具有如下显著的特点。 1.电站从进水到出水方向基本上是轴向贯通。如灯泡贯流式水电站的进水管和出水管都不拐弯,形状简单,过流通道的水力损失减少,施工方便。 2.贯流式水轮机具有较高的过流能力和大的比转速,所以在水头和功率相同的条件下,贯流式水轮机直径要比转桨式小10%左右。 3.贯流式水电站的机组结构紧凑,与同一规格的转桨式机组相比其尺寸较小,可布置在坝体内,取消了复杂的引水系统,减少厂房的建筑面积,减少电站的开挖量和混凝土量,根据有关资料分析,土建费用可以节省20%一30%。4.贯流式水轮机适合作可逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电、双向抽水和双向泄水等六种功能。因此,很适合综合开发利用低水头水力资源。 5.贯流式水电站一般比立轴的轴流式水电站建设周期短,,收效快。 贯流式机组布置型式 贯流式水电站的型式一般采用河床式水电站布置,电站厂房是挡水建筑物的一部分,厂房顶有时也布置成泄洪建筑。由于水头较低,挡水建筑大部分采用当地材料,以土石坝为主。广东的白垢贯流式水电站则采用橡胶坝作为挡水建筑物,在洪水期则作为泄洪建筑,降低了工程投资。有的电站由于河流地形、地质条件的特点,也采用引水式布置,如我国四川安居、湖南南津渡水电站则采用明渠引水式的布置。贯流式水电站也常有航运、港口通航的要求,枢纽中设有船闸、升船机等建筑。 贯流式水电站一般处于地形比较平坦,离城镇比较近,水量比较丰富的

灯泡贯流式水轮机

第一章灯泡贯流式水轮机的结构 灯泡贯流式水轮机是贯流式水轮机的主要类型之一。1919年初,美国工程师哈尔扎(Harza)首先提出其设计理念。经过瑞士爱舍维斯公司(Escher Wyss)公司近20年的研究,于1936年研制成功,并开始生产。该水轮机应用水头一般在25m以下,主要应用于潮汐电站,近年来逐渐应用到江河上的低水头电站。贯流式水电站是开发低水头水力资源较好的方式。它与中、高水头水电站和低水头立轴的轴流式水电站相比,具有如下显著的特点。 1.效率高、结构简单、施工方便 贯流式水轮发电机组从进水到出水方向基本上轴向贯通,不拐弯,流道尺寸大而短,过流通道的水力损失少,效率高,结构简单,施工方便。 2.尺寸小 贯流式水轮机有较大的比转速,所以在水头和功率相同的条件下,贯流式水轮机的直径要比转桨式水轮机的小10%左右。 3.土建投资少 贯流式水电站的机组结构紧凑,与同一容量的轴流转桨式机组相比,其尺寸较小,可布置在坝体内,取消了复杂的引水系统,可以减少厂房的建筑面积,减少电站的开挖量和混凝土用量。根据有关资料分析,土建费用可以节省20%~30%。 4.运行方式多 贯流式水轮机适合作可逆式水轮机运行。由于进出水流道没有急转弯,使水轮机发电和抽水均能获得较好的水力性能。它可应用于潮汐电站,具有双向发电、双向抽水和双向泄排水等6种功能。因此,很适合综合开发利用低水头水力资源。 5.见效快 贯流式水电站一般比轴流式水电站建设周期短、投资小、收效快、淹没移民少;电站靠近城镇,有利于发挥地方兴建电站的积极性。 第一节贯流式水轮机的分类及简介 贯流式水轮机组按总体布置方式的不同可分为以下几种: (1)全贯流式。 (2)灯泡贯流式。 (3)竖井贯流式。 (4)轴伸贯流式。 第1页 (5)虹吸贯流式。 按运行工况不同可分为以下3种: (1)单向贯流式。 (2)双向贯流式。 (3)可逆贯流式。 一般习惯按总体布置方式的不同来分类,而很少按运行工况分类,所以本节按总体布置方式的不同分类,介绍贯流式机组的类型。 一、全贯流式水轮机 全贯流式水轮机的流道平直,水流可沿轴向一直流过导叶、转轮叶片和尾水管,故称为全贯流式水轮机,也称为直线流动的水轮机——管型水轮机。由于全贯流式发电机转子布置在水轮机转轮的外缘,故称为轮缘贯流式水轮机,如图1—1所示。

