当前位置:文档之家› 矩形波导的设计介绍

矩形波导的设计介绍

矩形波导的设计介绍
矩形波导的设计介绍

矩形波导模式和场结构分析

第一章 绪论

1.1选题背景及意义

矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。

矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。

本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势

由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。

英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

截止波长的概念。瑞利得到了矩形波导中主模的场方程组,这是雷达中最常用的模式, 并讨论了矩波导中的主模。到1931 年, 人们看出了波导技术会有实用价值。1933 年, 已经有波长为15 cm 的信号源了。美国贝尔实验室在20 世纪30 年代已经是一个庞大的研究机构, 它吸收了一大批科学家从事超高频技术的研究。1936 年, 贝尔的科学家做实验, 实验波导线是长度为260 m 的青铜管, 直径12.5cm, 信号源输出波长为9 cm 。实验表明, 在截止频率以上, 信号传输衰减很小。后来, 人们把1936 年当作微波技术开始的年份。为了对波导做出深刻的阐述, 贝尔实验室的专家继续作数学分析, 推出了完整的本征值方程, 并证明汤姆逊早年的方程是本征值方程的一个特例。

传输线技术发展到今天, 只用简短的文字已不能描述其品种的繁杂、发展的迅速和理论的艰深了。例如, 就同轴电缆来说, 新技术之一是稳相同轴电缆, 其相位常数随环境温度和机械影响很小, 适用于对相位敏感的电子系统( 如卫星跟踪站和天文台) ; 就波导来说, 矩波导的主模11TE 模的极化平面不稳定, 使它甚至不能用于长度较大的天线馈线, 因此出现了椭矩波导。目前椭矩波导已经广泛用于微波中继站和地球卫星站; 就传输线的集成化来说, 出现了微带传输线, 使传输线的小型化和平面化成为可能。当然, 传输线新品种的开发, 又激发了理论工作的深入研究。 为了适应新的需求,需要是各种传输线模式之间进行变化,各种模式变化方面的研究应运而生,如同轴TEM 到矩波导11TE 模式变换。经变换这种模式变换器可以承受高功率,中心频率上的转换效率大,反射损耗低等优点,是最近的热点研究。

1.3 本课题研究目标及主要内容

1、研究目标

该课题是在HFSS 的平台上实现矩形波导的设计与仿真,通过在HFSS 平台上对矩形波导的半径、主模工作频率等的设置来设计出要求所需的矩形波导。其中要求矩形波导的半径为19.05mm ;主模的工作频率为5GHz ;完成对矩形波导的设计后要求画出矩形波导端口前10个模式的电场分布。

2、主要内容:

本文针对矩形波导在HFSS 平台上的设计和仿真,需进行矩形波导的相关理论的理解,要求了解其工作原理。要分析好矩形波导,首先求解电磁场纵向分量的波动方程, 求出纵向分量的通解, 并根据边界条件求出它的特解; 然后利用横向场与纵向场的关系式, 求出横向场的表达式; 最后讨论截止特性、传输特性、场结构和主要波型。

矩波导中11TE 、01TE 和01TM 是三种常用的模式, 根据它们不同的特点有着不同

的应用。下面就这三种模式的场分布特点和应用情况作介绍。

1.11TE 模

11TE 模是矩波导的主模, 其截止波长为c = 3 .41 R 。

图3 .1 是矩波导11TE 模的场结构图。由图可见, 矩波导的11TE 模与矩形波导的10TE 模很相似, 因此它们之间的波型转换是很方便的。矩形波导10TE 模与矩波导11TE 模的波型转换器如图3 .2 所示:

图1 .1 矩波导11TE 模的场结构图

)

)

2.01

TM模

01

TM模是矩波导中的最低型横磁模,

01

TM模有如下特点:

(1 ) 磁场只有H?分量, 磁力线是横截面上的同心矩。

(2 ) 电力线是平面曲线, 与?无关, 电力线在矩波导中心最强。

(3 ) 01

TM模不存在极化简并模式。

(4 ) 01

TM模在波导管壁上电流只有纵向分量。利用这一特点,

01

TM模可以用于天线馈线系统的旋转连接工作模式。

3.01

TE模

01

TE模是矩波导中的高次模,

01

TE模有如下特点:

(1 ) 电场只有E?分量, 电力线是横截面上的同心矩。

(2 ) 磁力线是平面曲线, 与?无关。

(3 ) 01

TE模不存在极化简并模式。

(4 ) 01

TE模的一个突出特点是在波导管壁上电流没有纵向分量, 管壁电流只沿矩周方向流动, 并且当传输功率一定时, 随着频率的升高, 波导管壁的热损耗下降。

01

TE模的这个特点, 使它既适合作高Q谐振腔, 又适合用于毫米波远距离波导通信。

(5 ) 01

TE模不是矩波导中的主模, 因此使用时需要抑制高次模。

1.4 本章小结

本章首先介绍了课题选题的意义,波导导波技术的国内外现阶段发展现状及趋势,以及本课题主要研究内容基于HFSS的仿真平台设计和仿真矩形波导,并画出仿真

结果中的电场图。

第二章矩形波导的基本原理

2.1导波的一般分析

2.1.1 规则金属管内的电磁波

任意截面形状的金属波导如图2.1 所示, 电磁波沿纵向(z 轴方向)传输, 为求解简单, 作如下假设:

(1)波导内壁的电导率为无穷大。

(2)波导内的介质是均匀无耗、线性、各向同性的。

(3)波导远离源。

(4)波导无限长。

图2.1 任意截面形状的金属波导

由电磁场理论,对无源自由空间电场E 和磁场H 满足以下矢量赫姆霍茨方程:

2

20E k E ?

+= (2-1-1) 22

0H k H ?+= (2-1-2)

式中,22

k ωμε=。

现将电场和磁场分解为横向分量和纵向分量,即 t z z E

E a E =+ (2-1-3)

t z z H H a H =+ (2-1-4)

式中,z a 为z 向单位矢量,t 表示横坐标,由于分析的是矩形波导,以矩柱坐标为例讨论

从以上分析可以得出以下结论:

在规则波导中场得纵向分量满足标量其次波动方程,结合相应边界条件即可求得纵向分量z E 和z H ,而场得横向分量即可由纵向分量求得。

既满足上述方程又满足边界条件的解很多,每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性。

c k 是为传输系统的特征值,它是一个与波导系统横截面形状、尺寸及传输模式有关的参量。由于当相移常数β=0时,意味着波导系统不再传播,亦称为及位置,此时c k =k ,故称c k 为截止波数。

2.1.2 波导传输的一般特性

1.波导中传输模的种类

所谓模式(或称模、波型)是指能够单独在波导中存在的电磁场结构, 按其有无场的纵向分量z E 和z H , 可以分为三类:

(1)z E =0且z H =0的传输模称为横电磁模, 也称横电磁波, 记作TEM 波。这种模只能存在于双导体或多导体传输系统中。

对于TEM 波, 2

0c k =

,k β==

。相速度1/p v =与频率无关, 是无色散波型。

(2) z E =0而z H ≠0 的传输模称为横电模或磁模, 记为TE 模或H 模; z E ≠0 而z H =0的传输模称为横磁模或电模, 记为TM 模或E 模。空心金属管波导只能传输这类模。

