当前位置:文档之家› 户用风光互补发电系统可行性报告

户用风光互补发电系统可行性报告

户用风光互补发电系统可行性报告
户用风光互补发电系统可行性报告

户用风力与太阳能光伏互补发电系统

设计可行性研究报告

一、风力与太阳能光伏发电行业发展前景分析

风力发电是一种将风能转换为机械能,由机械能冉转换为电能的机电装置。利用风力带动风车叶片旋转,再通过增速机将旋转的速度提升,来带动发电机发电。依据目前的风能技术,大约1米/秒的微风速度,便可以开始发电。

光伏发电是利用单晶硅、多晶硅或非晶硅半导体电子器件光伏效应原理有效地吸收太阳辐射能, 并直接转变成电能的发电方式。

风力发电、太阳能光伏发电是近年来国内外应用比较广泛、最有发展前景的可再生能源利用技术。在当今化石能源日益减少、生态环境遭受破坏的情况下,利用以风能、太阳能为代表的清洁、可再生能源,对于改善现有能源结构,缓解能源危机,实现人与自然的可持续发展具有重要的意义。

世界各国尤其是发达国家高度重视以太阳能和风能为代表的新能源发展,通过增加财政投资、减免税收、电力回购补偿等一系列措施,鼓励刺激风力发电、太阳能光伏发电行业的发展。以太阳能光伏行业为例,2009年,全球光伏市场累计安装量提高了45%,达到了22.9GW。新增光伏装机容量接近5.8GW,增速为46.6%。其中,德国新增光伏装机容量从1.8GW提高到3.8GW,几乎翻了一番,从2008年41.1%的占比上升为51.7%,居全球第一位。其它国家也发展迅速,意大利安装了711MW,成为第二大市场,捷克和比利时09年分别安装了411MW和292MW。欧洲以外的国家也同样发展迅速,日本安装了484MW,美国则安装了470MW,其中包括40MW的离网系统。而风电行业,2009年全球风电装机总量达到157900MW.较上年增加了37500MW。欧洲的风能发电发展最快,其中德国十分重视风电发展,目前是世界上风电技术最先进的国家。截至2006年底,德国风电总装机容量达到了20 622 MW,占世界风电总装机容量的1/3以上.德国风力发电量约占全年总发电量的6%,居世界第1位.到2010年,德国风电装机容量达到23 000 MW,可提供德国8%~10%的电力需求,l5个欧盟成员国可再生能源生产的电力满足全部电力需求的22%.

在当前阶段,风力发电、太阳能光伏发电市场的发展很大程度依赖于相关国家制定的支持机制和法案,支持机制和法案的颁布、更改、增强或削弱都会对风力发电、光伏市场和产业造成深远的影响。德国、日本、美国等发达国家风力发电、太阳能光伏发电行业能有如此迅速的发展,均得益于相关国家有一套成熟的激励措施和支持法案,值得指出的是:日本、德国、西班牙、意大利、韩国等许多国家制定的风能、太阳能发电回购补偿政策,对促进、鼓励民间发展太阳能光伏、风能发电起到至关重要的作用。

我国光伏发电和风能产业起步于20世纪70年代,90年代中期进入稳步发展时期,经过30多年的努力,已迎来了快速发展的新阶段。2006年至2008年,中国的新能源市场投资年均增长率为67%,23.5亿美元的投资中大约有60%投向了太阳能领域,其余主要投资到风能领域。特别是在“光明工程”先导项目和“送电到乡”工程等国家项目及世界光伏市场的有力拉动下,太阳能电池及组件产量逐年稳步增加,我国光伏产业经历爆发式增长,已基本形成了涵盖多晶硅材料、铸锭、拉单晶、电池片、封装、平衡部件、系统集成、光伏应用产品和专用设备制造的较完整产业链。产业链各个环节的专用设备和专用材料的国产化加快,许多设备完全实现了国产化并有部分出口。到2007年底,全国光伏系统的累计装机容量达到10万千瓦(100MW),从事太阳能电池生产的企业达到50余家,从业人员达到8万人以上。而我国风电行业近年来发展也非常迅速,到2009年底,我国风电总装机容量累计为2580万千瓦,其中并网风电1613万千瓦,占全国总装机容量的占1.85%,另还有967万千瓦未并网风电。其中仅2009年新增装机容量就达到1300万千瓦。总的风电装机容量位于美国、德国之后,名列全球第三。2009年,我国风电发电量为275亿千瓦时,占总的发电量比例为0.75%。

近年来,国家财政对太阳能和风能产业的补贴力度逐年增强。2008年,我国开始启动屋顶和大型地面并网光伏发电示范项目的建设;2009年初完成了甘肃敦煌10MW级大型荒漠并网光伏电站的招标工作;同时太阳能屋顶计划与金太阳示范工程、风能发电的财政补贴项目也相继推出,这一系列的政策措施给我国未来的太阳能光伏和风能产业提供了一个广阔的发展空间。

我国现行的补贴政策主要针对光伏设备生产企业、大型项目承建商和一些示范性项目,缺乏对于小型发电系统或是消费者、投资者的激励政策。这

也是我国光伏产业商业化推广迟缓的重要原因。经验表明,我国政府的政策导向将在未来一段时间内决定着国家风能与光伏产业的发展水准和市场需求。直到现在,我国还没有太阳能上网电价和新能源电力回购补偿政策,每年几百兆瓦的太阳能电站建设与每年几个吉瓦太阳能光伏电池生产能力相形见绌,远不成比例。因此,太阳能上网电价和新能源电力回购补偿政策尽快出台是中国太阳能与风能发电产业的当务之急。相信在节能减排、低碳经济的大背景下,针对目前风能与光伏发电成本高、国内产业对进出口依存度过高的特点,我国将加大政策指导和扶持力度,一旦国家新能源电力回购补偿政策出台, 风能、太阳能发电行业必将迎来迅猛发展的时机。

二、项目市场定位分析

我国2006年颁布的《可再生能源法》规定:电网企业应当全额收购其电网覆盖范围内的可再生能源并网发电项目的上网电量。但实际上由于光伏上网电价成本是常规能源上网电价的1O倍而无法实施。最近我国完成的

8MW 并网光伏系统的前期研究表明,目前完全商业化运作的并网光伏发电上网电价成本大约为3.4元/千瓦时,这样高的成本无论是国家补贴还是全民分摊,大面积发展都会遇到很大的困难和阻力。如果是一般家庭用的光伏发电系统,则发电成本更高,通过在淘宝网检索进行价格对比,国内多晶硅太阳电池价格大约为10~15元/瓦,一套户用3000瓦太阳能光伏发电系统单是太阳能板就需30000~45000元左右,若配套蓄电池、逆变器、整流器、控制器及附属部件及安装费,至少需40000~50000元左右。网上检索到华威能源生产的整套3000瓦太阳能光伏发电系统市场销售价格最低为36916元。按照一般家庭每月电费200元计算,理论上需要至少15年~20年才能收回成本,而且还不包括使用过程的维护费用。通常,家庭预期投资回收期超过5年就很难被消费者所接受。在光伏发电成本还不具有市场竞争力,且缺乏实质性政策支持的情况下,户用太阳能光伏发电系统很难直接走向市场。另外,风力发电的上网价格在0.42~0.72元/千瓦时,成本正逐渐接近火电成本,但分散式风力发电机系统的可靠性较差,随机性和间歇性强,电能质量较差,需进行比较复杂的处理才能使用。因此,风能发电和太阳能光伏发电系统只有在远离电网且必须用电的地方才能找到其商业的价值。根据初步分析,目前,风能与太阳能光伏发电系统具有市场价值的地方和行业如下:

1、偏远农村、山区、草原、边防哨所,海岛等地方。

这些地方远离电网,迫切需要用电改善工作和生活条件,使用柴汽油发电成本过高,而风能或太阳能发电系统恰好能够填补这一空缺。

2、远离城市和供电线路的移动通信基站。

移动通信基站用电负荷都不会太大,若采用市电供电,架杆铺线代价很大,若采用柴油发电机供电,存在柴油储运成本高,系统维护困难、可靠性不高的问题。要解决长期稳定可靠的供电问题,只能依赖当地的自然能源,而太阳能和风能可作为取之不尽的可再生能源。将大大降低电源配置成本。

