当前位置:文档之家› 数值分析 - 第6章 方程求根

数值分析 - 第6章 方程求根

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

非线性方程求根

非线性方程求根 本章主要内容: 1.区间二分法. 2切线法. 3.弦位法. 4.一般迭代法. 重点、难点 一、区间二分法 区间二分法是求方程f(x)=0根的近似值的常用方法。 基本思想:利用有根区间的判别方法确定方程根的区间[a,b],将有根区间平分为二;再利用有根区间的判别方法判断那一个区间是有根区间;重复上述步骤,直到小区间端点差的绝对值小于等于精度要求的数值,则用将上一区间的分半值作为方程的根的近似值。 区间二分法的计算步骤如下: 1. 计算区间端点的函数值f(a),f(b)(不妨设f(a)<0,f(b)>0); 确定初始有根区间[a,b]. 2.二分有根区间[a,b],并计算)2( b a f +取2 1b a x += 3.判断:若0)(1=x f ,则方程的根为1x x =* ; 若0)(1>x f ,则有根区间为[]1,x a x ∈* ;令[]],[,111b a x a = 若0)(1

例1用区间二分法求方程0353 =+-x x 在某区间内实根的近似值(精确到0.001) 【思路】参见上述区间二分法的计算步骤 解∵f(1.8)=-0.168<0,f(1.9)=0.359>0∴f(x)在区间[1.8,1.9]内有一个根。 由公式644.512 ln 001 .0ln 1.0ln 12ln ln )ln(=--=---≥ εa b n 取n=6,计算结果列表如下: 则方程在区间[1.8,1.9]内所求近似值为x * ≈x=1.8328125 区间二分法的优点是计算程序简单,只要f (x )在区间[a,b]上连续,区间二分法就可使用,但区间二分法不能用来求偶次重根,由于区间二分法收敛比较慢,在实际计算中,区间二分法常用来求比较好的含根区间和初始近似值,以便进一步使用收敛更快的迭代法求出更精确的近似值。 迭代序列收敛阶的概念 设迭代序列{}n x 收敛于* x ,如果存在实数1≥p 与正常数c ,使得 c x x x x p n n n =--* *+∞ →1lim ,则称序列{}n x 是p 阶收敛于*x 。 特别地,当1=p 时,称序列{}n x 为线性(一次)收敛;{}n x 为线性收敛时,必须要求1

高次方程求根公式的故事

高次方程求根公式的故事 1545年意大利学者卡丹将一元三次方程ax3 +bx2+cx+d=0的求根公式公开发表,后来人们就把它叫做“卡丹公式(也有人译作“卡尔丹公式”)。事实上,发现公式的人并不是卡丹本人,而是塔尔塔利亚。 塔尔塔利亚是意大利人,出生于1500年。他12岁那年,被入侵的法国兵砍伤了头部和舌头,从此说话结结巴巴,人们就给他一个绰号“塔尔塔利亚”(在意大利语中,这是口吃的意思),真名反倒少有人叫了。他自学成才,成了数学家,宣布自己找到了三次方程的的解法。有人听了不服气,来找他较量,每人各出30道题,由对方去解。结果,塔尔塔利亚30道三次方程的解全做了出来,对方却一道题也没做出来。塔尔塔利亚大获全胜。 后来,意大利医生兼数学家卡丹请求塔尔塔利亚把解方程的方法告诉他,但遭到了拒绝。尽管卡丹千方百计地想探听塔尔塔利亚的秘密,但是在很长时间中塔尔塔利亚都守口如瓶。可是后来,由于卡丹一再恳切要求,而且说要推荐他去当西班牙炮兵顾问,还发誓对此保守秘密,于是塔尔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡丹,但是并没有给出详细的证明。 六年后,卡丹不顾原来的信约,在他的著作中将经过改进的三次方程的解法公开发表。他在书中写道:“这一解法来自于一位最值得尊敬的朋友——布里西亚的塔尔塔利亚。塔尔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。我找到了几种证法。证法很难,我把它叙述如下。”从此,人们就把一元三次方程的求根公式称为“卡丹公式”,而塔尔塔利亚的名字反而被湮没了,正如他的真名在口吃以后被埋没了一样。 卡丹没有遵守誓言,因而受到塔尔塔利亚及许多文献资料的指责。但是卡丹在公布这一解法时并没有把发现这一方法的功劳归于自己,而是如实地说明了这是塔尔塔利亚的发现,所以算不上剽窃;而且证明过程是卡丹自己给出的,说明卡丹也做了工作。卡丹用自己的工作对塔尔塔利亚泄露给他的秘密加以补充,违背誓言,把秘密公之于世,加速了一元三次方程求根公式的普及和人类探索一元n次方程根式解法的进程。 一元三次方程应有三个根。塔尔塔利亚公式给出的只是一个实根。又过了大