(3) z E ≠0且z H ≠0的传输模称为混合模, 分为EH 模和HE 模。这类模存在于开放式波导中, 波在波导表面附近的空间传输, 故又称表面波。

2.2 矩形波导的分析

2.2.1 矩形波导电磁场解

截面为矩形的金属波导称为矩波导, 如图2.2所示。矩波导具有损耗较小和双极化的特性, 常用于双极化天线馈线中, 也用作远距离波导通信, 并广泛用作微波谐振腔。

00(i

E

图2.2 矩形波导

矩形波导在矩柱坐标中进行讨论,其中可以独立存在TM 模和TE 模。 的周期,即

()(2)Q Q ??π=+

()(2)Q m Q m m ??π=+

所以m 应为整数,取m=0,1,2,…。

方程(2-2-5)称为贝塞尔(Bessel )方程,其解为

12()()()m c m c R A J k A N k ρρρ=+ (2-2-8)

式中m J 称为m 阶第一类贝塞尔函数,m N 称为m 阶第二类贝塞尔函数。图2.3(a )、(b)分别表示m J 和m N 的函数曲线。

图2.3(a) m J 函数曲线

图2.3(b) m N 函数曲线

图2.4 m

J '的函数曲线

将z H 代入(2-1-7)中,则可以得到矩柱形波导中TE 波得各场分量的表达式为

2

222

200000sin (

)(

)cos cos ()(

)sin cos ()()sin sin ()()cos cos ()()sin mn

mn mn mn mn mn mn mn mn

p j ma j z m a

p p j a

j z m p a p j a

j z m a p p j ma j z m a p p z m a m E H J e m m E H J e m m H H J e m m H H J e m m H H J e

m ωμβρρ

ωμβ?ββρββ?ρ?

ρ??ρ??ρ??ρ??ρ?'-''-''--''-''=

-'='==-=()2217j z β-?

?

?

?????--??

??

?

???? 2.2.2 矩形波导中的波型及截止波长

(1)由场分量可以看出, 矩波导中有无数多个TE 模和TM 模, 以mn TE 或mn TM 表

示。由于0m p 及0m p '

不存在, 所以0m TE 模和0m TM 模不能存在, 可以存在0n TM 模和

mn TM 模及0n TE 模和mn TE 模。各模式的截止波长分别为

(2-2-18)

(2-2-19)

22mn

cTE mn

mn

a

cTE ππλ'

==22mn

cTM mn

mn

a cTM k p ππλ==

(2) 根据各种模的截止波长值可以画出矩波导中波型的截止波长分布图,如图2.5所示。

图2.5 矩波导中波型的截止波长分布图

(3)矩波导中最低型模( 主模) 为11TE 模, 其他模式为高次模, 其中第一高次模为01TM 模, 因此保证矩波导中只传输单模的条件为

2 .62 R < λ<

3 .41 R

(4)不论是TE 模还是TM 模, 场分量沿?方向和ρ方向都呈驻波分布。m 阶贝塞尔函数或其导数的整阶数, 表示场沿波导矩周分布的整驻波数; n 是贝塞尔函数或其导数根的序号, 表示场沿半径方向分布的半驻波数。

(5)矩波导中波型的简并有两种,一种是极化简并;另一种是TE 模与TM 模之间的简并。从场分量表示式可以看出,场分量沿?方向分布存在着sin m ?和cos m ?两种可能性,于是,对应于同一m 和n 的值,有两种场分布形式,所不同的只是极化面旋转了90°。这种现象称为“极化简并”。极化简并表明, 在矩波导中传输模时极化面将是不固定的。在理想的矩波导中,极化面只决定于激励情况,但在实际上,波导截面形状不可能保证是正矩,这将引起所传输的模式极化面产生旋转,即产生极化简并模。一般情况下,这种现象对传输不利, 但在某些场合则需利用这些特性,构成特殊用途的波导。此外,矩波导中01TE 、02TE 、…、0n TE 模的截止波长分别与11TM 、12TM 、…、1n TM 模的截止波长相等, 这称为TE 模与TM 模之间的简并。