灯泡贯流式机组水轮机导水机构装配

灯泡贯流式机组水轮机导水机构装配 摘要在大型灯泡贯流式机组的安装中,导水机构的装配为机组装配的重要部分。本文介绍了导水机构中外配水环与导叶的装配、控制环装配、导叶与内配水环的装配、导叶间隙的测量等重要安装过程,并提出了安装过程的要点,可供安装人员参考。 关键词导水机构;内、外配水环;导叶;控制环 0引言 贯流式机组用于极低水头的反击型水轮机。其转轮成螺旋浆形,有3-6轮叶,一般成卧式布置,机组轴线成水平线或倾斜的直线。灯泡贯流式水轮机直接通过大轴与发电机连接,发电机全泡在封闭的灯泡体内,灯泡体则设置于流道中,这种发电机适用于普通的河床式水电站。 笔者先后参加安装过多台进口及我国自行研制的大型灯泡贯流式机组。灯泡贯流式机组因其结构复杂,装配精度高等特点,决定了每一步的装配技术含量要求都很高。灯泡贯流式水轮机转轮所需的全部环量均由导水机构形成,因此导水机构对贯流机组而言尤为重要。 下面介绍本人对XX电厂灯泡贯流式机组(单机容量20MW,转轮直径6.4M)水轮机导水机构(见图1)的装配过程。 1外配水环与导叶的装配(装配示意图见图2) 外配水环内表面为过流面,球面上均布16只导叶轴孔,轴孔中心线与工作回转轴线成600夹角,工件最大外径为Φ9500mm,最小内径为Φ6443.5mm,工件高为2180mm,重量为46.23t。导叶上、下端面为球面,凸球面端有一长350mm,直径为Φ250mm和Φ200mm的台阶轴颈,凹球面端在瓣体中心处有一Φ145mm 轴孔,瓣体进出水边密封面为三维空间平面。瓣体长度为2204.5mm,工件重量为2.8t。 外配水环由于尺寸较大,为方便运输,加工成4件,到工地厂房后,再进行组装。装配时,用刀口尺检查各加工面是否达到图纸的要求。合格便可对外配水环进行组装,先把它们放在一平台上就好位,把各组合件用螺栓戴住,并检查各联接口和法兰面是否平齐,接着把法兰组合螺栓拧紧,同时打紧销钉。螺栓拧紧后,用0.05mm塞尺检查各组合面是否紧贴,同时用刀口尺检查各组合件法兰面各连接口之间是否有台阶,如果有,则进行修磨,直至平整。装配好外配水环后,接下来便可装配导叶。 将组合好的外配水环垫在8个高为680mm的铁垫座上。在导叶瓣体上装一5t的手拉葫芦,用天车吊起导叶,并调整导叶使其轴线与水平面大概成300角,

炳灵水电站灯泡贯流式水轮机设计说明

炳灵水电站灯泡贯流式水轮机设计说明

毕业设计(论文) 题目炳灵水电站 的设计 专业热能与动力工程班级 学生 指导教师 2011 年 5

炳灵水电站的设计 摘要 炳灵水电站是黄河龙羊峡至青铜峡段水电开发规划中的第13个梯级水电站。电站总装机容量24万千瓦,共安装5台4.8万千瓦灯泡贯流式水轮发电机组,年均发电量9.74亿千瓦时。 本次毕业设计通过查阅贯流式水轮机相关资料,首先对炳灵水电站转轮型号为GZHK-1RT-WP-620的贯流式水轮机进行设计,包括水轮机总体结构的设计,并对其中的主要零件进行设计优化。绘制出了总装配图,导水机构装配图,主轴零件图,操作油管装配图和导叶臂零件图。其次进行了电气一次部分的设计,设计选择了电气主接线形式,进行短路电流计算和电气主设备选择,绘制出电气主接线图。 本设计相关知识涉及水轮机结构、水电厂电气部分,机械制图以及贯流式水轮发电机组等部分,此外,还包括其相关的设计思路及方法。在本次设计中还大量使用了auto CAD 软件进行绘图。 关键词:贯流式水轮机结构设计电气一次设计 The Design of Bingling Hydraulic 5