3、高速公路沿线的交通标志和录像监控装置。

高速公路的外场监控设备一般采用直接敷设电缆的供电方式,诸如互通立交、弯道、坡道、特大桥等需重点监控的路段往往离电源点的距离很远,采用传统电缆供电方式,就必须使用比较粗大的铜芯线缆来降低电压衰减,从而导致建设费用过高,同时运营期间也因电缆经常被盗而给业主造成重大的经济损失和运营管理的不便。而采用风光互补的方式对外场监控设备供电,与传统电缆供电相比省去了中间电缆及其敷设的过程,大大降低了供电成本,具有很好的性价比。而且高速公路上由于车辆行驶速度很快,不断卷起的气流会使公路两旁常年处于有风状态,保证风光互补系统常年处于运行供电状态。

4、渔船作业和生活用电。

渔船出海作业需要保证卫星导航、通信设施、安全指示灯、标志灯、灯光作业灯等的供电,泊港后需要有人留守,留守人员需要照明、电视、冰箱等生活用电。因此,渔船常年需要用电,过去一直靠柴油发电机发电解决。购置柴油发电机和发电用油的成本并不低。如果设计1000瓦以下价格在10000元以下的船用小型风力与太阳能光伏互补发电系统,则可以很好地解决渔船用电问题,完全可以做到成本低于使用柴油发电机。目前,在浙江、江苏省沿海一带,在政府的倡导下,渔船开始普及安装300瓦~1000瓦的微小型风力与太阳能光伏互补发电系统,节省了大量燃油,应用效果比较好。北海作为沿海城市,海上风力和太阳能资源充沛,北部湾和南海大批的作业渔船,可以作为市场的潜在用户,完全有可能在渔船找到市场的切入点。

三、项目技术定位分析

风能和太阳能由于受地理分布、季节变化、昼夜交替等影响,其能量密度变化较大。然而,太阳能与风能在时间和地域上都有一定的互补性,白天

太阳光最强时,风较小,晚上太阳落山后,光照很弱。但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能发电稳定可靠,但成本较高,而风力发电成本较低,但随机性大,供电可靠性差。因此相对于单一的风能、太阳能发电,风光互补发电系统是更经济合理、稳定、持续的发电模式。将两者结合起来,可实现昼夜发电,提高系统供电的连续性、稳定性和可靠性。另外,以家庭用户为单位的风能与太阳光伏发电系统是今后最普遍的一种新能源应用方式。因此,应该将项目考虑定位为:独立的离网型小型风力与太阳能光伏互补发电系统。利用成熟先进的以单片机为核心的嵌入式技术、电力电子技术、小型微风发电技术和多晶硅太阳能电池,研发出一种功率在300瓦以上,3~5千瓦以下,具有微风发电和太阳能光伏发电互补功能,智能化控制程度较高的家庭用小型发电系统。为将来太阳能光伏发电大规模商业化应用做好技术储备。

四、系统的基本构成

风光互补发电系统主要由风力发电机、风电整流器、太阳能光伏电池阵、控制器、蓄电池、逆变器等部分组成。如图所示:

其工作原理是:风力发电机将风能转换成交流电能,先经整流器整流成为直流电,由控制器对蓄电池充电,然后再通过逆变器转换成交流电才能供给交流负载。太阳能光伏电池阵将太阳能直接转换成直流电,并通过逆变器可将直流电转换为交流电对负载进行供电,同时在光伏电能充裕时由控制器对蓄电池充电。在日照不足时,储存在蓄电池中的直流电能经过逆变器,变换成交流电供给交流负载使用。正常工作情况下,风力发电部分和光伏发电部分可以独立工作,也可以同时工作。

1、风力发电机

按主轴旋转方向分为两类:水平轴式风力发电机,转动轴与地面平行,需随风向变换调整叶轮的朝向。多采用水平轴、上风向、三叶片式,该类型风力发电机具备较高的风能利用率,价格低廉,但叶片旋转直径较大。垂直轴式风力发电机转动轴与地面垂直,叶轮不需改变方向。依形状可分为桶形转子和打蛋形转子等。新型垂直轴风力发电机(H型)采用了新型结构和材料,具有启动风速低、噪音低、抗风能力强等优点,1米/秒微风就可起步发电。叶轮旋转直径较小,安装使用方便,但价格相对较高,目前处于推广应用阶段。小型风力发电装置可使用的发电机类型较多,有直流发电机、电磁式交流发电机、磁阻式发电机及感应子式发电机等。永磁同步发电机由于其结构简单,效率高,体积小的特点得到广泛应用。本装置的风力发电机采用交流永磁同步发电机。按价格要求选取水平式或垂直式风机。

根据淘宝网检索价格,300瓦垂直式风力发电机价格为2000元左右,超过500W的垂直式风力发电机价格6000~10000元以上。300瓦水平式风力发电机价格为1500元左右,1000W的水平式风力发电机价格3500元左右。水平式风力发电机价格比较便宜,但因旋转直径过大,对风向要求较严,不适宜安装在渔船上。因此陆上系统可选取水平式风力发电机,但船用系统宜选垂直式风力发电机。

2、太阳能光伏电池阵列

单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,是所有种类的太阳能电池中光电转换效率最高的。使用寿命一般可达15年,最高可达25年,制作成本很高。多晶硅太阳能电池的光电转换效率约12%,使用寿命也要比单晶硅太阳能电池短,制作成本相对较低。因此得到大量发展。非晶硅太阳能电池是近年开始应用的一种新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,工艺过程大大简化,硅材料消耗很少,电耗更低,它的主要优点是在弱光条件也能发电。但非晶硅太阳电池存在的主要问题是光电转换效率偏低,最高只能达到10%左右,且不够稳定,随着时间的延长,其转换效率衰减较快。薄膜式太阳电池是太阳能电池今后的发展方向。

按照性能价格比,系统宜选取多晶硅太阳能电池。据淘宝网检索,多晶硅价格为10元~15元/瓦,面积为0.008平方米/瓦,则300瓦价格为3000元~4000元左右。面积为2.4平方米。

3、风光互补控制器

主要用于控制太阳能电池和风力发电机同时对蓄电池进行智能充电。装置采用单片机控制系统,具备防雷、PWM卸载、太阳能防反充、过电压自动刹车、蓄电池反接和开路保护等完善的保护功能,并有液晶显示。控制系统的风电、光电均采用PWM 脉宽调制充电方式,智能三阶段充电模式,即采用主充、均充、浮充的方式进行充电,其中光电采用最大功率跟踪(MPPT)充电技术;卸荷采用无级卸载的方法;保护功能包括防雷、过充、过放(蓄电池低电压告警、关断、恢复)、反接、蓄电池过压、太阳能光电池过流、输出过载以及短路等。具有如下设计指标:

(1)PWM整流电路:采用具有PWM端口的单片机软件控制与外围整流电路相结合的方法,调整PWM的周期、PWM的占空比而达到控制充电电流的目的。将风力发电机输出的交流电变换成为可控制的直流电提供给蓄电池充电。

(2) PWM无级卸载:在太阳电池板和风力发电机所发出的电能超过蓄电池和逆变输出需要时,控制系统必须将多余的能量通过卸荷释放掉。普通的控制方式是将整个卸荷全部接上,此时蓄电池一般还没有充满,但能量却全部被耗在卸荷上,从而造成了能量的浪费。有的则采用分阶段接上卸荷,则阶段越多,控制效果越好,但一般只能做到五六级左右,所以效果仍不够理想。装置采用PWM(脉宽调制)方式进行无级卸载,在正常卸载情况下,可确保蓄电池电压始终稳定在浮充电压点,只将多余的电能释放到卸荷上。从而保证了最佳的蓄电池充电特性,使得电能得到充分利用,并确保了蓄电池的使用寿命。

