当前位置:文档之家› 分子标记技术的进展及其应用

分子标记技术的进展及其应用

分子标记技术的进展及其应用
分子标记技术的进展及其应用

分子标记技术综述

分子标记技术及其在植物药材亲缘关系鉴定中的应用 分子标记技术 分子标记(Molecular Markers)是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接反映[1]。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有极大的优越性:大多数分子标记为共显性,对隐性性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速[2]。 技术种类及原理 分子标记技术自诞生起已研究出数十种,尽管方法差异显著,但都具有一个共同点,即用到了分子杂交、聚合酶链式反应(PCR)、电泳等检测手段。应用较为广泛的技术有以下几种: 1.限制性片段长度多态性(Restriction Fragment Length Polymorphisms,RFLP) RFLP是最早开发的分子标记技术,指基因型间限制性内切酶位点上的碱基插入、缺失、重排或突变引起的,是由Grodzicker等于1974年创立的以DNA-DNA杂交为基础的遗传标记。基本原理是利用特定的限制性内切酶识别并切割不同生物个体的基因组DNA,得到大小不等的DNA片段,所产生的DNA数目和各个片段的长度反映了DNA分子上不同酶切位点的分布情况[3]。通过凝胶电泳分析这些片段,就形成不同带,然后与克隆DNA探针进行Southern 杂交和放射显影,即获得反映个体特异性的RFLP图谱。它所代表的是基因组DNA在限制性内切酶消化后产生片段在长度上差异。由于不同个体的等位基因之间碱基的替换、重排、缺失等变化导致限制内切酶识别和酶切发生改变从而造成基因型间限制性片段长度的差异。 RFLP的等位基因其有共显性特点,可靠性高,不受环境、发育阶段或植物器官的影响。RFLP标记位点数量不受限制,通常可检测到的基因座位数为1—4个,标记结果稳定,重复性好。RFLP技术也存在一些缺陷,主要是克隆可表现基因组DNA多态性的探针较为困难;另外,RFLP分析工作量大,成本高,使用DNA量大,使用放射性同位素和核酸杂交技术,不易自动化,尽管结合PCR技术,RFLP仍在应用,但已不再是主流分子标记。 2.随机扩增多态性DNA(Random Amplification Polymorphism,RAPD) RAPD技术是1990年由William和Welsh等人利用PCR技术发展的检测DNA多态性的方法,其基本原理是利用随机引物(一般为8—10bp)通过PCR反应非定点扩增DNA片段,然后用凝胶电泳分析扩增产物DNA片段的多态性。扩增片段多态性便反映了基因组相应区域的DNA多态性。RAPD所使用的引物各不相同,但对任一特定引物,它在基因组DNA序列上有其特定的结合位点,一旦基因组在这些区域发生DNA片段插人、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物数量和大小发生改变,表现出多态性[4]。就单一引物而言,其只能检测基因组特定区域DNA多态性,但利用一系列引物则可使检测区域扩大到整个基因组,因此,RAPD可用于对整个基因组DNA进行多态性检测,也可用于构建基因组指纹图谱。 与RFLP技术相比,RAPD技术操作简便快速,省时省力,DNA用量少,同时无需设计特定的引物,扩增产物具有丰富的多态性。但RAPD也存在一些缺点:(1)RAPD标记是一个显