Power Station ABSTRACT Bingling Hydropower is the 13 cascade hydropower stations of Longyangxia to Qingtongxia section of Yellow River Hydropower Development planning .In The total installed capacity of 240,000 kilowatts power plant, the installation of five 48,000 kilowatts bulb turbine group, with an annual generating capacity of 974 million kw·h. Firstly, we design the tubular turbine GZHK-1RT-WP-620 of Bingling Hydropower through access to relevant information, including the overall structure of the turbine design, and one of the main parts design optimization. Drawn out of the general 5

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

贯流式水轮机基本结构

第六节贯流式水轮机基本结构 一、贯流式水轮机的特点 贯流式水轮机是开发低水头水力资源的一种新型机组,适用于25m以下的水头。这种机型流道呈直线状,是一种卧轴水轮机,转轮形状与轴流式相似,也有定桨和转桨之分,由于水流在流道内基本上沿轴向运动不拐弯,因此较大的提高了机组的过水能力和水力效率。 此外,与其它机型相比,它还有其它一些显著特点: (1)从进水到出水方向轴向贯通形状简单,过流通道的水力损失减小,施工方便,另外它效率较高,其尾水管恢复功能可占总水头的40%以上。 (2)贯流式机组有较高的过滤能力和比转速,所以在水头与功率相同的条件下,贯流式的要比转桨式的直径小10%左右。 (3)贯流式水轮机适合作了逆式水泵水轮机运行,由于进出水流道没有急转弯,使水泵工况和水轮机工况均能获得较好的水力性能。如应用于潮汐电站上可具有双向发电,双向抽水和双向泄水等六种功能,很适合综合开发利用低水头水力资源,另外在一般平原地区的排灌站上可作为可逆式水泵水轮机运行,应用范围比较广泛。 (4)贯流式水电站一般比立轴的轴流式水电站建设周期短、投资小、收效快、淹没移民少,电站靠近城镇,有利于发挥地区兴建电站的积极性。 二、贯流式水轮机的分类 根据贯流式水轮机机组布置形式的不同可将其划分为以下几种形式: 1.轴伸贯流式 这种贯流式水轮发电机组基本上采用卧式布置,水流基本上沿轴向流经叶片的进出口, 出叶片后,经弯形(或称S形)尾水管流出,水轮机卧式轴穿出尾水管与发电机大轴连接,发电机水平布置在厂房内。 轴伸贯流式机组按主轴布置方式可分成前轴伸、后轴伸和斜轴伸等几种,如图7-1所示。这种贯流式机组与轴流式相比没有蜗壳、肘形尾水管,土建工程量小,发电机敞开布置,易于检修、运行和维护。但这种机组由于采用直弯尾水管,尾水能量回收效率较低,机组容量大时不仅效率差,而且轴线较长,轴封困难,厂房噪音大都将给运行检修带来不方便。所以一般只用于小型机组。 2.竖井贯流式 这种机组主要特点是将发电机布置在水轮机上游侧的一个混凝土竖井中,发电机与水轮机的连接通过齿轮或皮带等增速装置连在一起如图7-2所示。

贯流式水轮机安装说明书

0000101AZ 水轮机安装说明书1/16 目录 1、安装前的准备工作 (2) 2、安装前厂房建筑应具备的主要条件 (2) 3、部件组装 (3) 3.1 尾水管组装 (3) 3.2 座环组装 (4) 3.3 转轮室预装 (4) 3.4 导水机构组装 (5) 3.5 转轮解体组装 (6) 3.6 预装主轴轴承 (7) 3.7 检测受油器 (7) 4、水轮机安装 (7) 4.1 安装尾水管 (7) 4.2 安装座环(整体吊装方案) (8) 4.3 安装座环(土办法安装) (9) 4.4 安装流道盖板基础 (13) 4.5 安装接力器 (13) 4.6 安装导水机构 (13) 4.7 安装主轴-轴承 (14) 4.8 安装转轮室下半部分 (15) 4.9 安装转轮 (15) 4.10 安装主轴密封和组合轴承密封 (15) 4.11 安装受油器 (15) 4.12 安装油、水、气管路及仪表管路 (16) 4.13 安装转轮室上半部分 (16) 4.14 安装地板扶梯及其它 (16)