(3)智能限压限流充电:由于蓄电池只能承受一定的充电电流和浮充电压,过充电电流和过电压充电都会对蓄电池造成严重的损害。本控制器通过单片机实时检测蓄电池的充电电压和充电电流,并通过控制光伏充电电流和风机充电电流来限制蓄电池的充电电压和充电电流,从而确保了蓄电池的使用寿命。

(4)液晶显示蓄电池电压和充电电流和运行数据:能够直观了解蓄电池的电压状态,并可以根据蓄电池的电压来调节使用负载的大小和时间。

(5)完善的保护功能:

a、太阳能防反充:在夜间等光线不好的情况下,蓄电池的电压可能会高于太阳能电池阵列的端电压。装置配置防反充电路,以防止蓄电池对太阳能电池产生反充。

b、防雷保护:内带有避雷装置,能将雷电产生的瞬时强电压和电流释放掉,以保护本控制器及后级设备不受雷击损伤。

c、蓄电池反接保护:如果蓄电池不小心反接,则相当于发生短路,即会产生巨大的瞬时电流。如果不加保护,则必然会损坏蓄电池和设备本身。装置具有完善的蓄电池反接保护功能,在不小心反接时,电路中的保险丝会自动熔断,使得整个蓄电池回路断开,从而有效保护蓄电池和本设备。

d、蓄电池开路保护:长期使用后,蓄电池可能会发生开路或接触不良。装置在蓄电池开路后会发出声光报警,并保护设备自身不被损坏。

e、过风速和过电压刹车:在大风或过电压状态下,本控制器将自动启动电磁刹车,以保护风机和蓄电池。

(7) 数字化智能控制:核心器件采用功能强大的单片机进行控制,外围电路结构简单,且控制方式和控制策略灵活强大,确保系统运行的稳定。

意法半导体的STM32F103单片机芯片功能强大,有较强的PWM控制功能,且研发人员均已熟练掌握该芯片的使用,因此控制器设计拟选

STM32F103单片机。

4、逆变器

逆变器是一种电源转换装置,主要功能是将蓄电池的直流电逆变成标准工频交流电。逆变器通过全桥电路,采用正弦波脉宽调制SPWM技术经过调制、滤波、升压等,得到与电网负载频率、额定电压等相匹配的正弦交流电供用户使用。

正弦波逆变器的优点是输出波形基本为正弦波,在负载中只有很少的谐波损耗,对通信设备干扰小,整机效率高。随着电力电子技术的进步,脉宽调制技术的普及,SPWM型正弦波逆变器逐渐成为逆变器的主流产品。以单相全桥式逆变器为例,四个对角的开关功率管以每个对角线的两个开关管为一组,依次导通和关断,在负载两端就产生交替的正负电压,形成交流输出。当此交替导通的频率与负载所需的交流频率相同时,其输出的电压为方波电

压。当开关管以比逆变交流输出电压高许多的频率开关,且每次开关的脉宽按照正弦波的幅值调制时,就变成了正弦波脉宽调制输出的逆变器,加滤波器后其输出的电压波形就是正弦波输出逆变器。

逆变器将直流电转化为交流电,若直流电压较低,则通过交流变压器升压,即得到标准交流电压和频率。在中、小容量的逆变器中,由于直流电压较低,如蓄电池的公标电压为直流12V、24V、48V,就必须设计升压电路。

中、小容量逆变器一般有推挽逆变电路、全桥逆变电路和高频升压逆变电路三种,推挽电路,将升压变压器的中性插头接于正电源,两只功率管交替工作,输出得到交流电力,由于功率晶体管共地边接,驱动及控制电路简单,另外由于变压器具有一定的漏感,可限制短路电流,因而提高了电路的可靠性。其缺点是变压器利用率低,带动感性负载的能力较差。

全桥逆变电路克服了推挽电路的缺点,功率晶体管调节输出脉冲宽度,输出交流电压的有效值即随之改变。由于该电路具有续流回路,即使对感性负载,输出电压波形也不会畸变。该电路的缺点是上、下桥臂的功率晶体管不共地,因此必须采用专门驱动电路或采用隔离电源。另外,为防止上、下桥臂发生共同导通,必须设计先关断后导通电路,即必须设置死区时间,其电路结构较复杂。

推挽电路和全桥电路的输出都必须加升压变压器,由于升压变压器体积大,效率低,价格也较贵,随着电力电子技术和微电子技术的发展,采用高频升压变换技术实现逆变,可实现高功率密度逆变,这种逆变电路的前级升压电路采用推挽结构,但工作频率均在20KHz以上,升压变压器采用高频磁芯材料,因而体积小、重量轻,高频逆变后经过高频变压器变成高频交流电,又经高频整流滤波电路得到高压直流电(一般均在300V以上)再通过工频逆变电路实现逆变。

采用该电路结构,使逆变器功率大大提高,逆变器的空载损耗也相应降低,效率得到提高,该电路的缺点是电路复杂,可靠性比上述两种电路低。

正弦波输出的逆变器控制电路,可采用微处理器控制,这些单片机均具有多路PWM发生器,并可设定上、上桥臂之间的死区时间,完成正弦波信号的发生,并检测交流输出电压,实现稳压。

逆变器的主功率元件的选择至关重要,目前使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关

断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,因为MOSFET具有较低的通态压降和较高的开关频率,在高压大容量系统中一般均采用IGBT模块,这是因为MOSFET随着电压的升高其通态电阻也随之增大,而IGBT在中容量系统中占有较大的优势,而在特大容量(100kVA以上)系统中,一般均采用GTO作为功率元件。

此外,逆变器还应具备如下保护功能或措施,以应对在实际使用过程中出现的各种异常情况,使逆变器本身及系统其他部件免受损伤:

(1)输入欠压保捷当输入端电压低于额定电压的85%时,逆变器应有保护和显示。

(2)输入过压保捷当输入端电压高于额定电压的130%时,逆变器应有保护和显示。

(3)过电流保护:逆变器的过电流保护,应能保证在负载发生短路或电流超过允许值时及时动作,使其免受浪涌电流的损伤。当工作电流超过额定值的150%时,逆变器应能自动保护。

(4)输出短路保捷逆变器短路保护动作时间应不超过0.5s。

(5)输入反接保护:当输入端正、负极接反时,逆变器应有防护功能和显示。

(6)防雷保护:逆变器应有防雷保护。

(7)过温保护等。

(8)逆变器还应有输出过电压防护措施,以使负载免受过电压的损害。

系统逆变器是最关键的核心部件,涉及单片机嵌入式技术、正弦波脉宽调制SPWM控制技术、全桥逆变电路、高频变压器升压变成高频交流电,又经高频整流滤波电路得到高压直流电(一般均在300V以上)再通过工频逆变电路实现逆变一系列复杂的电力电子技术。是项目重点攻关的技术难点。逆变器设计拟选意法半导体的STM32F103单片机芯片,该芯片有较强的PWM控制功能,且研发人员均已熟练掌握该芯片的使用。

项目开发应将重点放在系统控制器与逆变器的核心技术上,只有拥有系统控制器与逆变器核心技术作为自主知识产权,该产品才有市场和技术生命力。

5、蓄电池组

在常用的蓄电池中,主要有锂离子蓄电池、镍氢蓄电池、镍金属氧化物蓄电池和铅酸蓄电池。其中铅酸蓄电池价格低廉、性能可靠、安全性高,且

技术上又不断进步和完善,得到了广泛的应用。随着各种蓄电池技术的发展,国内外电池充电技术也不断更新,目前多模式充电技术被认为是最佳充电技术。其综合了恒压和恒流充电法优点,使蓄电池保持较高的容量和较长的使用寿命。多模式充电方法的四种充电状态分别是涓流充电,大电流充电,过充电和浮充电。该充电模式需要设计单片机嵌入式软件进行才能进行精确控制。