桃分子标记研究进展

桃分子标记研究进展 Peach molecular mark research development XXX 园艺学院 摘要桃在我国已有几千年的栽培历史,在我国水果市场中占有非常重要的地位。但由于其耐贮性差,一直以来都是育种工作者进行品种改良的重要目标。但其常规杂交后代单株占地面积大, 播种后3~4 a 才能开花结果, 养护费用高, 育种周期长、效率低。 本文从桃的基因定位、遗传图谱的构建进行总结探索,将对其育种改良工作有推动和指导作用。 关键词桃分子标记基因定位遗传图谱问题及展望 Abstract th e peach has been planted for a long history in our country.It is very important in the fruit-market in our country . But because not able to bear a longtime store,It has been an important target for the breeder to improve the peach cultivar for a long time.But the conventional hybrid generation takes up a large field,blossoms three to four years after breeded,needs a high cost care.It takes a long time breeding cycle but with a low efficiency.This article summarises from the construction of the peach’s genetic mapping and explores it. That Will have impetus and instruction function to the breeding improvement work of peach. Keyword peach, molecular mark, genetic mapping construction ,problems and forecast 桃属于蔷薇科( Rasaceae) 桃属( Prunus) ,是我国最古老的果树树种,栽培历史悠久,分布十分广泛,是我国重要的果树种类。桃是自花授粉果树, 许多重要的经济性状属于单基因控制的质量性状,它的染色体数目少(2n = 16) ,基因组小,含有0. 30 ±0. 02PgDNA ,大约有3. 0 ×108bp。只有拟南芥基因组的两倍,是最适合进行遗传学研究的多年生果树之一。 分子标记是近年发展起来的一种较理想的遗传标记形式。如限制性片段长度多态性( R FL P) 、随机扩增多态性(RAPD) 、扩增片段长度多态性(AFLP) 、简单重复序列(SSR) 、测定序列标签位点( STS) 、序列特异性扩增区域(SCAR) 、表达序列标签( EST) 、简单序列长度多态性(SSL P) 、微卫星DNA(MS) 、数量可变串联重复(VNTR) 等,已广泛应用于制作遗传连锁图谱、基因标记定位和克隆、种质鉴定、分子标记辅助选择、遗传多样性分析等多种研究领域。 1 分子标记技术在桃种质资源研究上的应用 目前,国家非常重视种质资源的收集、保存和利用工作。随着现代分子生物学发展,分子标记为种质资源的亲缘演化、分类、种质保存等研究工作提供了有力的依据,使其能更有效的保护、利用果树种质资源。 1. 1 桃属种的系统发育和分类 桃品种依果实特性分为普通桃、油桃、蟠桃,依用途可分为鲜食桃、加工桃及观赏桃,依果肉色泽分白肉桃、黄肉桃,依成熟期早晚可分为极早熟、早熟、中熟、晚熟和极晚熟桃(果实发育期分别为80天以下、80~100d、100~120d、120~150d、150d以上)[ 1 ]。有些学者将桃属分为6 个种,即普通桃、新疆桃、甘肃桃、光核桃、山毛桃、陕甘山桃,其中蟠桃、油桃、寿星桃是普通桃的变种。随着分子标记在种质资源研究中的大量应用,对桃种质资源的分类有了新的认识。杨英军对普通桃、新疆桃、山桃、甘肃桃及部分品种、变种进行多态性分析,新疆桃被归入普通桃中,推测它起源于普通桃。程中平等[ 2 ]也发现新疆桃是普通桃

DNA分子标记技术及其应用

DNA分子标记技术及其应用 摘要:分子遗传标记是近年来现代遗传学发展较快的领域之一。本文系统阐述了DNA分子标记的概念,以及RFLP、RAPD、ALFP、STS、SSR和SNP为代表的分子标记技术的原理和主要方法,并简单介绍了DNA分子标记技术的应用。最后探讨了其进展以及存在的一些问题。 关键词:分子标记;应用 分子遗传标记技术作为一种新的分子标记技术,在分子生物学特别是在分子遗传学的研究中得到了广泛的应用和发展,其所构建的遗传图谱具有高度的特异性。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面,成为分子遗传学和分子生物学研究与应用的主流之一。 1DNA分子标记的概念 遗传标记是基因型特殊的易于识别的表现形式,在遗传学的建立和发展过程中起着重要作用。从遗传学的建立到现在,遗传标记的发展主要经历了4个阶段,表现出了4种类型:1形态标记(Morphological Markers),指生物的外部特征特性,包括质量性状作遗传标记和数量性状作遗传标记;2细胞标记(Cytological Markers),主要指染色体组型和带型;3生化标记(Biochemical Markers),指生物的生化特征特性,主要包括同工酶和贮藏蛋白两种标记;4DNA分子标记(Molecular Markers)是以生物大分子(主要是遗传物质DNA)的多态性为基础的一种遗传标记。前3种标记是对基因的间接反映,而DNA分子标记是DNA水平遗传变异的直接反映。与其它遗传标记相比较,DNA分子标记具有诸多优点,如:遗传稳定,多态性高,多为共显性,数量丰富,遍及整个基因组,操作简便。这些优点使其广泛地应用于生物基因组研究、进化分类、遗传育种、医学等方面。目前,被广泛应用的DNA分子标记主要有RFLP(限制性片段长度多态性)、RAPD(随机扩增多态性DNA)、ALFP(扩增片段长度多态性)、STS(序列标记位点)、SSR(简单重复序列)和SNP(单核苷酸多态性)等。 2分子遗传标记技术的种类 2.1RFL P标记 RFLP(Restriction Fragment Length Polymorphism,限制性片段长度多态性)标记,是人类遗传学家Botstein等于1980年提出的,是以Southern杂交为核心的第一代分子标记技术。它是用限制性内切酶切割不同个体基因组DNA后,用印迹转移杂交的方法检测同源序列酶切片段在长度上的差异。这种差异是由于变异的产生或是由于单个碱基的突变所导致的限制性位点增加或消失,或是由于DNA序列发生 插入、缺失、倒位、易位等变化所引起的结构重排所致。其差异的检测是利用标记的同源序列DNA片段作探针进行分子杂交,再通过放射自显影(或非同位素技术)实现的。 与传统的遗传标记相比,RFL P标记具有下列优点: (1)RF LP标记无表型效应,其检测不受外界条件、性别及发育阶段的影响;