2.3 本章小结

本章首先介绍了与课题相关的基本原理,主要包括:规则金属管内的电磁波求解过程,波导传输的一般特性,矩形波导电磁场求解过程,矩形波导中的波型及截止波

长,以及第一类贝赛尔函数和第二类贝塞尔函数的相关内容。

第三章 矩形波导的设计

3.1 创建矩形波导模型

1.运行HFSS 并新建工程

启动HFSS 软件,会自动创建一个默认名称为project1的新工程和名称为HFSSDesign1的新设计。

从主菜单栏选择命令【File 】→【Save As 】,把工程文件另存c_waveguideok.hfss 。然后右键单击HFSSDesign1,从弹出菜单中选择【Rename 】命令项,把设计文件HFSSDesign1重新命名为waveguide 。

2.选择求解类型

从主菜单栏选择【HFSS 】→【Solution Type 】,选中Driven Modal 单选按钮。 3.设置长度单位

从主菜单栏选择【Modeler 】→【Units 】,打开set Model Units 对话框,选择英寸(in )单位。

4.创建矩柱体

根据课题要求,需设计的矩形波导长度为200mm 宽度为40.4mm 高度为20.2mm ,波导长度为5个导波波长,所以必须计算该矩形波导的主模波长。此时需要利用matlab 来计算矩形波导十个模式的波长,同时课题需要画出矩形波导端口前10个模式的电场分布。由于矩波导和矩形波导一样, 也具有高通特性。需要满足条件

c λλ<,所以

要求得第十个模式的截止频率,以设置仿真时的工作频率。

由图2.3和图2.4可得出矩形波导前十个模式分别为: 11TE 、01TM 、21TE 、01TE 、

11TM 、31TE 、21TM 、12TE 、02TM 、22TE 。

编写的matlab 程序去下所示,计算的结果是前十个模式的频率,单位为GHz U11=fzero(@(x)besselj(0,x)-1/x*besselj(1,x),2); fTE11=300*U11/(2*pi*19.05) V01=fzero(@(x)besselj(0,x),2); fTM01=300*V01/(2*pi*19.05)

U21=fzero(@(x)besselj(1,x)-2/x*besselj(2,x),3); fTE21=300*U21/(2*pi*19.05) U01=fzero(@(x)-besselj(1,x),4); fTE01=300*U01/(2*pi*19.05) V11=fzero(@(x)besselj(1,x),4); fTM11=300*V11/(2*pi*19.05)

U31=fzero(@(x)besselj(2,x)-3/x*besselj(3,x),4); fTE31=300*U31/(2*pi*19.05) V21=fzero(@(x)besselj(2,x),5); fTM21=300*V21/(2*pi*19.05)

U12=fzero(@(x)besselj(0,x)-1/x*besselj(1,x),5); fTE12=300*U12/(2*pi*19.05) V02=fzero(@(x)besselj(0,x),5); fTM02=300*V02/(2*pi*19.05)

U22=fzero(@(x)besselj(1,x)-2/x*besselj(2,x),7); fTE22=300*U22/(2*pi*19.05)

得出前十个模式的截止频率如表3.1所示 模式

TE 10

TE 20 TE 01

TE 11

TE 21

TE 30

TE 31

TE 40 TE 02

TE 12

TE 41 TE 22

TE 32 TE 50

解析解 21.082 42.163 47.140 59.628 63.245 76.010 84.326 86.921 94.279 105.41 文献[1] 21.076 42.152 47.140 59.645 63.158 76.014 86.234 86.833 94.210 105.38

本文21.09 42.35 46.93 59.52 62.95 76.12 84.70 86.99 94.43 105.3

由U11=fzero(@(x)besselj(0,x)-1/x*besselj(1,x),2);

TE11=(2*pi*19.05)/U11

λ=65.0096mm。

可以计算得出主模的波长,结果为11

TE

λ=325.0482mm。

所以设计的矩形波导长度为5*11

TE

(1)点击工具栏中的图标,在3D界面中任意绘制一个矩柱体,再设置矩柱体的属性,使其设置为长度为-100mm,宽度设置为-20.2mm,高度设置为-10.1。点击确认完成设置,其他属性保持默认。如图3.1所示:

图3.1 矩柱体属性设置

设置完成后的矩形波导如图3.2所示。

图3.2 矩形波导模型

(2)边界条件的设置

设置边界条件的重要性:

用Ansoft HFSS求解的波动方程是由微分形式的麦克斯韦方程推导出来的。在这些场矢量和它们的导数是都单值、有界而且沿空间连续分布的假设下,这些表达式才可以使用。在边界和场源处,场是不连续的,场的导数变得没有意义。因此,边界条件确定了跨越不连续边界处场的性质。作为一个 Ansoft HFSS 用户你必须时刻都意识到由边界条件确定场的假设。由于边界条件对场有制约作用的假设,我们可以确定对仿真哪些边界条件是合适的。对边界条件的不恰当使用将导致矛盾的结果。

当边界条件被正确使用时,边界条件能够成功地用于简化模型的复杂性。事实上,Ansoft HFSS 能够自动地使用边界条件来简化模型的复杂性。对于无源RF 器件来说,Ansoft HFSS 可以被认为是一个虚拟的原型世界。与边界为无限空间的真实世界不同,虚拟原型世界被做成有限的。为了获得这个有限空间, Ansoft HSS使用了背景或包围几何模型的外部边界条件。

模型的复杂性通常直接与求解问题所需的时间和计算机硬件资源直接联系。在任何可以提高计算机的硬件资源性能的时候,提高计算机资源的性能对计算都是有利的。

HFSS中定义了多种边界条件类型,主要有理想导体边界条件(Perfect E)、理想磁边界条件(Perfect H)、有限导体边界条件(Finite Conductivity)、辐射边界条件(Radiation)、对称边界条件(Symmetry)、阻抗边界条件(Impedance)、集总RLC 边界条件(Lumped RLC)、无限地平面(Infinite Ground Plane)、总从边界条件(Master and Slave)、理想匹配层(PML)和分层阻抗边界条件(Layered Impedance)。

Perfect E是一种理想电导体或简称为理想导体。这种边界条件的电场(E-Field)垂直于表面。有两种边界被自动地赋值为理想电边界。在HFSS中,以下两种情况下的物体边界会自动设置为理想导体边界条件。

1、任何与背景相关联的物体表面将被自动地定义为理想电边界并且命名为

(outer)的外部边界条件。

2、任何材料被赋值为PEC(理想电导体)的物体的表面被自动的赋值为理想电边界并命为smetal边界。

根据以上信息可知,所设计的矩形波导需设置Perfect E边界条件。设置操作步骤如下。

选中需要设置为理想导体边界条件的物体表面。

从主菜单栏选择【HFSS】→【Boundaries】→【Assign】→【Perfect E】,打开如图3.3所示的对话框,点击确定完成导体边界条件的设置。

图3.3 “理想导体边界条件设置”对话框

(3) 设置波端口激励

端口解算器假定你定义的波端口连接到一个半无限长的波导,该波导具有与端口相同的截面和材料。每一个端口都是独立地激励并且在端口中每一个入射模式的平均功率为1瓦。波端口计算特性阻抗、复传播常数和S参数。

在波导中行波的场模式可以通过求解Maxwell 方程获得。下面的由Maxwell 方程推出的方程使用两维解算器求解。

(

)

2

1

0(,)(,)0r r E x y k E x y με??