0000101AZ 水轮机安装说明书2/16此文件仅对XX水轮机安装过程中的主要特点及特殊技术要求作简要说明, 其目的是提醒安装单位在安装水轮机的过程中应注意的事项,不包括为确保质量 所必须执行的全部内容,水轮机的安装还应满足GB8564?88《水轮发电机组安装 技术规范》和DL/T5038?94《灯泡贯流式水轮发电机安装工艺导则》要求。 1安 装 前 的 准 备 工 作 1.1 安装前安装人员应熟悉下列文件及规程: a.《水轮发电机组安装技术规范》GB8564?88及《灯泡贯流式水轮发电机安装工艺导 则》DL/T5038?94; b.本安装说明书; c.随机供给的图纸及图中规定的技术要求; d.水轮机其它技术文件; e.制造厂提供的试验及检查记录。 1.2 安装现场应清洁干净 ; 1.3 认真检查各大件的重量和起重设备能力,预先考虑大 件的起吊搬运方法; 1.4 按各部套的安装工具图纸,检查、熟悉制造厂提供的专用工具。 1.5 检查零部件的X、Y线、标记、编号。 2安装前厂房建筑应具备的主要条件 2.1一期混凝土工程已经完成并符合设计要求。 2.2预埋管件、地脚螺钉孔、各支墩尺寸、标高均符合设计要求。 2.3进水流道及尾水管混凝土应符合设计要求 。 3部件组装 3.1尾水管组装 尾水管分三节,即进口节(小节)、中间节和出口节(大节),每节分 三瓣,三节尾水管正立放置拼装焊接,整体翻身吊装就位。 3.1.1按照图纸制作并埋设一期埋件,包括基础板、锚钩等埋件。 3.1.2尾水管拼装平台制做: ?平台应该水平并且有足够大的面积; ?平台基础支撑应该用型钢; ?平台应该有很好的接地措施。 3.1.3在拼装平台上按照尾水管各节大口的图纸直径尺寸划线。 3.1.4吊装一瓣瓦片,大口朝下,沿着划的线就位,临时固定后,用千斤顶或楔子板调整瓦

轴流式水轮机基本结构

轴流式水轮机基本结构 轴流式水轮机与混流式水轮一 样属于反击式水轮机,二者结构上 最明显的差别是转轮,其次是导叶 高度。根据转轮叶片在运行中能否 调节,轴流式水轮机又分为轴流定 桨式和轴流转桨式两种型式。轴流 式水轮机用于开发较低水头 (3m~55m),较大流量的水能资源。 它的比转速大于混流式水轮机,属 于高比转速水轮机。在低水头条件 下,轴流式水轮机与混流式水轮机 相比较具有较明显的优点,当它们 使用水头和出力相同时,轴流式水 轮机由于过流能力大(图5-13), 可以采用较小的转轮直径和较高的 转速,从而缩小了机组尺寸,降低了 投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的功率。但在相对高水头条件下,轴流式水轮机除了空化系数较大,厂房要有较大开挖量外,飞逸转速和轴向水推力较混流式水轮机高。 轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,是一种值得广泛使用的优良机型。 限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量和单位转速都比较大,转轮中水流的相对流速比相同直径 的混流式转轮中的高,所以它具有较大的空化系数。在相同水头下,轴流式水轮机由于桨叶数少,桨叶单位面积上所承受的压差较混流式叶片的大,桨叶正背面的平均压差较混流式的大,所以它的空化性能较混流式叶片的差。因此,在同样水头条件下,轴流式水轮机比混 流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机桨叶数较少(3~8片),桨叶呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加桨叶数和桨叶的厚度,为了能够方便地布置下桨叶和转动机构,转 轮的轮毂比,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单 位流量下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了轴流式水轮机应用水头的提高。 但是,随着科学技术的发展,通过改进转轮的设计方法,选择更加合理的流道几何参数和桨叶的型线,使得桨叶背面的压力分布更加均匀,降低桨叶正面和背面的平均压差,从而达到

轴流式水轮机的结构

轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶

图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体

贯流式水轮机的应用与技术发展(一)