分子标记技术的种类

分子标记技术的种类-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性; ②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速; ⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们 均具有各自的优点和不足。其特点比较见表一。 1限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP)1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝胶电泳将 DNA片段按各自的长度分开,通过Southern印迹法,将这些大小不同的DNA片段转移到硝酸纤维膜或尼龙膜上,再用经同位素或地高辛标记的探针与膜上的酶切片段分子杂交,最后通过放射性自显影显示杂交带,即检出限制性片段长度多态性。进行 RFLP时,酶切要彻底,注意内切酶的选择,对于亲缘关系很近的物种,可增加内切酶的使用种类。目前RFLP的使用领域很广泛,其具有以下优点:①RFLP标记源于基因组DNA的自身变异,理论上可覆盖整个基因组,能提供丰富的遗传信息;②标记不受组织、环境和发育阶段的影响;③呈共显性,即杂交时等位DNA片段均呈现带,能区分纯合基因型和杂合基因型,F2表现出 1∶2∶1的孟德尔分离定律[3],提供标记座位完全的遗传信息;④由于限制性内切酶的专一性使结果稳定可靠,重复性好。其缺点是:①操作繁琐,费时;②酶切后的DNA质量要求高;③使用放射性同位素进行分子杂交,有危险性等。 2随机扩增多态性DNA标记 (Random Amplified Polymorphic DNA,RAPD) 20世纪80年代,基于PCR技术的第二代分子标记技术诞生并迅速发展起来。1990年,Williams 等发表了一种不需预先知道DNA序列信息的检测核苷酸序列多态性的方法,即随机扩增多态性DNA标记(RAPD)。其原理是以碱基顺序随机排列的寡核苷酸单链(8-10bp)为引物,以组织中分离出来的基因组DNA为模板进行扩增。随机引物在基因组DNA序列上有其特定结合位点,一旦基因组在这些区域发生DNA片段插入、缺失或碱基突变,就可能导致这些特定结合位点的分布发生变化,从而导致扩增产物的数量和大小发生改变,表现出多态性。用琼脂糖凝胶电泳分离扩增产物,溴化乙锭染色后可在紫外光下显现出基因组相应区域DNA的多态性。与RFLP相比,RAPD方便易行,DNA用量少,设备要求简单,不需DNA探针,设计引物也不需要预先进行序列分析,不依赖于种属特异性和基因组的结构;合成一套引物可以用于不同生物基因组分析,用一个引物就可扩增出许多片段,并且不需使用同位素,安全性好。但因为引物较短导致退火温度较低,易产生错配,故实验的稳定性和重复性差,且为显性标记,不能区分纯合子和杂合子。 RAPD 标记技术利用单引物扩增多个基因位点使其在一定程度上对反应条件敏感,这会限制其应用。将RAPD-PCR变成经典的PCR可克服此限制,即设计更长的引物。1993年,Paran提出的序列特征化扩增区域标记(Sequenced Characterized Amplified Region,SCAR)即为以经典PCR为基础的分子标记技术[1]。SCAR标记技术通过对产生的RAPD片段克隆和测序,设计一对互补于原

分子标记在番茄抗性育种研究进展

分子标记在番茄抗性育种中研究进展 摘要:本文综述了近年来RFLP RAPD SSA AFLP CAPS和SNP分子标记技术在番茄抗性育种上的应用,分析了目前的研究进展,对今后研究的重点进行了讨论。 关键词:分子标记;番茄;抗性;进展。 Molecular marker in tomato resistance breeding research progress in Abstract: This paper reviewed recent RFLP RAPD SSA AFLP CAPS and SNP in the application of tomato resistance breeding, analysis of the current research progress, the focus of the future research are discussed. Key words: Molecular markers; tomato; resistance; progress. 番茄既是蔬菜也是水果, 其中含有丰富的维生素C对心血管有良好的保护作用;番茄红素具有良好的抗氧化作用,能清除体内废物,增加免疫力。它也是营养师大力提倡的减肥食品。它早已成为人们日常生活中的不可缺少的食物。 随着遗传学的发展,遗传标记的种类和数量也在不断增加。形态标记、细胞学标记、生化标记都是以基因表达的结果(表现型)为基础,是对基因的间接反映;而DNA分子标记则是DNA水平遗传变异的直接反映。与表型标记相比,DNA分子标记具有能对各发育时期的个体、组织、器官甚至细胞作检测,既不受环境的影响,也不受基因表达与否的限