??-= (3-2-1)

式中,(,)E x y 是电场矢量;0k 是自由空间波数,02/k πλ=;r μ是复数相对磁导率;

r ε是复数相对介电常数。HFSS 求解该方程后,可以得到激励场模式的解(,)E x y ;这些矢量独立于z 和t ,在这些矢量节后面乘上因子z

e

γ-后就变成了行波。另外,我们注

意到激励场模式的计算只能在一个频率。在每一个感兴趣的频率,计算出的激励场模式可能会不一样。

由于需要画出矩形波导端口前10个模式的电场分布,所以设置波端口时需要设置10个模式,才能满足需求,所以将属性Number of Modes 设置为10,设置波端口激励如图3.4所示。

图3.4 波端口激励设置

选中单击图3.5所示的New Line 后,进入端口积分线绘制状态。单击鼠标左键,确定积分线的起始点,然后再移动鼠标光标到该平面上边缘的中间位置,再次点击鼠标,确定积分线的终止点,完成积分线的设置,设置好的波端口如图3.6所示。

图3.5波端口设置对话框

重复以上步骤,完成对另外一个波端口的设置。

绘制两个实平面

为了分析波导的内部电场,需要在波导内部绘制两个实面体,分别绘制在横截面和纵截面。操作步骤如下。

图3.7 矩形实面体设置对话框

从主菜单栏中选择【Draw】→【Rectangle】,绘制一个矩形实面体,任意绘制一个矩形实面体,点击历史窗口的Rectangle1节点,双击CreateRectangle,设置其属性,设置

结果如图3.8所示。

图3.8 矩形实面体设置对话框

得出最后的矩形波导模型如图3.9所示。

图3.9 矩形波导模型

3.2 求解设置

求解设置的时候需要对求解频率(Solution Frequency ),最大迭代次数(Maximum Number of Passes )等参数进行设置。 由于矩形波导也具有高通特性。需要满足条件

c λλ<,即c f f >。同时课题需要画出

矩形波导端口前10个模式的电场分布,所以要保证求解频率(Solution Frequency )大于第十个模式的截止频率。经计算模式十22TE 频率为16.8081GHz 。根据矩形波导的

高通特性,设置求解频率(Solution Frequency)值为18GHz。

HFSS软件采用自适应网格剖分技术,根据用户设置的误差标准,自动生成精确、有效的网格,来完成分析对象的离散化。自适应网格剖分的原理是:在分析对象内部搜索误差最大的区域并在该区域进行网格的细化,每次网格细化过程中网格增加的百分比由用户事先设置。完成一次网格细化过程后,软件重新计算并搜索误差的最大的区域,判断该区域误差是否满足设置的收敛条件。如果满足收敛条件,则网格剖分完成;如果不满足收敛条件,继续下一次网格细化过程,直到满足收敛条件或者达到设置的最大迭代次数为止。自适应网格剖分时,每一次网格细化的迭代过程在HFSS中称为一个“Pass”。

为了使得HFSS自适应网格剖分能个完成,需设置好最大迭代次数(Maximum Number of Passes),工程应用中一般把该参数设置为20,以满足HFSS的求解需要。

设置操作步骤如下:

右键单击工程树下的Analysis节点,从在弹出菜单中选择【Add Solution Setup】,打开“分析设置”对话框,进行求解频率和网格剖分的相关设置,如图3.7及图3.8所示

图3.9 添加求解设置

图3.10 “分析设置”对话框

再将求解设置对话框中的参数求解频率(Solution Frequency)设置为18,单位是GHz;参数最大迭代次数(Maximum Number of Passes)设置为20,其他参数值保持默认,点击确认完成设置。设置结果如图3.9所示。