贯流式水轮机的应用与技术发展(一) 摘要:水轮机是将水流机械能转换为固体机械能的水力原动机。根据在水轮机内实现能量转换的水流能量形式及水流在水轮机转轮区域内的运动特征,贯流式水轮机属于轴流式水轮机一类。而根据水轮机的结构和机组的布置形式,贯流式水轮机有全贯流式、半贯流式(灯泡贯流、轴伸贯流和竖井贯流)等形式的区别。关键词:水轮机应用技术发展1贯流式水轮机的结构特点与技术经济优势 贯流式水轮机的流道形式和轴流式水轮机不同,为保证向导水机构均匀供水和形成必要的环量,保证导叶较平滑绕流,轴流式水轮机需设置蜗壳,其流道由蜗壳、导水机构和弯肘型尾水管组成。贯流式水轮机没有蜗壳,流道由圆锥形导水机构和直锥扩散形或S型尾水管组成。通常采用卧轴式布置,从流道进口到尾水管出口,水流沿轴向几乎呈直线流动,避免了水流拐弯形成的流速分布不均导致的水流损失和流态变坏,水流平顺,水力损失小,尾水管恢复性能好,水力效率高。灯泡贯流机组的发电机装置在水轮机流道中的灯泡形壳体内,采用直锥扩散形尾水管,流道短而平直对称,水流特性好。大型贯流机组几乎都是灯泡机组,中小型多采用轴伸式、竖井式等形式。 贯流式水轮机单位过流量大,转速高,水轮机效率高,且高效区宽,加权平均效率也较高,具有比轴流式水轮机更优良的能量特性。其特征参数比转速ns、可达1000以上,比速系数可达3000以上。与轴流式水轮机相比,在相同水头和相同单机容量时,其机组尺寸小,重量轻,材料消耗少,机组造价低。贯流机组电站还可获得年发电量的增加。 贯流式水轮机的空化性能和运行稳定性也优于轴流式水轮机,其空化系数相对较小,机组可靠性高,运行故障率低,可用率高,检修时间缩短,检修周期延长。对于低水头资源开发,贯流式水轮机的稳定运行范围宽,在极低水头时也能稳定运行(如超低水头1.5m以下),是其他类型的水轮机不可比的。如广东白垢电站,额定水头6.2m,最大水头10.0m,但在1.3m 水头时仍能稳定运行。 贯流式水轮发电机组结构紧凑,布置简洁,厂房土建工程量较小,可节省土建投资。贯流机组设备运输和安装重量较轻,施工和设备安装方便,可缩短工期,实现提前发电。根据国内外有关水电站的统计资料,采用灯泡贯流机组比相同容量轴流转桨机组,电站建设投资一般可节省10%~25%,年发电量可增加约3%~5%。如我国广东白垢和广西马骝滩水电站,投资节省分别达22.6%和24%。小型水电站采用轴伸贯流机组与立式轴流机组比较,也可节省建设投资约10%~20%。由此可见,贯流式水轮机是开发低水头水能资源的一种最经济、适宜的水轮机形式,具有资源利用充分、投资节省的优势和电量增值、综合效益增值的效果。2国内外贯流式水轮机的应用现状 贯流式水轮机自20世纪30年代问世以来,因其优良的技术经济特性和适用性而得到广泛应用和迅速发展,包括灯泡贯流发电机技术在内的贯流机组技术日益成熟,贯流式水电站的开发、设计、运行技术与经验日益丰富。国外水头25m以下的水电开发,已出现取代轴流式水轮机的局面。贯流机组技术在1960~1990的发展最为迅猛,这一时期投入运行的贯流机组,最大单机容量达65.8MW(灯泡贯流,日本只见),最大水轮机转轮直径达8.2m(竖井贯流,美国墨累),最高工作水头达22.45m(灯泡贯流,日本新乡第二)。 我国从20世纪60年代开始贯流式水轮机的研究和应用,到20世纪80年代,贯流机组技术及其应用取得突破性的进展,1983年引进设备的第一座大型灯泡贯流机组电站一湖南马迹塘水电站建成,1984年自主开发的广东白垢电站转轮直径5.5m,单机容量10MW灯泡贯流机组投运,标志着具备自行开发研制大型贯流机组设备的能力。贯流式水轮机的应用研究和运行技术也获得了发展,积累了经验。最近20年来,相继开发建成引进设备、技术合作或自行装备的大型灯泡贯流机组电站数十座,如凌津滩、王甫洲、尼那、洪江等。其中洪江水电站最大工作水头27.3m,单机容量45MW,是目前世界上应用水头最高、国内单机容量