分子印迹技术原理及其在分离提纯上的应用

. . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

分子标记技术的类型原理及应用

分子标记 1.分子标记技术及其定义 1974年,Grozdicker等人在鉴定温度敏感表型的腺病毒DNA突变体时, 利用限制性内切酶酶解后得到的DNA片段的差异, 首创了DNA分子标记。所谓分子标记是根据基因组DNA存在丰富的多态性而发展起来的可直接反映生物个体在DNA水平上的差异的一类新型的遗传标记,它是继形态学标记、细胞学标记、生化标记之后最为可靠的遗传标记技术。广义的分子标记是指可遗传的并可检测的DNA序列或蛋白质分子。通常所说的分子标记是指以DNA多态性为基础的遗传标记。分子标记技术本质上都是以检测生物个体在基因或基因型上所产生的变异来反映基因组之间差异。 2.分子标记技术的类型 分子标记从它诞生之日起, 就引起了生物科学家极大的兴趣,在经历了短短几十年的迅猛发展后, 分子标记技术日趋成熟, 现已出现的分子标记技术有几十种, 部分分子标记技术所属类型如下。 2.1 建立在Southern杂交基础上的分子标记技术 (1) RFLP ( Rest rict ion Fragment Length Polymorphism)限制性内切酶片段长度多态性标记; (2) CISH ( Chromosome In Situ Hybridization) 染色体原位杂交。 2.2 以重复序列为基础的分子标记技术 (1) ( Satellite DNA ) 卫星DNA; (2) ( Minisatellite DNA ) 小卫星DNA; (3) SSR( Simple Sequence Repeat ) 简单序列重复, 即微卫星DNA。 2.3 以PCR为基础的分子标记技术 (1) RAPD ( Randomly Amplif ied Polymorphic DNA ) 随机扩增多态性DNA; (2) AFLP( Amplif ied Fragment Length Polymorphism) 扩增片段长度多态性; (3) SSCP( Single Strand Conformation Polymorphism) 单链构象多态性; (4) cDNA-AFLP( cDNA- AmplifiedFragment Length Polymorphism) cDNA -扩增片段长度多态性; (5) TRAP( Target Region Amplified Polymorphism) 靶位区域扩增多态性; (6) SCAR ( Sequence Char acterized Amplified Region) 序列特征化扩增区域; (7) SRAP ( Sequencerelated Amplified Polymorphism) 相关序列扩增多态性。 2.4以mRNA为基础的分子标记技术

分子印迹技术原理及其在分离提纯上的应用

. . . . 生物分离的新技术——分子印迹 —创新论坛—工业生物技术专家报告会 2008级生命学院3班微生物与生化药学专业 2008001243 宋汉臣

目录 1分子印迹技术的原理与方法 (3) 1.1 MIP的制备过程 (3) 1.2制备MIP的方法 (3) 1.2.1预组装法——共价键作用 (4) 1.2.2自组装法——非共价作用 (4) 1.2.3 共价作用与非共价作用联合法 (5) 2 分子印迹技术在分离上的应用 (5) 2.1 MIP作为固定相的分离技术 (6) 2.1.1MIP作为固定相分离天然产物 (6) 2.1.2MIP作为固定相检测食品中药物的残留 (7) 2.2分子印迹膜(MIM)分离技术 (7) 3问题与展望 (8) 4 参考文献 (9)

摘要:分子印迹技术[1](Molecular Imprinting technique,MIT)是一种新的、很有发展潜力的分离技术。由于其具有选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等优点,分子印迹聚合物已广泛应用于生物工程、临床医学、环境监测及食品工业等众多领域,在分离提纯、免疫分析、酶模型以及生物模拟传感器等许多方面显示出良好的应用前景,引起了人们的广泛关注,其有望在三聚氰胺的快速痕量检测上发挥作用。 关键字:分子印迹生物分离分子印迹聚合物

前言: 分子印迹技术最初出现源于 20世纪 40年代的免疫学,当时Pauling[3]首次提出抗体形成学说为分子印迹理论的产生奠定了基础, 1993年Mosbach等人有关茶碱分子印迹聚合物的研究报道,使这一技术在生物传感器、人工抗体模拟及色谱固相分离等方面有了新的发展,得到世界注目并迅速发展。基于该技术制备的分子印迹聚合物具有亲和性和选择性高、抗恶劣环境能力强、稳定性好、使用寿命长、应用范围广等特点,因此分子印迹技术在许多领域,如色谱分离、固相萃取、仿生传感、模拟酶催化、临床药物分析、膜分离等领域得到日益广泛的研究和开发,有望在生物工程、临床医学、天然药物、食品工业、环境监测等行业形成产业规模化的应用。目前,全世界[3]至少有包括瑞典、日本、德国、美国、中国、澳大利亚、法国在内的 10多个国家、100个以上的学术机构和企事业团体在从事分子印迹聚合物的研究和开发。