图3.11 设置完成的分析设置

3.3 设计检查和运行仿真

在HFSS的设计流程中,当用户完成了创建物体模型结构,分配边界条件和激励方式以及添加分析设置这几大步骤后,接下来就可以运行仿真分析,对当前设计进行仿真求解了。

实验二矩形波导TE10的仿真设计与电磁场分析解读

] 实验二、矩形波导TE10的仿真设计与电磁场分析 一、实验目的: 1、熟悉HFSS软件的使用; 2、掌握导波场分析和求解方法,矩形波导TE10基本设计方法; 3、利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、《 2、导波原理。 3、矩形波导TE10模式基本结构,及其基本电磁场分析和理论。 4、HFSS软件基本使用方法。 三、实验原理与参考电路 导波原理 3.1.1. 规则金属管内电磁波 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: \ ①波导管内填充的介质是均匀、线性、各向同性的; ②波导管内无自由电荷和传导电流的存在; ③波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z方向无衰减地传输,由电磁场理论, 对无源自由空间电场E和磁场H满足以下矢量亥姆霍茨方程: ` 式中β为波导轴向的波数,E0(x,y)和H0(x,y)分别为电场和磁场的复振幅,它仅是坐标x和y的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 (,) (,) j z j z E E x y e H H x y e β β - - ?= ? ? = ?? 式1 220 E k E ?+=

2222 2 2222222222220 T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 由麦克斯韦方程组的两个旋度式,很易找到场的横向分量和纵向分量的关系式。具体过程从略,这里仅给出结果: 《 从以上分析可得以下结论: ^ (1)场的横向分量即可由纵向分量; (2) 既满足上述方程又满足边界条件的解有许多, 每一个解对应一个波型也称之为模式,不同的模式具有不同的传输特性; (3)k c 是在特定边界条件下的特征值, 它是一个与导波系统横截面形状、 尺寸及传输模式有关的参量。 由于当相移常数β=0时, 意味着波导系统不再传播, 亦称为截止, 此时k c =k, 故将k c 称为截止波数。 对于横电模(Ez=0)和横磁模(Hz=0)上式分别可以简化为 TE 模或H 模 ~ TM 模或E 模 3.1.2 矩形波导中传输模式及其场分布 由于矩形波导的四壁都是导体,根据边界条件波导中不可能传输TEM 模,只能传输TE 或TM 模。 % 这里只分析TE 模(Ez=0) 对于TE 模只要解Hz 的波动方程。即 2222()() 4 ()()z z x c z z y c z z x c z z y c H E j E k y x H E j E k x y H E j H k x y H E j H k y x ωμβωμββωεβωε???=-+???? ???=-? ???????=-+???? ???=-+????式2222,,z z x y c c z z x y c c H H E j E j k y k x H H H j H j k y k y ωμωμωμωμ???=-=????? ???=-=???? 式522222 222T c E E E x y k k β????=+???? ?=-?其中 式3 222 c x y k k k =+2222,,z z x y c c z z x y c c E E H j H j k y k x E E E j E j k y k y ωεωεβωμ??? ==-???? ????=-=-???? 式622200 0220z z c z H H k H x y ??++=??式7

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要] 人类进入21世纪的信息时代,电子与信息科学技术在飞速发 展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。.矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作, 所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导 TM 波 TE 波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银, 它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们将波导的良导电体壁近似为理想导电壁。由前面的讨论我们知道,矩形波导中不能传输TEM 波,只能传输TE 波和TM 波。设矩形波导宽为a,高为b,(a>b )沿Z 轴放置,如图(1)所示。下面分别求解矩形波导中传输的TE 波和TM 波。 1TM 波 对于TM 波,z z E H ,0=可以表示为; z jk z z e y x E z y x E -=),(),,(0 (1) 式中),(0y x E 满足齐次亥姆霍兹方程,故有 0),(),(02 02 =+?y x E k y x E c (2) 采用分离变量法解此方程,在直角坐标系中,令 ) ()(),(0y Y x X y x E = (3)