灯泡贯流式水轮发电机组发电机径向轴承瓦拆装方法

灯泡贯流式水轮发电机径向轴承瓦拆装方法 许国彦 (哈尔滨电机厂有限责任公司,哈尔滨 150040) [摘要] 本文对灯泡贯流式水轮发电机出现径向轴承瓦烧瓦情况时,拆卸和回装径向轴承瓦的方法进行了总结,与不同方法进行了比较,利于电站检修、设备制造所借鉴。 [关键词] 灯泡贯流式水轮发电机;径向轴承瓦;拆卸;回装。 The Remove and Install of the Radial Bearing Pad for a Type of Bulb Tubular Hydro-generator XU-guoyan Harbin Electric Machinery Company Limited, Harbin 150040,china Abstract: In this paper the methods of how to remove and install the radial bearing pad is summed-up when the radial bearing pad is burnout for the bulb tubular hydro-generator., and compare with the different methods,and this is benefit for the examining and repairing of the powerstation and the making of the equipment. Key words: bulb tubular hydro-generator; the radial bearing pad; remove; reinstall 一、前言 灯泡贯流式水电站发电机组由于机组运行异常情况或外界电网故障情况,通过监测发电机组发电机径向轴承瓦瓦温急剧升高,若超过径向瓦瓦温报警值、停机整定值,分析发电机径向轴承瓦存在烧瓦的可能性,则必须停机拆卸径向轴承瓦进行检查、处理或更换新的径向瓦。如果按贯流灯泡式机组装机的逆过程进行拆卸机组部件的方法,显然是不经济也不现实的,这将会投入大量人力和财力,更会影响机组的长时间停产而引起的经济效应和社会效应;所以,采取在水轮机机舱内拆卸和更换发电机径向轴承瓦才是最为经济和快捷的方法。根据国内某电站灯泡贯流式机组拆卸和更换发电机径向瓦的实际过程,就其方法作以总结及探讨。 二、灯泡贯流式发电机的组合轴承结构 灯泡贯流式发电机的组合轴承包括正、反向推力轴承和径向轴承,正、反向推力轴承承受机组运转时的轴向水推力和停机时的反向轴向水推力;而径向轴承与水轮机导轴承共同承受转动部分的重力及径向不平衡力,正、反向推力轴承和径向轴承组合在一起装在一个油槽内。见图示1。 三、发电机径向轴承瓦拆卸方法: 1. 盘车确定主轴方位 座,5——轴承支架,6——反推力瓦,7——镜板,8——正向推力瓦,9——正推力座,10——轴承壳,11——正向推力螺栓,12——轴承密封,13——主轴,14——固定导叶、竖井,15——管型座内壳,16——调整垫 17——挡板I ,18——挡板II , 图示1 图示2

轴流式水轮机的结构

一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。

1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢 轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,

第一章 灯泡贯流式水轮机得结构

第一章灯泡贯流式水轮机得结构 灯泡贯流式水轮机就是贯流式水轮机得主要类型之一。1919年初,美国工程师哈尔扎(Harza)首先提出其设计理念。经过瑞士爱舍维斯公司(Escher Wyss)公司近20年得研究,于1936年研制成功,并开始生产。该水轮机应用水头一般在25m以下,主要应用于潮汐电站,近年来逐渐应用到江河上得低水头电站。贯流式水电站就是开发低水头水力资源较好得方式。它与中、高水头水电站与低水头立轴得轴流式水电站相比,具有如下显著得特点。 1.效率高、结构简单、施工方便 贯流式水轮发电机组从进水到出水方向基本上轴向贯通,不拐弯,流道尺寸大而短,过流通道得水力损失少,效率高,结构简单,施工方便。 2.尺寸小 贯流式水轮机有较大得比转速,所以在水头与功率相同得条件下,贯流式水轮机得直径要比转桨式水轮机得小10%左右。 3.土建投资少 贯流式水电站得机组结构紧凑,与同一容量得轴流转桨式机组相比,其尺寸较小,可布置在坝体内,取消了复杂得引水系统,可以减少厂房得建筑面积,减少电站得开挖量与混凝土用量。根据有关资料分析,土建费用可以节省20%~30%。 4.运行方式多 贯流式水轮机适合作可逆式水轮机运行。由于进出水流道没有急转弯,使水轮机发电与抽水均能获得较好得水力性能。它可应用于潮汐电站,具有双向发电、双向抽水与双向泄排水等6种功能。因此,很适合综合开发利用低水头水力资源。 5.见效快 贯流式水电站一般比轴流式水电站建设周期短、投资小、收效快、淹没移民少;电站靠近城镇,有利于发挥地方兴建电站得积极性。 第一节贯流式水轮机得分类及简介 贯流式水轮机组按总体布置方式得不同可分为以下几种: (1)全贯流式。 (2)灯泡贯流式。 (3)竖井贯流式。 (4)轴伸贯流式。 第1页 (5)虹吸贯流式。 按运行工况不同可分为以下3种: (1)单向贯流式。 (2)双向贯流式。 (3)可逆贯流式。 一般习惯按总体布置方式得不同来分类,而很少按运行工况分类,所以本节按总体布置方式得不同分类,介绍贯流式机组得类型。 一、全贯流式水轮机 全贯流式水轮机得流道平直,水流可沿轴向一直流过导叶、转轮叶片与尾水管,故称为全贯流式水轮机,也称为直线流动得水轮机——管型水轮机。由于全贯流式发电机转子布置在水轮机转轮得外缘,故称为轮缘贯流式水轮机,如图1—1所示。