(1)涓流充电

如果蓄电池电压低于阈值电压,充电器将用预先设定的涓流充电电流给电池充电。随着涓流充电继续,电池电压逐渐升高,当电压升高到阈值电压时立即转入大电流快速充电。如果电池电压在充电周期开始就高于其阈值电压时,则跳过涓流充电直接进入大电流快速充电模式。

(2)大电流快速充电

在这种模式下充电器以恒定的最大允许电流给电池充电。最大电流与电池容量有关,往往以电池容量的数值来表示。在大电流快速充电这段时间里,电池电量迅速地恢复。当电池电压上升到过充电压时,大电流快速充电模式结束,转入过充电状态。

(3)过充电

如果从大电流充电状态直接转入浮充状态,电池容量只能恢复到额定容量的80%~90%。在过充电状态下,充电电压保持恒定不变,充电电流连续下降。当充电电流下降到足够小时,电池容量己达到额定容量的100%,充电过程实质上己经完成,转入浮充状态。

(4)浮充电

该状态主要用于补充电池自身放电所消耗的能量。在浮充电模式下,充电器输出电压下降到较低的浮充电压值,充电电流通常只有10~30mA,用以补偿电池因自身放电而损失的电量。浮充电压仍将随环境温度变化而变化。当电池电压下降到浮充电压的90%时,充电器将转入大电流充电状态,使上述充电过程重新开始。

多模式充电法综合了恒流充电快速而安全、及时补偿铅酸蓄电池电量的优点和恒压充电能够控制过充电以及在浮充状态保持电池100%电量的优点。它综合了常规充电法和快速充电技术的优点,使蓄电池保持较高的容量和较长的使用寿命,是目前光伏系统应用最多的一种控制方式。

随着近年来微电子技术的飞速发展,以单片机嵌入式技术为核心的充电控制技术进入了一个全新的自适应、智能阶段,即自适应智能充电技术。自适应充电系统遵循各类电池的充电规律进行充电。充电系统由具有特殊功能的单片机控制,不断检测系统参数,按一定的算法不断调整充电参数,同一充电器可适应不同种类电池的充电,充电系统自适应调整自己的输出电流,无需人工选择,避免操作失误。以光伏充电系统为例,光伏电池将太阳能转变为电能,蓄电池将转变出来的电能储存起来,充电控制环节在系统中起着枢纽作用。一方面充电控制环节调节光伏电池的输出功率,使尽可能多的太阳能转变为电能,提高系统效率;另一方面它需要根据不同条件来选择蓄电池的充电模式,从而加快蓄电池的充电速度,延长蓄电池的使用寿命。光伏系统输入能量稳不稳定,控制环节具有举足轻重的作用。

系统选用循环寿命长,使用寿命长,性能价格比高的风光发电系统储能用固定型(开口式)铅酸蓄电池。按1000瓦负载计算,电流约为5安培,要保证在连续2天无风、无晴天时.蓄电池组可独立保证系统给重要负载正常供电。需容量240ah,若按负载500瓦,需容量120ah。单体蓄电池额定电压为12 V,蓄电池组可选1块或多块蓄电池串联组合而成总容量满足要求。根据淘宝网检索价格,光伏系统用蓄电池单位价格约为11元/ah,240ah约需2600元左右,120ah约需1300元左右。

初步估算,研制一套系统的组件、材料费约需2万元左右。定型产品成本按1000瓦容量约需1万元。300瓦约需7000元左右。

五、系统研发的初步计划

(1)项目课题组人员组成

(略)

(2)项目研发经费概算

(3)项目进展时间

风光互补发电系统方案

风光互补发电系统 方案

光伏发电系统在别墅中的应用方案 1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在别墅屋顶上,用于演示光伏发电系统在别墅中应用的情况,为日后大面积推广提供参考。 1.2光伏发电系统的要求 本项目设计一个5kWp的小型系统,平均每天发电25kWh,可供一个1kW的负载工作25小时。能够满足别墅正常见电的需要(一般家庭每天用电量在10kWh左右)。 2.系统方案 2.1现场资源和环境条件 长春北纬43 °05’~45 °15’;东经124 °18’~127 °02’。长春市年平均气温 4.8°C,最高温度39.5°C,最低温度-39.8°C,日照时间2,688小时。夏季,东南风盛行,也有渤海补充的湿气过境。年平均降水量522至615毫米,夏季降水量占全年降水量的60%以上;最热月(7月)平均气温23℃。秋季,可形成持续数日的晴朗而温暖的天气,温差较大,风速也较春季小。 2.2太阳能光伏发电系统原理 太阳能光伏发电是一种新型的发电方式, 基本原理是光生伏特

效应原理, 也就是当太阳光照射在某些特殊材料上, 会引起材料中电子的移动, 形成电势差, 从而由太阳光能直接转换为电能。这其中的特殊材料也就是光伏发电的的最基本元件被称为太阳电池半导体, 即太阳能电池(片), 它包括有单晶硅、多晶硅、非晶硅和薄膜电池等。光伏发电系统主要由太阳能电池阵列、蓄电池、逆变器、控制器等几大部分组成, 由这些电子元器件构成的系统, 安装维护简便, 运行稳定可靠。白天太阳能电池组件将太阳辐射出的光线转变为电能, 储存在蓄电池里, 在夜间或需要时, 从蓄电池里将电能释放出来, 用于照明和其它用途。太阳能电池组件是发电设备, 蓄电池是储能设备, 控制器、逆变器是充放电控制保护和直交流变换设备。 2.3太阳能光伏发电主要部件 (1) 太阳能电池板: 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (2) 太阳能控制器: 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其它附加功能如光控开关、时控开关都应当是控制器的可选项。

GZ-047-“风光互补发电系统安装与调试”赛项规程(高职组)

2016年全国职业院校技能大赛高职组 “风光互补发电系统安装与调试”赛项规程 一、赛项名称 赛项编号:GZ-047 赛项名称:风光互补发电系统安装与调试 英语翻译:Installation and Commissioning of Hybrid Wind/PV Power Generating System 赛项组别:高职组 赛项归属产业:制造 二、竞赛目的 通过竞赛,检验和展示高职院校能源产业、加工制造、信息技术等相关专业教学改革成果以及学生的通用技术与职业能力,引领和促进高职院校与本赛项相关专业的教学改革,激发和调动行业企业关注和参与教学改革的主动性和积极性,推动提升高职院校的人才培养水平。 三、竞赛内容 本竞赛由技能、综合素质二部分内容组成,其中技能部分占权重95%,职业素养部分占权重5%。竞赛时间为4小时。具体见表1。 表1 竞赛内容、时间与权重表

(一)技能竞赛内容 技能竞赛4小时,在KNT-WP01风光互补发电实训系统平台上进行。 竞赛内容涉及光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统的安装、接线、测试、编程、调试、故障排除、分析等实训考核以及职业素养考核。根据任务书,完成以下操作内容: (1)光伏电池组件、投射灯、光线传感器的安装。光伏电池伏安特性的测试。 (2)光伏供电系统的控制单元、接口单元、可编程序控制器、传感器、智能仪表、继电器等器件的安装、接线和测试。 (3)光伏电池组件对光跟踪的程序编制和测试。 (4)蓄电池组充放电工作参数的测试、保护电路测试。 (5)光伏供电系统相关电路的绘制与分析。 (6)风力供电系统的控制单元、接口单元、可编程序控制器、传感器、智能仪表、继电器等器件的安装、接线和测试。 (7)风力发电机的输出特性测试。 (8)逆变器工作参数测试。 (9)逆变系统相关电路的绘制与分析。 (10)逆变负载的组建。 (11)监控系统组态界面的设计与操作。 (12)通信系统的相关参数设置与测试。 (13)系统的故障排除。