分子标记技术

分子标记技术 摘要:分子标记技术就是利用现代分子生物学基础分析DNA分子特性,并借助 一些统计工具,将不同物种或同一物种的不同类群区分开来,或者将生物体的某些性状与DNA分子特性建立起来的关联关系,已广泛应用于植物遗传与育种研究的众多领域,包括遗传图谱的构建、遗传多样性分析、物种起源与进化、品种资源与纯度鉴定、分子辅助育种等多个方面,具有重大作用。 关键词:分子标记技术原理RFLP RAPD SSR AFLP EST SNP TRAP 分子标记技术应用 引言 分子标记是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA 水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。 一.常用分子标记原理 分子标记技术的种类根据不同的核心技术基础,DNA分子标记技术大致可分为三类: 第一类以Southern杂交为核心, 其代表性技术为RFLP;第二类以PCR 技术为核心,如RAPD、SSR、AFLP、STS、SRAP、TRAP等;第三类以DNA序列(mRNA 或单核苷酸多态性)为核心,其代表性技术为EST标记、SNP标记等。理想的分子标记应达到以下的要求:①具有高的多态性;②共显性遗传;③能够明确辨别等位基因;④分布于整个基因组中;⑤选择中性(即无基因多效性);⑥检测手段简单、快速;⑦开发成本和使用成本尽量低廉;⑧在实验室内和实验室间重复性好。目前,没有任何一种分子标记均满足以上的要求,它们均具有各自的优点和不足。其特点比较见表一。 1.限制性内切酶片段长度多态性标记(Restriction Fragment Length Polymorphism,RFLP) 1974年,Grozdicker 等人鉴定温度敏感表型的腺病毒DNA突变体时,发现了经限制性内切酶酶解后得到的DNA片段产生了差异,由此首创了第一代DNA 分子标记技术——限制性内切酶片段长度多态性标记(RFLP)。其原理是由于不同个体基因型中内切酶位点序列不同(可能由碱基插入、缺失、重组或突变等造成),利用限制性内切酶酶解基因组DNA时,会产生长度不同的DNA酶切片段,通过凝

分子标记在果树上的应用及前景展望

分子标记在果树上的应用及前景展望 分子标记指可遗传并可检测到的DNA序列或蛋白质。蛋白质标记主要是指同工酶、等位酶、贮藏蛋白等等,本文主要介绍DNA标记。理想的分子标记应具有以下几个条件: ①以孟德尔方式遗传。 ②多态性好,自然条件下存在许多变异位点。③遍布整个基因组,能够检测到整个基因组的变异。 ④共显性遗传,即可以区别纯合体和杂合体。⑤表现“中性”,即不影响目标性状的表达。⑥重复性好,便于资源共享。⑦自动化程度高。近年来,关于分子标记的研究进展很快,本文仅就分子标记在果树研究中的应用及存在问题做一介绍,并对应用前景做一展望。 一、分子标记在果树研究中的应用: 1.分子标记在种质资源研究中的应用。 (1)系谱分析和分类。物种在进化过程中,其DNA是一个渐变的过程。遗传关系越近,基因组DNA的差异越小,反之,差异越大。HARADAT等用RAPD标记对两个三倍体苹果品种“乔纳金”和“陆奥”进行了分析,结果表明,作为母本的金冠提供了减数的二倍体配子。沈向等对杏进行了RAPD分析,将41个品种分为5类。 (2)种质保存和核心种质的建立。如何事理有效地管理和利用种质资源,当今世界出现了两种趋势,其中之一就是建立核心种质。目的是以最少的种质样品重复而最大地包含一个种及其野生种的遗传多样性。分子标记为人们提供了一个有效、快速的途径。目前已建立的核心种质涉及到谷物、豆类、牧草、蔬菜和果树等。AMY K SZEWC-MCFADDEN等用SSR结合园艺性状建立了苹果的核心种质,HOKANSON等也建立了苹果核心种质。 (3)构建指纹图谱和品种鉴别。高质量的指纹图谱可作为新品种登记、注册和产权保护的重要依据。特别是对于无性繁殖的果树来说,同物异名、同名异物现象很严重,利用分子标忘本中高效、准确地建立指纹图谱、鉴别果树品