计算方法第二章方程求根上机报告

实验报告名称 班级:学号:姓名:成绩: 1实验目的 1)通过对二分法与牛顿迭代法作编程练习与上级运算,进一步体会二分法与牛顿迭代法的不同特点。 2)编写割线迭代法的程序,求非线性迭代法的解,并与牛顿迭代法。 2 实验内容 用牛顿法和割线法求下列方程的根 x^2-e^x=0; x*e^x-1=0; lgx+x-2=0; 3实验步骤 1)根据二分法和牛顿迭代法,割线法的算法编写相应的求根函数; 2)将题中所给参数带入二分法函数,确定大致区间; 3)用牛顿迭代法和割线法分别对方程进行求解; 3 程序设计 牛顿迭代法x0=1.0; N=100; k=0; eps=5e-6; delta=1e-6; while(1) x1=x0-fc1(x0)/fc2(x0); k=k+1; if k>N disp('Newmethod failed')

break end if(abs(x1-x0)=delta) c=x1; x1=cutnext(x0,x1); x0=c; %x0 x1μYí?μ?μ?x1 x2 è?è?±£′??úx0 x1 end k=k+1; if k>N disp('Cutline method failed') break; end if(abs(x1-x0)

一元二次方程求根公式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。 (1) “开平方法”一般解形如“”类型的题目,如果用“公式

法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3). 分析:用求根公式法解一元二次方程的关键是找出a、b、c的值,再代入公式计算,

第六章习题答案数值分析.docx

第六章习题解答 2 2、利用梯形公式和 Simpson 公式求积分 ln xdx 的近似值, 并估计两种方法计算值的最大 1 误差限。 解:①由梯形公式: T ( f ) b a [ f (a) f (b)] 2 1 [ln1 ln 2] ln 2 0.3466 2 2 2 最大误差限 R ( f ) (b a)3 f '' ( ) 1 1 1 0.0833 T 12 12 2 12 12 其中, (1,2) ②由梯形公式: b a 4 f ( b a f (b)] 1 4ln( 3 ln 2] 0.3858 S( f ) [ f (a) ) [ln1 ) 6 2 6 2 最大误差限 R S ( f ) (b a)5 f (4) ( ) 6 6 0.0021, 2880 2880 4 2880 其中, (1,2) 。 4、推导中点求积公式 f ( x)dx (b a) f ( a b ) (b a) 3 (a b) b a 2 24 证明: 构造一次函数 P ( x ),使 P a 2 b f a b , P ' ( a b ) f ' ( a b ), P '' ( x) 0 2 2 2 则,易求得 P( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 且 P(x)dx f ' ( a b )( x a b ) f ( a b ) dx b b a a 2 2 2 f ( a b )dx (b a) f ( a b ) ,令 P(x)dx I ( f ) b b a 2 2 a 现分析截断误差:令 r ( x) f ( x) P(x) f ( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 由 r ' ( x) f ' (x) f ' ( a b ) 易知 x a 2 b 为 r (x) 的二重零点, 2 a b )2 , 所以可令 r (x) ( x)( x 2

数值分析分章复习(第七章非线性方程求根)