风光互补发电系统

风光互补发电系统 第一章绪论 1.1 能源与环境问题 能源是是国民经济发展与社会文明进步的基石,能源可持续发展是人类社会可持续发展的重要保障之一。从原始社会开始,化石能源逐步成为人类所用能源的主要来源,这种状况一直延续至科技发达的现代社会。随着人类对能源需求的日益增加,化石能源的储量正日趋枯竭。此外,大量使用化石燃料己经为人类生存环境带来了严重的后果,全世界每天产生约1亿吨温室效应气体,己经造成极为严重的大气污染、温室效应、酸雨等环境影响。开发利用可再生新能源以实现能源可持续发展是人类应对能源问题的有力方法之一。 1.2 新能源发展现状 当前,世界各国普遍重视能源技术创新,技术研发与制度创新越来越受到推崇。美提出培育世界领先水平的科技人员,建设世界一流的能源科技基础设施,整合基础研究和应用研究,加快研究电力储备、智能电网、超导输电、二氧化碳捕获、先进电池、纤维素乙醇、氢燃料以及清洁煤、核能、太阳能和风能等先进发电技术。日本也提出了引导未来能源技术的战略,从2050年、2100年超长期视点出发,展望未来能源技术,制定2030年科技战略。我国也看到新能源发展的紧迫性,加快建立法律法规,积极扶持新能源发展,新能源在我国的发展速度很快。 在新能源体系中,可再生能源是自然界中可以不断再生、永续利用的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用,主要包括风能、太阳能、水能、生物质能、地热能、海洋能等。 1.3 互补发电的概念 很多可再生新能源因其资源丰富、分布广泛,而且在清洁环保方面具有常规能源所无 法比拟的优势,因而获得了快速的发展。尤其是小规模的新能源发电技术,可以很方便地就地向附近用户供电,非常近合在无电、少电地区推广普及。不过由于风能、太阳能等可再生新能源本身所具有的变化特性,所以独立运行的单一新能源发电方式很难维持整个供电系统的频率和电压稳定。 考虑到新能源发电技术的多样性,以及它们的变化规律并不相同,在大电网难以到达的边远地区或隐蔽山区,一般可以采用多种电源联合运行,让各种发电方式在个系统内互为补充,通过它们的协调配合来提供稳定可靠的、电能质量合格的电力,在明显提高可生能源可靠性的同时,还能提高能源的综合利用率。这种多种电源联合运行的方式,就称为互补发电。

风光互补发电系统技术方案

风光互补发电系统 技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是当前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,能够保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统能够共用,且风机的单位造价只有太阳能电池的三分之一左右,因此风光互补发电系统的整体造价能够降低。同时,由于风机和太阳能电池的发电时间上互补,能够减少储能的蓄电池组

KNT-WP01型 风光互补发电实训系统1解析

风光互补发电实训系统 技 术 方 案 南京康尼科技实业有限公司 2013年2月26日

第一部分:技术参数 KNT-WP01型风光互补发电实训系统 一、概述 2013年全国职业院校技能大赛高职组“风光互补发电系统安装与调试”赛项使用的大赛设备是由南京康尼科技实业有限公司研发生产的产品“KNT-WP01型风光互补发电实训系统”。 二、设备组成 KNT-WP01型风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。KNT-WP01型风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 (1)、设备尺寸:光伏供电装置1610×1010×1550mm 风力供电装置1578×1950×1540mm 实训柜3200×650×2000mm (2)、比赛场地面积:20平方米 图1 KNT-WP01型风光互补发电实训系统 三、各单元介绍 1、光伏供电装置 (1)、光伏供电装置的组成 光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方

向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成,如图2所示。 图2 光伏供电装置 4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。电动机旋转时,通过减速箱驱动摆杆作圆周摆动。摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。 (2)、光伏电池组件 光伏电池组件的主要参数为: 额定功率 20W 额定电压 17.2V 额定电流 1.17A 开路电压 21.4V 短路电流 1.27A 尺寸 430mm×430mm×28mm 2、光伏供电系统 (1)、光伏供电系统的组成 光伏供电系统主要由光伏电源控制单元、光伏输出显示单元、触摸屏、光伏供电控制单

家用风光互补发电系统分析设计

1、风光互补发电技术 1.1风光互补发电系统的特点 风力发电系统利用风力发电机,将风能转换成电能,然而通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统具有日发电量较高,系统造价较低,运行维护成本低等优点。缺点是小型风力发电机可靠性低,常规水平轴风力发电机对风速的要求较高。光伏发电系统利用光电板将太阳能转换成电能,然后通过控制器对蓄电池充电,最后通过逆变器对负载供电。该系统的优点是系统供电可靠性高、资源条件好、运行维护成本低,缺点是系统造价高。发电与用电负荷的不平衡性是风电和光电系统共同存在的一个缺陷,它是由资源的不确定性造成的。风电和光电系统发出电能后都必须通过蓄电池储能才能稳定供电,但是每天的发电量受阳光、风力的影响很大,阳光、风力较弱会导致系统的蓄电池组长期处于亏电状态,这是引起蓄电池组使用寿命降低的主要原因。较风电和光电独立系统,风光互补发电系统具有以下特点:(1)风光互补发电系统弥补了风电和光电独立发电系统在资源上的缺陷,利用太阳能和风能的互补性,提供较稳定的电能; (2)在风光互补发电系统中,风电和光电系统可以共用一套蓄电池组和逆变环节,减少系统造价; (3)整个系统是两种发电系统进行互补运行,因此,在保证同等供电的情况下,可大大减少储能装置的容量; (4)风光互补发电系统可以根据用户需要合理配置系统容量,在不影响供电可靠性的情况下减少系统造价; (5)风光互补发电系统可以根据用户所在地的季节及天气变化情况优化系统设计方案,在满足用户要求的情况下节约资源。 1.2适合风光互补地区分析 太阳能和风能是最普遍的自然资源,也是取之不尽的可再生能源。图1为我国太阳能风能分部情况。

风光互补发电系统技术方案

风光互补发电系统技术方案 五寨县恒鑫科技发展有限公司 2017年04月20日

项目背景: 本项目产品小型风力发电机组是离网用户最佳的独立电源系统。 风光互补独立供电系统是目前最广泛应用独立电源系统。风光互补独立供电系统的广泛应用在于它的合理性。 太阳能是地球上一切能源的来源,太阳照射着地球的每一片土地。风能是太阳能在地球表面的另一种表现形式,由于地球表面的不同形态(如沙土地面、植被地面和水面)对太阳光照的吸热系数不同,在地球表面形成温差,地表空气的温度不同形成空气对流而产生风能。因此,太阳能与风能在时间上和地域上都有很强的互补性。白天太阳光最强时,风很小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强。在夏季,太阳光强度大而风小,冬季,太阳光强度弱而风大。太阳能和风能在时间上的互补性使风光互补发电系统在资源上具有最佳的匹配性,风光互补发电系统是资源条件最好的独立电源系统。单独的风机或太阳能发电系统由于受资源条件的限制,对蓄电池组充电时间较短,蓄电池组长时间处于亏电状态而导致蓄电池组的损坏。而风光互补发电系统充电时间较均衡,可以保证蓄电池组处于浮充状态,提高蓄电池组的充电质量并延长了蓄电池组的寿命。 风力发电机和太阳能电池的充电特性不一样,风机的充电特性较硬,而光伏电池的充电特性较软,风光互补电对激活离子运动,防止蓄电池极板硫化有好处,可延长蓄电池组的寿命。 风机和太阳能电池的储能和逆变系统可以共用,且风机的单位造价只有太阳能电池的三分之一左右,所以风光互补发电系统的整体造价可以降低。同时,由于风机和太阳能电池的发电时间上互补,可以减少储能的蓄电池组容量,使发电系统造价降低。经济上更趋于合理,随着我国4G通信网的开通,可实现大范围的无线传输图像资料,风光互补监控系统将在森林防火、防盗猎监控、城市乡村的防犯罪监控、古墓群的防盗墓监控、边防地区的防偷渡监控、生态保护区的防盗猎监控、旅游地区的安全监控和矿产资源的防乱开采监控等领域得到广泛的应用,这种监控系统体系不仅能大大降低管理成本,而且能实现有效及时和安全的防护体系。对降低森林火灾,减少资源破坏,提高破案率都有非常极的意义。技术的进步可以促进社会管理手段的进步,同时,新技术的广泛应用才能进一步促进新技术产业的发展。