杨树分子标记研究进展

第22卷 第6期2000年11月 北 京 林 业 大 学 学 报 JO UR NAL OF BEI JI NG F OREST R Y U N IV ERSIT Y Vol.22,N o.6Nov.,2000 2000 07 10收稿 http://w w https://www.doczj.com/doc/be7348464.html,/periodi cal/bjlydxxb/ * 九五 国家攻关课题(96 011 02 04 02)的部分内容 杨树分子标记研究进展* 张德强 张志毅 (北京林业大学毛白杨研究所,100083,北京;第一作者男,26岁,博士生) 杨 凯 (中国农业科学院作物品种资源研究所,100081,北京) 摘要 该文介绍了在杨树育种中常用的三种分子标记:RF LP,RAP D 和A FL P,并综述了其在杨树指纹图谱、遗传图谱构建和数量性状基因定位等方面的研究进展. 关键词 杨树,分子标记,指纹图谱,遗传图谱,数量性状基因定位中图分类号 S792.11 Zhang Deqiang ;Zhang Zhiyi;Yang Kai.Advances of molecular marker researches in poplar.Jour nal of Beij ing For estry Univer sity (2000)22(6)79~84[Ch,33ref.]Institute of Pop ulus tomentosa ,Beijing For.Univ.,100083,P.R.China. RFLP(restriction fragment length polymorphism ),RAPD(random amplified poly morphic DNAs)and AFLP (amplified frag ment length polymorphism)are introduced and their applications to finger prints,genetic linkage maps constructing and QT Ls mapping in poplar are review ed in this paper.Key words poplar,molecular marker,fingerprints,genetic maps,QT Ls mapping 杨树属杨柳科(Salicaceae )、杨属(Pop ulus L.),约有100多种,广泛分布于欧洲、北美和亚洲,是防护林、水土保持林、四旁绿化及人工用材林的重要树种.很多年来,虽然林木育种学家对其生理生化、解剖构造等基础性研究较深入,对于杨树的遗传改良产生了巨大的推动作用,但对于常规育种中抗病、抗虫性状、性别决定及林木早期选择育种等问题仍无法从根本上解决[1~6].因此,对杨树进行分子生物学研究迫在眉睫. 杨树种间杂交和无性繁殖容易,杨属所有种的染色体数均为2n=38,核基因组相对较小(2c= 1.1~1.2pg),便于遗传操作,并已建立较完善的遗传转化体系,获得了转基因植株.因此,杨树是公认的林木生物学基础研究中的模式树种.由于杨树种间杂交容易,在F 1代有很强的杂种优势(材积生长量),杂种的F 2代在许多性状方面可发生广泛的分离,所以大量的分离群体在F 1代或F 2代很易建成[7~ 10] .十几年来,前人利用分子标记技术对杨树 基因组进行了指纹图谱绘制、遗传图谱构建及数量 性状基因定位. 在杨树中,常用的分子标记为RFLP,RAPD 和 AFLP,它们是继形态标记(M orpholog ical markers)、细胞学标记(Cytological m arkers)和生化标记(Bio chemical markers)之后发展起来的一种以DNA 多态性为基础的新一代遗传标记.与形态标记和生化标记相比,分子标记具有明显的优越性:大多数分子标记是共显性的,基因组变异极其丰富,分子标记的数量几乎是无限的,在植物发育的不同阶段,不同组织的DNA 都可用于标记分析;分子标记不受环境影响,其变异只源于等位基因DNA 序列的差异,与不良性状无必然的连锁,不需专门创造特殊的遗传材料 [7~20] .基于上述这些优点,分子标记技术可为 杨树生产提供准确、可靠的遗传标记. 1 分子标记概述 分子标记是分子生物学发展的产物.80年代初,发展了RFLP,随后其发展极为迅速,产生了多种分子标记技术,用于杨树遗传育种的主要有以下3种. (1)RFLP RFLP(Restriction Frag ment Length Polymorphisms)指限制性片段长度多态性,是杨树遗传育种中使用较多的一种分子标记[21~ 25] .

遗传标记的发展和应用

遗传标记的发展和应用 1 遗传标记的种类 遗传标记是指在遗传分析中区分不同遗传背景的研究对象的可遗传的标记,根据研究水平的不同,可分为形态学标记、同工酶标记和DNA分子标记。Mendel 在经典的豌豆杂交实验中就使用了花色等可用肉眼识别的形态标记。虽然在早期的很长一段时间里,科学家们都在利用形态标记进行连锁分析和遗传作图(Sax, 1923),但由于形态标记数目较少,而且易受环境因素的影响,在界定过程中也易受人为因素影响,不是很准确,因此就限制了其应用和发展。同工酶是指具同一底物专一性的不同分子形态的酶。同工酶的概念虽然早就被提出,但由于技术限制,直到五十年代淀粉凝胶电泳酶谱技术的发明(Hunter and Market, 1957),同工酶技术才得以在遗传学研究中被广泛利用。同工酶标记是一种共显性标记,在不同组织、不同发育阶段和不同物种间可能具多态性,稳定而不受环境影响。但其数目和多态性对于迅猛发展的遗传学研究来说,依然是远远不够的。 随着分子生物学的快速发展,对遗传物质—DNA的认识和体外操作技术水平的不断提高,产生了新的基于DNA水平的分子标记。这类分子标记的多态性是由于DNA水平上的各种变异如:倒位、易位、缺失、插入和单个碱基突变造成的。在长期的自然选择过程中,基因组中积累了大量这种可遗传的变异,并且是均匀地分布于全基因组中的。因此DNA分子标记相对于同工酶标记和形态学标记具有数目丰富、多态性高、稳定不受环境影响等优点。根据DNA分子标记的工作原理可将其分为两类,一为以限制性酶切和分子杂交技术为基础的RFLP标记(Bastein, 1980), RFLP标记最早是应用于人类基因组研究中,现已广泛地在动、植物的基因组研究中使用于遗传作图,基因定位等方面(Burr et al., 1988; Apuya et al., 1988; Mccouch et al., 1988; Tanksley et al., 1992)。而另一类则是以聚合酶链式反应(Polymerase Chain Reaction PCR)为基础的标记。随着PCR 技术的发明和广泛应用,一大批基于此技术的新型分子标记如RAPD(Williams et al., 1990)、AFLP(Zabeau and Vos, 1993)、SSR(Litt and Luty, 1989; Wu, 1993)等也迅速发展起来。RAPD是一种显性标记,以一段通常为10个碱基左右的随机寡核苷酸作为引物在基因组中进行扩增,由于引物的随机性,因此数量巨大,而且由于其主要是基于PCR技术,因此操作相对简便。AFLP标记是以两种限制性内切酶去酶切DNA,然后在两端分别加上两个接头,再进行两次选择性扩增,通常一次扩增可以得到相当多的带,在降低了错误扩增的几率后,AFLP是一种十分高效的标记,而且由于两种限制性内切酶可以任意组合,因此从理论上来说AFLP标记的数目几乎是无限的。AFLP标记可能为显性或共显性。SSR标记多为共显性标记,它是指在基因组中的一些有少数几个(2、3、4)核苷酸组成的简单重复序列,由于在生物的长期进化过程中这些重复序列所处的染色体位置