灯泡贯流式水轮机设计书

灯泡贯流式水轮机设计书 1.前言 1.1概述 随着我国经济突飞猛进的发展,人民生活水平不断的提高提高,生产和生活用电的需求也越来越大。然而能源问题已成为当今世界三大主要问题之一,传统能源的短缺和用其发电带来的污染,以及新能源开发技术的不完善,水电资源作为洁净的可持续能源越来越得到人们的青睐。据探测,我国水力资源丰富,但是目前的开发率和发达国家比起来还有很大的差距,因此开发水电已成为我国缓解资源短缺的重要手段之一!水力机组是水电站的核心设备,是整个水电枢纽工程最终经济效益的归宿。因此,水轮机结构设计得是否合理就成为电站能否有效运行得关键。 本次毕业设计通过查阅贯流式水轮机相关资料,对炳灵水电站转轮型号为GZHK-1RT-WP-620的贯流式水轮机进行设计,并且对炳灵水电站电气一次部分进行设计。相关知识涉及水轮机结构、水电厂电气部分,机械制图以及贯流式水轮发电机组等部分,此外,还包括其相关的设计思路及方法。 本次设计在巩固原有专业课知识的基础上加深理解,并对贯流式机组的知识进行了拓展。更好的促进各科知识之间相互贯通,同时可以培养动手能力,创新能力,达到理论实践相结合的目的。在本次设计中,大量使用autoCAD绘图软件,节省了很多手绘的时间,锻炼了使用该软件的能力。

1.2设计内容 (一)根据给定的炳灵电站贯流式的型号和转轮直径等参数进行水轮机结构设计。 1.按给定水轮机型号和转轮直径等参数,确定水轮机的主要特征尺寸,对水轮机整体结构进行设计; 2.确定水轮机主轴尺寸; 3.根据机组型式和电站自然条件进行主轴密封和水导轴承设计; 4.绘制水轮机总装配图及主要部件组装图和零件图。 (二)导水机构传动系统设计及主要零件的设计 1.根据机组的型式进行导水机构设计并绘制导水机构装配图; 2.对主轴的形式及尺寸等进行设计并绘制主轴零件图; 3.对导叶臂的形式及尺寸进行设计并绘制导叶臂零件图; 4.绘制操作油管装配图; (三)机组电气部分设计 1.对电站的电气一次部分进行设计,其中包括电气主接线方案设计,确定主变压器型式、台数、容量,以及各级电压配电装置的接线方式等。 2.对短路电流进行计算。 3.对电气主设备进行选择,包括断路器、负荷开关和隔离开关、高压熔断器、限流电抗器、电压互感器、电流互感器、避雷器、裸导体、支柱绝缘子及穿墙套管、消弧线圈以及电缆。 (四)外文翻译 1.阅读外文文献; 2.精读其中三篇,并且选择一篇翻译。