风光互补发电系统现状及发展状况(可编辑修改word版)

风光互补发电系统现状及发展状况 高洁琼 (ft西大学 ft西·太原030013) 摘要:本文介绍了风光互补发电系统的结构、工作原理和优缺点,以及风光互补发电系统的发展过程及现状,同时说明其应用前景。太阳能和风能之间互补性很强, 由这两者结合而来的风光互补发电系统在资源上具有最佳的匹配性。 关键词: 风能太阳能风光互补系统 1.风光互补发电系统的结构、工作原理、基本要求以及优缺点 1.1风光互补发电系统的结构 风光互补发电系统主要由风力发电机组、太阳能光伏电池组、控制器、蓄 电池、逆变器、交流直流负载等部分组成。该系统是集风能、太阳能及蓄电池 等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。1.2风光互补发电系统的工作原理及运行模式 风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械 能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电;光伏发 电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电, 通过逆变器将直流电转换为交流电对负载进行供电;逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的 220v 交流电,保证交流电负载设备的正常 使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;控制 部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行 切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多 余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的 电能送往负载,保证了整个系统工作的连续性和稳定性;蓄电池部分由多块蓄 电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发电系 统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 风光互补发电系统根据风力和太阳辐射变化情况,可以在以下三种模式下 运行:风力发电机组单独向负载供电;光伏发电系统单独向负载供电;风力发 电机组和光伏发电系统联合向负载供电。 1.3风光互补发电系统的优缺点

风光互补发电系统安装与调试(高职组) 答题纸(08)

2015年全国高职技能大赛 “康尼杯” 风光互补发电系统安装与调试赛项 答题纸(08卷) 工位号: 比赛时间: 2015年06月

2.光伏电池组件开路电压和短路电流的测量 表1 光伏电池组件开路电压和短路电流的测量数据 光伏电池组件 灯1和灯2亮灯1亮 灯1亮且摆杆向东偏移 处于限位位置 开路电压 (V) 短路电流 (A) 开路电压 (V) 短路电流 (A) 开路电压 (V) 短路电流 (A) 1块 2块并联 2串2并 4.简述问题 (1)厂商在销售光伏电池板时,一般给用户提供光伏电池板的哪几个主要电参数? (2)在正常的工作条件下,随工作温度变化的光伏电池U-I特性曲线和P-U特性曲线如图3所示,简述光伏电池的开路电压和短路电流与工作温度的关系。图3中的标幺值是物理量及参数的相对值即实际值与基准值之比;W/m2是光照度单位。 图3 相同光照度而不同工作温度的光伏电池组件特性(a)U-I特性;(b)P-U特性

2.绘制S7-200 CPU226输入输出接口图 图3 S7-200 CPU226输入输出接口图

7.光伏电池组件的输出特性测试 表5 摆杆垂直且灯1和灯2亮时的光伏电池组件输出电压和输出电流测量值 组号电压U/V电流I/A功率P/W 组号电压U/V电流I/A 功率P/W 1 7 2 8 3 9 4 10 5 11 6 12 表6 摆杆垂直且灯1亮时的光伏电池组件输出电压和输出电流的测量值 组号电压U/V电流I/A功率P/W 组号电压U/V电流I/A 功率P/W 1 7 2 8 3 9 4 10 5 11 6 12 表7 灯1亮且摆杆向东偏移处于限位位置时的光伏电池组件输出电压和输出电流的测量值组号电压U/V电流I/A功率P/W 组号电压U/V电流I/A 功率P/W 1 7 2 8 3 9 4 10 5 11 6 12

风光互补供电系统项目可行性研究报告

风光互补供电系统项目可行性研究报告 目录 第一章项目绪论 (7) 一、项目名称及建设性质 (7) 二、项目承办单位 (7) 三、项目建设选址及用地综述 (7) 四、项目土建工程建设指标 (8) 五、设备选型方案 (9) 六、主要能源供应及节能分析 (9) 七、环境保护及清洁生产和安全生产 (10) 八、项目总投资及资金构成 (11) 九、资金筹措方案 (11) 十、项目预期经济效益规划目标 (11) 十一、项目建设进度规划 (12) 十二、综合评价及 (13) 第二章报告编制总体说明 (16) 一、报告编制目的及编制依据 (16) 二、报告编制范围及编制过程 (18) 第三章项目建设背景及必要性 (21) 一、风光互补供电系统产业发展规划背景 (21) 二、项目建设背景 (22)

三、项目建设的必要性 (25) 第四章建设规模和产品规划方案合理性分析 (28) 一、建设规模及主要建设内容 (28) 二、产品规划方案及生产纲领 (29) 第五章项目选址科学性分析 (30) 一、项目建设选址原则 (30) 二、项目建设区概况 (30) 三、项目用地总体要求 (31) 第六章工程设计总体方案 (32) 一、工程地质条件 (32) 二、工程规划设计 (32) 三、建筑设计方案 (34) 四、辅助设计方案 (35) 五、防水和防爆及防腐设计 (36) 六、建筑物防雷保护 (37) 七、主要材料选用标准要求 (37) 八、采用的标准图集 (38) 九、土建工程建设指标 (38) 第七章原辅材料供应及成品管理 (40) 一、原辅材料供应及质量管理 (40) 二、原辅材料采购及管理 (41) 第八章工艺技术设计及设备选型方案 (42) 一、原料及成品路线原则及工艺技术要求 (42) 二、项目工艺技术设计方案 (43) 三、设备选型方案 (44)

风光互补发电系统

风光互补供电系统: :风光互补发电是一种将光能和风能转化为电能的装置。该系统无空气污染、无噪音、不产生废弃物。因此风光互补发电系统是一种自然、清洁的能源。目前在世界范围内风力发电和太阳能发电发展非常迅猛,其中丹麦和德国的风力发电已经成为主要的电能来源。人类为使居住环境不再受污染,风能和太阳能将是今后世界能源的必然选择。让太阳照亮夜晚,让清风吹亮公园,美丽的环境增添优雅的风车景观,加上象征太空技术的蔚蓝色的太阳能电池板,相信一定会使世界更加怡人! 优势: 由于太阳能与风能的互补性强,风光互补发电系统在资源上弥补了风电和光电独立系统在资源上的缺陷。同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以风光互补发电系统的造价可以降低,系统成本趋于合理。 ::风光互补供电系统可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,即可保证系统供电的可靠性,又可降低发电系统的造价。无论是怎样的环境和怎样的用电要求,都可作出最优化的系统设计方案来满足用户的要求。应该说,风光互补发电系统是最合理的独立电源系统。这种合理性表现在资源配置最合理,技术方案最合理,性能价格最合理。正是这种合理性保证了风光互补发电系统的高可靠性。 性能: :风光互补发电系统由太阳能发电板、小型风力发电机组、系统控制器、蓄电池组和逆变器等几部分组成,发电系统各部分容量的合理配置对保证发电系统的可靠性非常重要,供电系统为了满足广大用户的用电要求、为用户提供可靠的电力,会认真分析用户的用电负荷特征以及用户所处区域的太阳能和风能资源状况针对不同用户配置适合用户的一整套系统。 保护和控制,包括过充、过放、过载、过温、短路、反接;对风力发电机实行强风自动限速;对市电进行旁路自动切换;对输出实行多路控制;对负载增加节电控制等等,使保护和控制动作十分安全可靠与稳定。 风光互补发电原理图如下:

风光互补发电系统设计

5.3.1风光互补发电系统设计 风能和太阳能都具有能量密度低、稳定性差的弱点,并受到地理分布、季节变化、昼夜交替等影响.然而太阳能与风能在时间上和地域上一般都有一定的互补性,白天太阳光最强时,风较小,晚上太阳落山后,光照很弱,但由于地表温差变化大而风能加强.在夏季,太阳光强度大而风小;冬季,太阳光强度小而风大。太阳能发电稳定可靠,但目前成本较高,而风力发电成本较低,随机性大,供电可靠性差。若将两者结合起来,可实现昼夜发电.在合适的气象资源条件下,风光互补发电系统能提高系统供电的连续性、稳定性和可靠性,在很多地区得到了广泛的应用.如图5.1为某地10 月份某日典型的太阳能和风资源分布,因此采用风光互补发电系统,可以弥补风能和太阳能间歇性的缺陷。 图5.1 某地10 月份典型日太阳能和风能资源分布图风光互补发电的优势: (1)利用风能和太阳能的互补性,弥补了独立风电和独立光伏发电系统的不足,可以获得比较稳定的和可靠性高的电源。 (2)充分利用土地资源。 (3)保证同样供电的情况下,可大大减少储能蓄电池的容量。 (4)对系统进行合理的设计和匹配,可以基本上基本上由风光互补发电系统供电,获得较好的经济效益。 5)大大提高经济效益。

风光互补发电系统主要组成部分(1)发电部分:由一台或者几台风力发电机和太阳能电池阵列构成风—电、光—电发电部分,发电部分输出的电能通过充电控制器与直流中心完成蓄电池组自动充电工作。 (2)蓄电部分:蓄电部分主要作用是将风电或光电储存起来,稳定的向电器供电。蓄电池组在风光互补发电系统中起到能量调节和平衡负载两大作用。 (3)控制及直流中心部分:控制及直流中心部分由风能和太阳能充电控制器、直流中心、控制柜、避雷器等组成,完成系统各部分的连接、组合及对蓄电池组充放电的自动控制。控制及直流中心具体构成参数由最大用电负荷与日平均用电量决定。 (4)供电部分:供电部分不可缺少的部分是逆变器,逆变器把蓄电池储存的直流电转换为交流电,保证交流负载的正常使用。同时,还有稳压功能,以改善风光互补系统的供电质量。 图5.2 风光互补发电系统 设计一个完善的风光互补发电系统需要考虑多种因素.如各个地区的气候条件,当地的太阳辐照量情况,太阳能方阵及风力发电机功率的选用,作为储能装置蓄电池的特性等.因此,必须选择建立一些先进的数学模型进行多种计算,确定合理的太阳能电池方阵和风力发电机容量,使系统设计最优化. 数学模型计算 1.蓄电池容量计算 蓄电池的容量C 通常按照保证连续供电的天数来计算:

风光互补发电

风光互补发电系统 概述 能源是国民经济发展和人民生活必须的重要物质基础,在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏,各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 风光互补发电系统的发展过程及现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。其中colorado state university和national renewable energy laboratory合作开发了hybrid2应用软件。 hybrid2本身是一个很出色的软件,它对一个风光互补系统进行非常精确的模拟运行,根据输入的互补发电系统结构、负载特性以及安装地点的风速、太阳辐射数据获得一年8760小时的模拟运行结果。但是hybrid2只是一个功能强大的仿真软件,本身不具备优化设计的功能,并且价格昂贵,需要的专业性较强。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐

SG-T11风光互补发电实训系统

KH-T11风光互补发电实训系统 一、概述: KH-T11风光互补发电实训系统主要由光伏供电装置、风力供电系统、逆变与负载系统、监控系统组成,风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 二、设备参数 KH-T11风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。MY-PV25 风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 1、设备尺寸:光伏供电装置1610×1010×1550mm 风力供电装置1578×1950×1540mm 实训柜 3200×650×2000mm 2、场地面积:20平方米 三、设备组成: 1、光伏供电装置 (1)、光伏供电装置的组成 光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成, 光伏供电装置 设备由4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。电动机旋转时,通过减速箱驱动摆杆作圆周

摆动。摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。 (2)、光伏电池组件 光伏电池组件的主要参数为: 额定功率 20W 额定电压 17.2V 额定电流 1.17A 开路电压 21.4V 短路电流 1.27A 尺寸 430mm×430mm×28mm 2、光伏供电系统 (1)、光伏供电系统的组成 光伏供电系统主要由光伏电源控制单元、光伏输出显示单元、触摸屏、光伏供电控制单元、DSP控制单元、接口单元、西门子S7-200PLC、继电器组、接线排、蓄电池组、可调电阻、断路器、12V开关电源、网孔架等组成。如图3所示。(2)、控制方式 光伏供电控制单元的追日功能有手动控制盒自动控制两个状态,可以进行手动或自动运行光伏电池组件双轴跟踪、灯状态、灯运动操作。 (3)、DSP控制单元和接口单元 蓄电池的充电过程及充电保护由DSP控制单元、接口单元及程序完成,蓄电池的放电保护由DSP控制单元、接口单元及继电器完成,当蓄电池放电电压低于规定值,DSP控制单元输出信号驱动继电器工作,继电器常闭触点断开,切断蓄电池的放电回路。 (4)、蓄电池组 蓄电池组选用4节阀控密封式铅酸蓄电池,主要参数: 容量 12V 18Ah/20HR 重量 1.9kg 尺寸 345mm×195mm×20mm 3、风力供电装置 (1)、风力供电装置的组成 风力供电装置主要由叶片、轮毂、发电机、机舱、尾舵、侧风偏航控制机构、直流电动机、塔架和基础、测速仪、测速仪支架、轴流风机、轴流风机支架、轴流风机框罩、单相交流电动机、电容器、风场运动机构箱、护栏、连杆、滚轮、万向轮、微动开关和接近开关等设备与器件组成。

风光互补发电系统简述

风光互补发电系统 摘要:风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统。本文通过对风光互补发电系统的动力来源-风能和太阳能资源的初步调研,分析了风光互补发电系统的优势,并总结了国内外风光互补发电系统的研究现状,对其基本的工作原理进行了阐述。最后对举例说明了风光互补发电系统的应用前景。 关键词:风光互补,现状,工作原理,应用前景 1.引言 能源是人类社会发展和进步的物质基础,人类社会的发展和进步离不开优质能源的开发利用和先进的能源技术的不断革新。煤和石油等矿物能源的开发和利用推动了近代工业革命的发展,极大地改变了人类的生活方式。由于煤、石油、天热气等常规能源的储量是有限的,据估计,地球上煤炭最多可用300年,石油最多可维持40多年,天然气还可以维持50多年,不断爆发的能源危机严重阻碍了人类社会的发展进步。为了缓解不断加重的能源危机,世界各国相继加大了对可再生能源的研究。可再生能源是指除常规能源外的包括风能、太阳能、生物质能、地热能、海洋能等能源资源。 为了降低能耗和解决日益突出的环境问题,全球都投入到了可再生发展能源的热潮之中,全球可再生能源发展取得了明显成效。主要表现在:成本持续下降,市场份额不断扩大,其定位也开始由补充能源向替代常规能源的方向转化。近10年来,全球风力发电市场保持了28%的年均增长速度,太阳能光伏发电的年均增长速度超过30%[1]。 进入新世纪以来,中国的可再生能源利用步入了快速发展的轨道,特别是自2006年可再生能源法实施以来,中国可再生能源已经进入快速发展时期。2009年中国可再生能源在一次性能源消费结构中所占的比例已从2008年的8%提升至9%。根据中国国家能源局制定的《新能源产业振兴发展规划》,预计到2011年,新能源在能源结构中的占到的比重达到2%(含水电为l%),新能源发电容量占总电力装机容量的比重将会达到5%(含水电为25%)。其中风电装机容量将会达到3500万千瓦(陆地风电3000万千瓦,海上风电500万千瓦),太阳能发电装机容量达到200万千瓦[2]。除此之外,根据(2008年中国风电发展报告》的预测,估计到2020年末,全国风电开发建设总规模有望达到1亿kW。到2020年全国