SSR分子标记的开发技术研究进展

文章编号:1001-4829(2002)04-0106-04 收稿日期:2002-09-23 作者简介:唐荣华(1965-),男,广西人,副研究员,在职博士生。主要从事生物工程及经济作物研究。 SSR 分子标记的开发技术研究进展 唐荣华1,张君诚2,吴为人2 (11广西农业科学院经济作物研究所,广西南宁 530007;21福建农林大学作物科学学院,福建福州 350002) 摘 要:综述简单重复序列标记(SSR )的特点及在作物遗传图谱构建、品种鉴定及分子标记辅助育种等方面的应用价值。重点描述开发SSR 标记的两种方法的基本原理和主要步骤,一种是通过克隆酶切片段和大量测序寻找SSR 标记的传统方法,一种是应用 SA GE 原理不需要克隆的STMP 技术。介绍这两种方法在创建小麦或大豆SSR 标记中的应用。它们都能有效地开发可扩增出特 定位点SSR 的PCR 引物。关键词:SSR ;分子标记;引物开发中图分类号:S188 文献标识码:A Progress in the w ay to develop SSR molecular marker TAN G Rong 2hua 1,ZHAN G J un 2cheng 2,WU Wei 2ren 2 (1.Research Institute of Cash Crops ,Guangxi Academy of Agricultural Sciences ,Nanning Guangxi 530007,China ;2.College of Crop Science ,Fujian Agriculture &Forestry University ,Fuzhou Fujian 350102,China ) Abstract :The characteristics of simple sequence repeats (SSR )and its importance in genetic mapping ,variety identifying and molecular marker 2assistant breeding ,etc ,are discussed in this article.And two ways which can develop SSR molecular markers with their basic princi 2ples and main steps are also shown in this article.One is the traditional way which needs a great number of cloning of enzyme 2cut DNA fragments and a great deal of sequencing ,the another is a new way which can eliminate the cloning step and can reduce much more work of sequencing by the basic principle of serial analysis of gene expression (SA GE ).The utility of these two ways in the development of bread wheat or soybean SSR is shown.The results showed that they were effective in the designing of PCR primers to amplify locus 2specific SSR. K ey w ords :SSR ;molecular marker ;primer development 所有真核基因组中均含有一类DNA 碱基序 列,被称为微卫星(L ITT and L U T Y1989)[1]或简单重复序列(SSRs )(TAU TZ et al.1986)[2],它们均由1~6个碱基组成的基本序列串连而成,不同等位基 因间的重复数存在丰富的差异,因而是许多真核基 因组中普遍存在的遗传标记来源(WAN G et al.1994)[3]。微卫星分析的主要技术是聚合酶链式反应(PCR ),比之限制性片段长度多态性(RFL P )分析容易得多,而且易于分析自动化。在植物当中,微卫星已被证明在很多物种中是高信息量的,并且是位点特异的分子标记(C ONDIT and HUBBE LL 1991,PROV AN et al.1996,SMULDERS et al.1997)[4~6]。由于 微卫星可在多个等位基因间显示差异,因而在作物的遗传图谱构建,遗传多样性发析,亲缘关系鉴定,DNA 指纹图谱构建,品种鉴定,Q TL 分析及分子辅助育种中均具有公认的优越性及应用前景。这一分子标记的特殊性及重要性在于其有以下特征:①均匀,随机,广泛地分布于水稻、大麦、小麦、大豆等多种作物基因组中。②SSR 序列的两侧顺序常较保守,在等位基因间多相同。③多数SSR 无功能作用,增加或减少几个重复序列的重复数不影响生物的正常生长发育,因而在品种间具广泛位点变异,比RFL P 及RAPD 分子标记更具多态性,尤其对花生、六倍体小麦等用常见分子标记技术检测不出很多DNA 片段多态性的作物品种来说,具有更大的研究价值和应用前景。④呈孟德尔式遗传,共显性,因而对个体鉴定具特殊意义。⑤仅需微量组织,即便DNA 降解,也能有效地分析鉴定。⑥虽然开始筛选 601西 南 农 业 学 报 Southwest China Journal of Agricultural Sciences 2002年15卷4期 Vol 115 No 14