第七章非线性方程求根 要点:(1)迭代公式局部收敛性及收敛性判断 (2) 迭代公式收敛阶概念 (3) Newton 迭代公式及收敛性左理 复习题: 1、建立一个迭代公式il ?算数G = j5 + 7?+辰二,要求分析所建迭代公式的收敛性 解:迭代式为:「卄产 l/o = 5 数d 应是函数卩(x ) = jrr§的不动点(即满足0(a ) = a ) 注意到(1)当xeI0,5]时,恒有0(人)€[0?习 (2)当xe[(X5]时,恒有0Cr) = — <-< 1 2\J X + 5 2 依据不动点迭代法收敛定理,知该迭代公式收敛到“ 2、对于方程—x = 2 ? 解:(1)记/(X )= 8’ — / 一 2 显然 /(_1.9) = 0.0496 >0, /(一1) =-0.6321 <0 当Jce[-L9,-1]时.恒有/V) = e'-l<0 可见/(X )在区间[-1.9,-I ]内有且仅有一个零点 即方程在区间内有且仅有一个实根 (2)取

严-X-2 兀屛=兀------ 汗七― e" -1 .心=一1?9 3、为求x^-x--\=0/£ L5附近的一个根,现将方程改写成等价形式,且建立相应的 迭代公式:(1) x = l + A: (2) x = (l + x-)h试分析每一种迭代的收敛性 X- 解:记 ⑴ 迭代式为£. = 1+2,这里记9?U)= I+4 注意到/(1?3)/(1?5)<1?并且f\x) = 3x--2x = x(3x-2)>Q. xe[L3J.5] 所以区间[1.3J.5]为有根区间 2 0([l?3J?5])c[l?3J?习,井且当xe[L3J.5]时,恒有I

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

非线性方程求根

第七章 非线性方程求根 教学目的与要求: 理解二分法求根的思想;掌握二分法求解过程;了解二分法的优点和缺点。了解迭代法的基本思想,迭代法的收敛条件以及局部收敛性的定义;理解基本迭代法的迭代思路,收敛条件的产生与求证过程;掌握基本迭代法的迭代格式,收敛条件的应用以及局部收敛定理。 重点和难点:迭代法的基本思想,迭代法的收敛性 ■ 教学内容: 基本概念: 的零点; 的m 重零点。 )(x f )(x f 非线性方程的求根通常分为两个步骤:一是对根的搜索,二是根的精确化,求得根的足够精确的近似值。 求方程的有根区间有如下方法: (1)描图法。画出的简图,从曲线与)(x f y =x 轴交点的位置确定有根区间。 (2)解析法。根据函数的连续性、介值定理以及单调性等寻找有根区间。 § 1 二分法 分析二分法的基本原理 例1 用二分法求方程的一个正根,要求误差不超过. 01)(6=??=x x x f 2105.0?ק 2 迭代法及其收敛性 一、迭代法的定义 二、基本迭代法 定义:将方程改写成以下等价形式() x x ?=取定初始值0x ,由迭代公式1() (0,1,2,)n n x x n ?+==L 产生迭代序列{}n x 。显然,若{}n x 收敛于*x ,()x ?在*x 处连续,就有** 1lim lim ()()n n n n x x x ??+→∞→∞ ===x 即*x 是方程() x x ?=的解,从而也是0)(=x f 的解。故当充分大时,可取作为方程根的近似值。用迭代格式求得方程近似根的方法称为基本迭代法,n n x )(x ?称为迭代函数。由于收敛点*x 满足*()* x x ?=,故称*x 为)(x ?的不动点 例 求方程的一个实根,要求精确到六位小数。 032)(3 =??=x x x f 注意:把此方程转换成三种等价形式 ,32)(31+==x x x ?)3(2 1)(32?= =x x x ?, 3)(33??==x x x x ?三、迭代法的收敛条件

一元方程求根公式

solve ax+b=0 for x Isolate terms with x to the left hand side. Solve for x. solve ax^2+bx+c=0 for x Write the quadratic equation in standard form.

2 Solve the quadratic equation by completing the square. Take one half of the coefficient of x and square it,then add it to both sides. Factor the left hand side. Eliminate the exponent on the left hand side. Look at the first equation:Solve for x.