国内外贯流式水轮机的应用现状

国内外贯流式水轮机的应用现状 贯流式水轮机自20世纪30年代问世以来,因其优良的技术经济特性和适用性而得到广泛应用和迅速发展,包括灯泡贯流发电机技术在内的贯流机组技术日益成熟,贯流式水电站的开发、设计、运行技术与经验日益丰富。国外水头25m以下的水电开发,已出现取代轴流式水轮机的局面。贯流机组技术在1960~1990的发展最为迅猛,这一时期投入运行的贯流机组,最大单机容量达65.8MW(灯泡贯流,日本只见),最大水轮机转轮直径达8.2m(竖井贯流,美国墨累),最高工作水头达22.45m(灯泡贯流,日本新乡第二)。 我国从20世纪60年代开始贯流式水轮机的研究和应用,到20世纪80年代,贯流机组技术及其应用取得突破性的进展,1983年引进设备的第一座大型灯泡贯流机组电站一湖南马迹塘水电站建成,1984年自主开发的广东白垢电站转轮直径5.5m,单机容量10MW灯泡贯流机组投运,标志着具备自行开发研制大型贯流机组设备的能力。贯流式水轮机的应用研究和运行技术也获得了发展,积累了经验。最近20年来,相继开发建成引进设备、技术合作或自行装备的大型灯泡贯流机组电站数十座,如凌津滩、王甫洲、尼那、洪江等。其中洪江水电站最大工作水头27.3m,单机容量45MW,是目前世界上应用水头最高、国内单机容量最大的灯泡贯流机组。国内已运行的灯泡贯流式水轮机最大转轮直径已达7.5m。目前规划或在建的贯流式水电站遍布全国各地,在建的广西长洲水电站装机15台,总装机容量达621.3 MW。在西北地区,20世纪80年代开始贯流式水电站的规划设计,并完成了柴家峡等电站的可行性研究。在黄河干流上现已建成青海尼那电站,宁夏沙坡头电站即将竣工,甘肃柴家峡、青海直岗拉卡等电站在建。尼那电站是我国海拔最高的大型灯泡贯流机组电站,沙坡头则是应用于高含沙水流的第一座大型灯泡贯流机组电站,各具特色,为贯流式水电站的开发提供了新的经验。 对于低水头小型水电站,轴伸贯流水轮机和竖井贯流水轮机具有与灯泡贯流水轮机相当的技术经济优势,国外20m以下的小水电开发,已逐步取代轴流机组。据文献介绍,国外已运行的轴伸贯流式水轮机转轮直径达8.6m,单机容量达到31.5MW,最大使用水头达到38m。我国轴伸贯流式水轮机的技术开发起步较晚,自行研制的GZ006、GZ007(5叶片)等转轮的性能达到或超过国际先进水平,但尚没有得到普遍的技术推广和形成相应的生产和市场规模。国内已运行的轴伸贯流水轮机多采用定桨式转轮,最大转轮直径2.75m,单机容量3.5MW,最大使用水头22m。而竖井贯流和全贯流机组技术开发程度较低,应用很少,与国外存在明显差距。

水轮机的选型设计

水轮机的选型设计 水轮机选型时水电站设计的一项重要任务。水轮机的型式与参数的选择是否合理,对于水电站的功能经济指标及运行稳定性,可靠性都有重要影响。 水轮机选型过程中,一般是根据水电站的开发方式,功能参数,水工建筑物的布置等,并考虑国内外已生产的水轮机的参数及制造厂的生产水平,拟选若干个方案进行技术经济的综合比较,最终确定水轮机的最佳型式与参数。 一:水轮机选型的内容,要求和所需资料 1:水轮机选择的内容 (1)确定单机容量及机组台数。 (2)确定机型和装置型式。 (3)确定水轮机的功率,转轮直径,同步转速,吸出高度及安装高程,轴向水推力,飞逸转速等参数。对于冲击式水轮机,还包括确定射流直径与喷嘴数等。 (4)绘制水轮机的运转综合特性曲线。 (5)估算水轮机的外形尺寸,重量及价格。 wertyp9 ed\结合水轮机在结构、材质、运行等方面的要求,向制造厂提出制造任务书。 2.水轮机选择的基本要求 水轮机选择必须要考虑水电站的特点,包括水能、水文地质、工程地质以及电力系统构成、枢纽布置等方面对水轮机的要求。在几个可能的方案中详细地进行以下几方面比较,从中选择出技术经济综合指标最优的方案。 (1)保证在设计水头下水轮机能发生额定出力,在低于设计水头时机组的受阻容量尽可能小。 (2)根据水电站水头的变化,及电站的运行方式,选择适合的水轮机型式及参数,使电站运行中平均效率尽可能高。 (3)水轮机性能及结构要能够适应电站水质的要求,运行稳定、灵活、可靠,有良好的抗空化性能。在多泥沙河流上的电站,水轮机的参数及过流部件的材质要保证水轮机具有良好的抗磨损,抗空蚀性能。 (4)机组的结构先进、合理,易损部件应能互换并易于更换,便于操作及安装维护。

相关主题
文本预览
相关文档 最新文档