分子标记的发展及分子标记辅助育种

分子标记的发展及分子标记辅助育种 分子标记辅助选择育种(Marker Assisted Selection (MAS)或Marker Assisted Breeding)是利用与目标基因紧密连锁的分子标记或功能标记),在杂交后代中准确地对不同个体的基因型进行鉴别,并据此进行辅助选择的育种技术。通过分子标记检测,将基因型与表现型相结合,应用于育种各个过程的选择和鉴定,可以显著提高育种选择工作的准确性,提高育种研究的效率。 分子标记辅助育种示意图 DNA分子标记相对同类技术来说具有很强的优越性:因为大部分标记为共显性,对隐性性状的选择十分有利;数量极多,应对极其丰富的基因组变异;在生物发育的不同阶段,不同组织的DNA都可用标记分析;不影响目标性状的表达,与不良性状无必然的连锁等等。随着分子生物学技术的发展,现在DNA分子标记技术也有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴定、基因库构建、基因克隆等方面。 分子标记的类型 分子标记按技术特性可分为三大类。第一类是以分子杂交为基础的DNA标记技术,主要有限制性片段长度多态性标记(Restriction fragment length polymorphisms,RFLP标记);第二类是以聚合酶链式反应(Polymerase chain reaction,PCR反应)为基础的各种DNA指

纹技术;第三类是一些新型的分子标记,如单核苷酸多态性(Single nucleotide polymorphism,SNP),由基因组核苷酸水平上的变异引起的DNA序列多态性,包括单碱基的转换、颠换以及单碱基的插入/缺失等。 分子标记是以DNA多态性为基础,因而具有以下优点:①表现稳定,多态性直接以DNA 形式表现,无组织器官、发育时期特异性,不受环境条件、基因互作影响;②数量多,理论上遍及整个基因组;③多态性高,自然界存在许多等位变异,无需专门人为创造特殊遗传材料,这为大量重要性状基因紧密连锁的标记筛选创造了条件;④对目标性状表达无不良影响,与不良性状无必然连锁;⑤部分标记遗传方式为共显性,可鉴别纯合体与杂合体;⑥成本不高,一般实验室均可进行。对于特定探针或引物可引进或根据发表的特定序列自行合成。 各种分子标记的原理和优缺点 第一代分子标记:RFLP RFLP在20世纪70年代已被发现,是发现最早的一种分子标记。1980年,人类首先将其用于构建连锁图。 RFLP标记的原理:植物基因组DNA上的碱基替换、插入、缺失或重复等,造成某种限制性内切酶(restriction enzymes,简称RE)酶切位点的增加或丧失是产生限制性片段长度多态性的原因。对每一个DNA/RE组合而言,所产生的片段是特异性的,它可作为某一DNA 所特有的“指纹”。某一生物基因组DNA经限制性内切酶消化后,能产生数百万条DNA片段,通过琼脂糖电泳可将这些片段按大小顺序分离,然后将它们按原来的顺序和位置转移至易于操作的尼龙膜或硝酸纤维素膜上,用放射性同位素(如P32)或非放射性物质(如生物素、地高辛等)标记的DNA作为探针,与膜上的DNA进行杂交(即Southern杂交),若某一位置上的DNA酶切片段与探针序列相似,或者说同源程度较高,则标记好的探针就结合在这个位置上。放射自显影或酶学检测后,即可显示出不同材料对该探针的限制性片段多态性情况。对于线粒体和叶绿体等相对较小的DNA分子,通过合适的限制性内切酶酶切,电泳分析后有可能直接检测出DNA片段的差异,就不需Southern杂交。RFLP探针主要有三种来源,即cDNA克隆、植物基因组克隆(Random Genome克隆,简称RG克隆)和PCR克隆。 优点: RFLP标记具有共显性的特点。共显性(co-dominant)标记指的是双亲的两个以上分子量不同的多态性片段均在F1中表现。它已被广泛用于多种生物的遗传分析,特别是构建植物遗传图谱。

相关主题
文本预览
相关文档 最新文档