Look at the second equation:Solve for x. solve ax^3+bx^2+cx+d=0 for x Look for a simple substitution that eliminates the quadratic term of a x3 b x2 c x d. Write the cubic polynomial on the left hand side in standard

Write the cubic equation in standard form. Change coordinates by substituting y z Κ z ,where Κis a constant value that will be determined later. Transform the rational equation into a polynomial equation Find an appropriate value forΚ in order to make the coefficients of z2and z4both 4

数值分析习题六解答

习 题 六 解 答 1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。 (1)210(1)(0)2y y y '?=--?=?(2)sin (0)0x y x e y -'?=+?=? 解:(1)取h=0.1,本初值问题的欧拉公式具体形式为 21(1)(0,1,2,)n n n y y y n +=--= 由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2; x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-= 指出: 可以看出,实际上求出的所有数值解都是1。 (2)取h=0.1,本初值问题的欧拉公式具体形式为 21(sin )(0,1,2,)n x n n n y y h x e n -+=++= 由初值y 0=y(0)=0出发计算,所得数值结果如下: x 0=0,y 0=0; x 1=0.1, 02 1000 (sin )00.1(sin 0)00.1(01)0.1x y y h x e e -=++=+?+=+?+= x 2=0.2, 122110.1 (sin )0.10.1(sin 0.1)0.10.1(0.10.9)0.2 x y y h x e e --=++=+?+=+?+= 指出: 本小题的求解过程中,函数值计算需要用到计算器。 2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。 22(00.5) (0)1 y x y x y '?=-≤≤? =? 解:(1) 取h=0.1,本初值问题的欧拉公式具体形式为 2 1(2)(0,1,2,)n n n n y y h x y n +=+-= 由初值y 0=y(0)=1出发计算,所得数值结果如下:

元次方程的求根公式及其推导

一元三次方程的求根公式及其推导 有三个实数根。有三个零点时,当有两个实数根。 有两个零点时,当有唯一实数根。有唯一零点时,当。,有两实根,为,则方程若有唯一实数根。 有唯一零点有一实根,则方程若有唯一实数根。 有唯一零点没有实根,则方程若实数根的个数。 点的个数即方程零即方程则设实数根的判定: 程即可。 因此,只需研究此类方的特殊形式即公式化为均可经过移轴 三次方程由于任一个一般的一元0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(0)()(0)1281(81 1)()(3 3: 0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=?<+=?=?=+=?=?>+=?--==- ===<=?===?=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F p x p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC A B A B x A B C A B x A D Cx Bx Ax βαβαβαβα

33 2332323233 232332313223 2132323 2333333333333333333333332332332323212811210861128112108610)1281(81 1)27(41281121086112811210861181281918128190)1281(81 1)27(4027 27,3)(300)(33)(3)(.1.200128100128100128112810)1281(81 10)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--?? ???+--==++-==??? ????+--=++-=>+=--=-+?????-=+-=?? ????????-=+-==+-=-=++=+--++=+++=+=+=+==++<+=?=++=+=?=++>+=?+=?>+≥式,为: 实数根的方程的求根公上方法只能导出有一个)。故由以,小于零时会出现虚数等于零时只能解出一个但却又无法直接解出(二或三个实数根,,虽然我们清楚方程有若判别式顺序,则有,如果不考虑。则有,若判别式的两根。为一元二次方程,易知,。,即可令, 对比。 即有, 故, 由于。 ,就是设法求出下面的工作为两个待定的代数式。,的形式。其中,程的求根公式应为了一元三次方根公式的归纳,我得到及特殊一元高次方程求一元一次,一元二次以得到。通过对出的,通常由归纳思维式由演绎推理是很难解一元三次方程的求根公实根式的推导: )(求根公式的推导: 有三个实数根。 时,方程有两个实数根。 时,方程有唯一实数根。 时,方程,则有以下结论:。令一定有时, ,则当时方程很容易求解同时为不同时为为研究方便,不妨设

第二章_Volterra_方程的求解

第二章 Volterra 方程的求解 §2.1 第二类Volterra 方程求解 积分方程是近代数学的一个重要分支,它与微分方程、泛函分析、计算数学和有机分析等有着紧密的联系.同时,它也是解决力学、数学物理和工程技术等问题的一种重要工具. 本章首先介绍积分方程的基本概念,其次利用压缩映照原理讨论积分方程的可解性及逐次逼近方法,并扼要介绍Fredholm 定理,讨论一些非线性积分方程的解法. 第二类Volterra 方程一般形式为: ()(,)()()x a x K x t t dt f x ?λ?=+? , (2.1.1) A . 化为常微分方程求解 例2.1.10().x x t e t dt x ?-=? 解 由0 ()x x t e e t dt x ?-=? ,