风光互补发电系统

风光互补发电系统 能源是国民经济发展和人民生活必须的重要物质基础。在过去的200多年里,建立在煤炭、石油、天然气等化石燃料基础上的能源体系极大的推动了人类社会的发展。但是人类在使用化石燃料的同时,也带来了严重的环境污染和生态系统破坏。近年来,世界各国逐渐认识到能源对人类的重要性,更认识到常规能源利用过程中对环境和生态系统的破坏。各国纷纷开始根据国情,治理和缓解已经恶化的环境,并把可再生、无污染的新能源的开发利用作为可持续发展的重要内容。风光互补发电系统是利用风能和太阳能资源的互补性,具有较高性价比的一种新型能源发电系统,具有很好的应用前景。 中文名称 风光互补发电系统 外文名称 Scenery complementary power generation system 拼音 fengguanhubufadianxitong 目录 1 简介 2 发展过程 3 结构 4 应用前景 5 解决方案

5.1 应用场景 5.2 对策 5.3 方案特点 6 总结 7 发电分析 8 互补控制 简介 风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。是风力发电机和太阳电池方阵两种发电设备共同发电。 发展过程 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。其中colorado state university和national renewable

小型水风光互补系统设计全解

毕业设计(论文)题目小型水风光互补系统设计 学生姓名 学号 专业 班级 指导教师 评阅教师 完成日期:2015年10月22日

毕业设计(论文)开题报告 题目:小型水风光互补系统设计 学生姓名: 专业:电力系统及自动化 指导老师: 一、课题来源 煤、石油、天然气等不可再生能源的使用量在世界各国不断上升,能源危机将成为人类最主要,最大的危机,发展可再生能源越来越成为世界各国的主攻研发方向和竞争目标,谁能领先,谁就会成为未来新贵,新霸主。电力作为重要的二次清洁能源,它的生产将主要依托可再生能源,从而如何利用可再生能源发电将是一个重大课题。 二、研究目的及意义 1、利用水能、风能、太阳能的互补性,可以获得比较稳定的输出,系统有较高的稳定性和可靠性; 2、在保证同样供电的情况下,可大大减少储能蓄电池的容量; 3、通过合理地设计与匹配,可以基本上由水风光互补发电系统供电,很少或基本不用启动备用电源如柴油机发电机组等,可获得较好的社会效益和经济效益。 三、研究的内容、途径及技术线路 水风光互补发电系统主要由水力发电机组、风力发电机组、太阳能光伏电池组、控制器、蓄电池、逆变器、交流直流负载等部分组成,系统结构图见附图。该系统是集水能、风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。 1、水力发电部分是利用水能机将水能转换为机械能,通过水力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; 2、风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电; 3、光伏发电部分利用太阳能电池板的光伏效应将光能转换为电能,然后对蓄电池充电,通过逆变器将直流电转换为交流电对负载进行供电; 4、逆变系统由几台逆变器组成,把蓄电池中的直流电变成标准的220v交流电,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量; 5、控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性; 6、蓄电池部分由多块蓄电池组成,在系统中同时起到能量调节和平衡负载两大作用。它将风力发 电系统和光伏发电系统输出的电能转化为化学能储存起来,以备供电不足时使用。 四、发展趋势 中国拥有世界上最多的人口,近年来经济快速增长。但中国目前的能源结构主要依赖燃煤发电,从而对环境产生了许多负面影响,特别是对空气和水资源的污染。国际能源机构(IEA)曾预测从2005年到2030年中国新增加的温室气体排放(42%)将和世界上其他国家排放总量(不包括印度,44%)相当。中国会取代美国成为世界上最大的温室气体排放国。发展可再生能源技术是减少温室气体排放和改善环境的有效措施之一。

太阳能风光互补发电系统

太阳能风光互补发电系统 1.问题的提出 如何解决能源危机问题,已经成为全球关注的热点。节能和环保已成为当今世界的两大主题。在当前可利用的几种可再生能源中,太阳能和风能是应用比较广泛的两种。风光互补发电控制系统是为了弥补传统电力的不足而设计的独立发电设备。它是由太阳能电池组件与风力发电机配合而成的一个系统,通过微型计算机的远程控制,并实现了免维护的功能。 2.风光互补发电系统的现状 最初的风光互补发电系统,就是将风力机和光伏组件进行简单的组合,因为缺乏详细的数学计算模型,同时系统只用于保证率低的用户,导致使用寿命不长。 近几年随着风光互补发电系统应用范围的不断扩大,保证率和经济性要求的提高,国外相继开发出一些模拟风力、光伏及其互补发电系统性能的大型工具软件包。通过模拟不同系统配置的性能和供电成本可以得出最佳的系统配置。 在国外对于风光互补发电系统的设计主要有两种方法进行功率的确定:一是功率匹配的方法,即在不同辐射和风速下对应的光伏阵列的功率和风机的功率和大于负载功率,只要用于系统的优化控制;另一是能量匹配的方法,即在不同辐射和风速下对应的光伏阵列的发电量和风机的发电量的和大于等于负载的耗电量,主要用于系统功率设计。 目前国内进行风光互补发电系统研究的大学,主要有中科院电工研究所、内蒙古大学、内蒙古农业大学、合肥工业大学等。各科研单位主要在以下几个方面进行研究:风光互补发电系统的优化匹配计算、系统控制等。目前中科院电工研究所的生物遗传算法的优化匹配和内蒙古大学新能源研究中推出来的小型户用风光互补发电系统匹配的计算即辅助设计,在匹配计算方面有着领先的地位,而合肥工业大学智能控制在互补发电系统的应用也处在前沿水平。 3.一个设计好的太阳能风光互补发电的设计框图结构 该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。

自动化毕业设计 风光互补发电系统设计

风光互补发电系统 摘要 进入二十一世纪,人类面临着实现经济和社会可持续发展的重大挑战,而能源问题日益严重,一方面是常规能源的匮乏,另一方面石油等常规能源的开发带来一系列的问题,如环境污染、温室效应等。人类需要解决能源问题,实现可持续发展,只能依靠科技进步,大规模开发利用可再生能源和新能源。而太阳能和风能被看做是最具有代表性的新能源和可再生能源,作为这两种能源的高级利用太阳能发电和风力发电技术受到世界各国的高度重视。由于风力发电和太阳能发电系统均受到外部条件的影响,光靠独立的风力或太阳能发电系统经常会难以保证系统供电的连续性和稳定性,因此,在采用风光互补的混合发电系统来进行相互补充,实现连续、稳定地供电。风光互补发电以其独特优势成为新能源研究的热点之一。本文针对风光互补发电系统设计了一套小型模拟装置,包括太阳能电池模拟,用直流电机对风机的模拟和交错并联Buck-Boost蓄电池充电主电路,并对交错并联Buck-Boost电路和交错并联Cuk斩波电路进行了研究、仿真,以及进行了模拟风机装置的调试。系统控制全部采用Freescale公司的56F8013 DSP控制实现,给出了各部分流程图。对于软硬件的关键问题还给出了相应解决方案。 关键词:风光互补 Buck–Boost电路 DSP

Wind & Solar Hybrid Generating System ABSTRACT Entering the 21st century, human beings are facing to realize the sustainable development of economy and society, and energy problem becomes more and more serious, on the one hand, conventional energy is serious short on the other hand, the development of oil and other conventional energy brings a series of problems, such as the environmental pollution, the greenhouse effect and so on. Only by relying on the progress of science and technology and the large-scale exploitation and utilization of renewable energy and new energy can human solve the problem of energy, and realize the sustainable development. And solar and wind power are considered the most representative of new and renewable energy, The power technology of solar energy and wind attrack world’s attention. Because of wind power and solar power system under external conditions, and only by independent wind or solar power systems often hard to ensure the continuity and consistency of power system therefore, using hybrid power system of complementary scenery to complement each other, realize the continuous, stable power supply. Wind-light complementary with its unique advantages become one of new energy research hotspots. Aiming at wind-light complementary this article design a small device, including solar cells in dc motor, the simulation and interlacing of fan parallel Buck - hee, and main circuit batteries to Buck staggered shunt circuit and interlacing parallel hee - Cuk chopper were studied, and the simulation, the simulated fan unit commissioning. Control system adopt Freescale company 56F8013 DSP control chart, each part. The key question for software and hardware to the corresponding solutions. Keyword:Wind and PV hybrid Buck–Boost Circuit DSP

相关主题
文本预览
相关文档 最新文档