得0 ()x t x e t dt xe ?--=?, 求导得(),x x x e x e xe ?---=- 即()1x x ?=-. 例2.1.2 0()().x x x t dt e ??=+? 解 求导得()().x x x e ??'=+ 定解条件0 0(0)() 1.t dt e ??=+=? 化为微分方程 , (0) 1. x e ???'?=+? =? 容易得到()(1)x x x e ?=+. 定理2.1.1 如果第二类Volterra 方程(2.1.1)的核(,)K x t 为()x t -的(1)n -次多项式 01(,)()()() K x t a x a x x t =+-2 2()()2!a x x t +-11()()(1)!n n a x x t n --++ -- , 令 1 1()()()(1)!x n a y x x t t dt n ?-=--?,

第二章 数值分析--方程求根

第二章 方程求根 教学内容: 1.二分法 2.基本迭代法 3.牛顿法 4.弦位法 5.埃特金法和斯基芬森法 6.重根的情况 教学重点: 各种算法的思路及迭代公式的构造 教学难点: 各种算法的收敛性、收敛速度及误差估计 计划学时:5-6学时 授课提纲: 方程求根就是求函数)(x f 的零点*x ,即求解方程 0)(=x f 这里,0)(=x f 可以是代数方程,也可以不是,如超越方程。 方程的根既可以是实数,也可以是复数;既可能是单根,也可能是重根;即可能要求求出给定范围内的某个根,也可能要求求出方程全部的根。 本章介绍的方法对两类方程都适用,但大部分都是要求知道根在什么范围内,且在此范围内只有一个单根。若有α使得0)(,0)(≠'=ααf f ,则称α是方程0)(=x f 的单根;若有α使得 0)(,0)()()()()1(≠==='=-ααααm m f f f f , 则称α是方程0)(=x f 的m 重根。 设)(x f 在区间[a,b]连续,若0)()(

2.1.2 二分法思想 区间对分,去同存异 2.1.3 二分法计算步骤 步1:令2/)(0b a x +=,计算)(0x f ; 步2:若0)(0=x f ,令0*x x =,计算结束; 步3:若)(0x f *)(a f >0,令0x a =;否则令0x b =; 步4:若ε≤-||a b ,令2/)(*b a x +=,计算结束;否则转步1。 2.1.4 二分法误差分析和收敛性 记第k 次区间中点为k x ,则有 2/)(0*a b x x -≤-,21*2/)(a b x x -≤-,1*2/)(,+-≤-k k a b x x 故当∞→k 时,*x x k →。 为使ε≤-k x x *,解不等式ε≤-+12/)(k a b ,得 12ln /]ln )[ln(---≥εa b k 2.1.5 二分法的优缺点 ● 算法简单直观,易编程计算; ● 只需)(x f 连续即可; ● 区间收缩速率相同,收敛速度慢; ● 无法求复根和偶重根。 例2-1 p15例1 2.2 迭代法 2.2.1 迭代法原理 0)(=x f ? )(x x ?= )(x f 的根 )(x ?的不动点 2.2.2 迭代法思路 任取初值],[0b a x ∈,令)(01x x ?=,)(12x x ?=,反复迭代,即得 ),2,1,0(),(1 ==+k x x k k ? 直到满足精度要求的k x 来近似*x 。称)(x x ?=为迭代公式,)(x ?为迭代函数,{k x }为迭代序列。 若{k x }收敛时,称迭代公式是收敛的。此时设=∞ →k k x lim *x ,当)(x ?连续时 )()lim ()(lim lim *1*x x x x k k k k k ???====∞ →∞ →+∞ → 亦即0)(*=x f 。若{k x }不收敛,称迭代公式是发散的。

第六章非线性方程的数值解法习题解答

第六章非线性方程的数值解法习题解答 填空题: 1. 求方程()x f x =根的牛顿迭代格式是__________________。 Ans:1()1()n n n n n x f x x x f x +-=- '- 2.求解方程 在(1, 2)内根的下列迭代法中, (1) (2) (3) (4) 收敛的迭代法是(A ). A .(1)和(2) B. (2)和(3) C. (3)和(4) D. (4)和(1) 3.若0)()(,故迭代发散。 以上三中以第二种迭代格式较好。 2、设方程()0f x =有根,且'0()m f x M <≤≤。试证明由迭代格式1()k k k x x f x λ+=- (0,1,2,)k =L 产生的迭代序列{}0k k x ∞ =对任意的初值0(,)x ∈-∞+∞,当2 0M λ<< 时,均收敛于方程的根。

数值分析6

31.(1)解:x (k+1)=(I-αA )x (k)+αb 因此迭代矩阵B= I-αA=1?3α?2α?α1?2α 其特征值λ1=1-4α;λ2=1-α; 因为迭代收敛的充要条件是:ρ(B)<1,等价于|λ1|<1,且|λ2|<1 因此0<α<1/2时,迭代矩阵收敛。当谱半径最小时,收敛速度最大,等价于|λ1|和|λ2|在(0,1/2)上的最小值,求得当α=3/5时,谱半径最小,迭代速度最快。 (2)已知对称正定矩阵A 的最大和最小特征值分别为:λ1和λn ,且二者均大于0. 不妨设A 的特征值为λ,特征向量为x 。则(I-αA)x=x-αAx=(1-αλ)x 即迭代矩阵B= I-αA 的特征值为1-αλ,而且迭代矩阵收敛的充要条件是ρ(B)<1,即矩阵B 的特征值绝对值最大的要小于1,即|1-αλ1|<1且|1-αλn |<1,求得0<α<2(λ1)-1; 当谱半径最小,即在区间0<α<2(λ1)-1内,|1-αλn |和|1-αλ1|<1的最小值,求得α=2/(λ1+λn ) 32. 证明:因为SOR 方法的迭代矩阵L w =(D-wL)-1[(1-w)D+wU] 假设L w 存在一个特征值λ满足|λ|>1。 所以det(λI-L w )=0 所以det((D-wL)-1[(1-w)D+wU])=det(D-wL)-1*det[(1-λ-1(1-w))D-wL-λ-1wU]=0 (1) 由于矩阵A 是严格对角占优矩阵,所以a ii >0,因此(D-wL)-1的主对角

元素大于零,即det(D-wL)-1>0。 而由于|λ|>1,且0=λ-1(1-w),即1-λ-1(1-w)>0>=w ; 同时1-λ-1(1-w)>0> |λ-1w|. 而由于矩阵A 严格对角占优,所以|a ii |>∑|a ij |n 1,j≠i , 而对于(1-λ-1(1-w))D-wL-λ-1wU ,其主对角元素为(1-λ-1(1-w))a ii ,左侧元素为-wa ij (1∑(1?λ?1(1?w ))|a ij |i?11+∑(1?λ?1(1? n i+1w ))|a ij |>∑w|a ij |i?11+∑|λ?1w||a ij |n i+1 所以(1-λ-1(1-w))D-wL-λ-1wU 也严格对角占优,所以det((1-λ-1(1-w))D-wL-λ-1wU)≠0 这与(1)式矛盾,因此该方法收敛。 33.解:由于矩阵A 对称正定,因此(D-U)-1和(D-L)-1存在。 (D-U )x (k+1)=L[(D-L)-1Ux (k)+ (D-L)-1b]+b 所以x (k+1)= (D-U)-1L[(D-L)-1Ux (k)+ (D-U)-1 L(D-L)-1b+(D-U)-1b 因此C=(D-U)-1L(D-L)-1U, g=(D-U)-1 L(D-L)-1b+(D-U)-1b 下面证明其收敛性: 令W=D -1/2(D-U),P=D 1/2(D-L)-1LD -1/2, 则PP T = D 1/2(D-L)-1LD -1/2 D -1/2U(D-U)-1D 1/2= D -1/2L(D-L)-1(D-U)-1D 1/2, 而WCW -1= D -1/2(D-U) (D-U)-1L(D-L)-1U(D-U)-1 D 1/2= D -1/2L(D-L)-1(D-U)-1D 1/2 因此WCW -1=PP T 因此C 与PP T 相似,特征值均为非负实数。

一元n次方程的求根公式a

一元 n 次方程的求根公式(一) 寻玉殿 当n 为不小于5的奇数时,一元n 次实系数方程 12 32 2 24 36 120 n n n n n n x nAx t A x t A x t A x B -----++++++= 有解,且必有一根为x = + 。 其中自然数i 满足3 21n i -≤≤,对于不同的奇数n ,i t 是特定的常数。 特别的(1)当5n =时, 15t = 原方程化为 532550 x Ax A x B +++= 则此方程必有一根为 5 x = + 。 (2)当7n =时,114t = 27t = 原方程化为 7523371470 x Ax A x A x B ++++= 则此方程必有一根为 x = + 。

(3)当9n =时,127t = 230t = 39t =原方程化为 97253349273090 x Ax A x A x A x B +++++= 则此方程必有一根为x = + 。 (4)当11n =时,144t = 277t = 355t = 411t = 原方程化为 119273543511447755110 x Ax A x A x A x A x B ++++++= 则此方程必有一根为 x = + 等等! 对于不同的奇数n ,有着相对应之特定的i t 值,就决定了这套5至n 次 系列高次方程的存在形式及数学模型。

而对于n为偶数时,只要设 2 y x ,依然可以采用此套求根公式! 所以这一套高次方程的模型不一而足,穷尽n次。 此方程的原雏产生于1995年,当时我就其中n等于5时一例在《中学生 数理化》刊物投过稿件,但没有被采纳,所以搞得此方程泥牛入海,一直搁浅至今。当时虽然没有完善到n次,但足以奠定并拓开了我日后的探索之路。本来欲将此高次方程向数学学会申报定理,但由于“黑规矩”肆无忌惮的盗稿窃稿,本人一直心有余悸,畏葸犹豫。几十年的经验总结及对此方程的不断更进完善,方形成这套较令人乐观的数学模型。今天,偶见互联网上已经有涉及此 5次方程课题的文志!唯恐被他人误为抄袭之嫌,所以,挑灯不寐,连夜及时将我这套高次方程的数学模型整理打印出炉,大白于天下,作为我申报定理的一个-“前哨站”,希望互联网有一片正大光明的天地为我们莘莘学子的科学探索之路打开通途。 作者寻玉殿 2017年5月3日星期三整理完毕

一元二次方程求根公式讲解学习

一元二次方程求根公 式

一元二次方程求解 一、一周知识概述 1、一元二次方程的求根公式 将一元二次方程ax2+bx+c=0(a≠0)进行配方,当b2-4ac≥0时的根为 . 该式称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为求根公式法,简称公式法. 说明:(1)一元二次方程的公式的推导过程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0); (2)由求根公式可知,一元二次方程的根是由系数a、b、c的值决定的; (3)应用求根公式可解任何一个有解的一元二次方程,但应用时必须先将其化为一般形式. 2、一元二次方程的根的判别式 (1)当b2-4ac>0时,方程有两个不相等的实数根; (2)当b2-4ac=0时,方程有两个相等的实数根; (3)当b2-4ac<0时,方程没有实数根. 二、重难点知识 1、对于一元二次方程的各种解法是重点,难点是对各种方法的选择,突破这一难点的关键是在对四种方法都会使用的基础上,熟悉各种方法的优缺点。

(1) “开平方法”一般解形如“”类型的题目,如果用“公式法”就显得多余的了。 (2)“因式分解法”是一种常用的方法,一般是首先考虑的方法。 (3) “配方法”是一种非常重要的方法,一般不使用,但若能恰当地使用,往往 能起到简化作用,思考于“因式分解法”之后,“公式法”之前。如方程 ;用因式分解,则6391这个数太大,不易分解;用公式法,也太繁;若 配方,则方程化为,就易解,若一次项系数中有偶因数,一般也应考虑 运用。 (4)“公式法”是一般方法,只要明确了二次项系数、一次项系数及常数项,若方 程有实根,就一定可以用求根公式求出根,但因为要代入(≥0)求值,所以对某些特殊方程,解法又显得复杂了。 2、在运用b2-4ac的符号判断方程的根的情况时,应注意以下三点: (1)b2-4ac是一元二次方程的判别式,即只有确认方程为一元二次方程时,才 能确定a、b、c,求出b2-4ac; (2)在运用上述结论时,必须先将方程化为一般形式,以便确认a、b、c; (3)根的判别式是指b2-4ac,而不是 三、典型例题讲解 例1、解下列方程: (1); (2); (3).

相关主题
文本预览
相关文档 最新文档