0)()(2 ''=+x X k x X x 将(3)式代入(2)式中,并在等式两边同除以)()(y Y x X 得: 0) ()()()(2 ''''=++c k y Y y Y x X x X (4) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的常数,要使上式对任何X 、Y 都成立,第一和第二项也应分别是常数,记为: 2 ''2 '') ()()()(y x k y Y y Y k x X x X -=-= 这样就得到两个常微分议程和3个常数所满足的方程: (5) 0)()(2 ''=+y Y k y Y y (6) 222y x c k k k += (7) 常微分方程(5)和(6)的通解为 )sin()cos()(21x k C x k C x Y x x += (8) )sin()cos()(43y k C y k C y Y y y += (9) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到z E 的通解为 [][] z jk y y x x z z e y k C y k C x k C x k C z y x E -++=)sin()cos()sin()cos(),,(4321 由矩形波导理想导电壁的边界条件0=E ,确定上式中的几个常数,在4个理想导电壁上,z E 是切向分量,因此有: (1) 在0=X 的波导壁上,由0),,0(==z y x E z 得01=C ; (2) 在0=Y 的波导壁上,由0),0,(==z y x E z 得03=C ; (3) 在a X =的波导壁上,要使0),,(==z y a x E z 有0)sin(=a k x ,从而必须有 πm a k x =,其中 3,2.,1=m 为整数,由此得 a m k x π = (10) (4)在b X =的波导壁上,要使0),,(==z b y x E z 有,0)sin(=b k y 从而必定有πn b k y =,其中 3,2.,1=n 也为整数,由此得

(完整word版)利用Matlab实现矩形波导电磁场分布图的绘制

利用Matlab实现矩形波导电磁场分布图的绘制(附源程序) 通过Matlab 计算并绘出任意时刻金属矩形波导的主模TE10 模的电磁场分布图。波导 尺寸、工作频率及时刻均由外部给定。 A.矩形波导中传输的主模为TE10模。设金属波导尺寸为a*b,TE10模的截止波长为 2*a。其电磁场分量可推导表示如下:?(1-1)上式中各参量如下,λ?(1-2) B.用Matlab画电磁力线的步骤: 1.由外部给定的波导尺寸、工作频率参照(1-2)式计算得到参量。 2.由外部给定的绘图精度,分别确定电场和磁场的坐标点。按照公式(1-1)计算 得到电场、磁场的分量。 3.用quiver3函数,绘制磁场分布。允许图像叠加。 4.用quiver3函数,绘制电场分布。不允许图像叠加。 C.三维的电力磁力线分布效果图

图1 图2 C.附程序清单 rectwavestrct1(22.86,10.16,6,1,9.84*10^9,0.03); %main function rectwavestrct1(ao,bo,d,H0,f,t) %画矩形波导场结构所有计算单位为米输入为毫米 %f l0 工作频率/波长 %lg 波导波长%lc TE10模截止波长 %a b 波导尺寸%c 传输方向这里取为波导波长%d 采样精度%t t时刻的场结构图 a=ao/1000; b=bo/1000;

lc=2*a; %TE10截止频率 l0=3*10^8/f; u=4*pi*10^(-7); if(l0>lc) return; else clf; lg=l0/((1-(l0/lc)^2)^0.5); c=lg; B=2*pi/lg; w=B/(3*10^8); x=0:a/d:a; y=0:b/d:b; z=0:c/d:c; [x1,y1,z1]=meshgrid(x,y,z); %mesh(x1,y1,z1); hx=-B.*a.*H0.*sin(pi./a.*x1).*sin(w*t-B.*z1)./pi; hz=H0.*cos(pi./a.*x1).*cos(w*t-z1.*B); hy=zeros(size(y1)); quiver3(z1,x1,y1,hz,hx,hy,'b'); hold on; x2=x1-0.001; y2=y1-0.001; z2=z1-0.001; ex=zeros(size(x2)); ey=w.*u.*a.*H0.*sin(pi./a.*x2).*sin(w*t-B.*z2)./pi; ez=zeros(size(z2)); quiver3(z2,x2,y2,ez,ex,ey,'r'); xlabel('传输方向'); ylabel('波导宽边a'); zlabel('波导窄边b'); hold off; end %------------------------------------------------------------------End Code----------------------------------

第八章矩形波导复习资料0604要点

第八章 矩形波导 1. 波导中的传播条件:f>fc 或λ<λc 2. 矩形波导能传输TM 波和TE 波,不能传输TEM 波。 3. 矩形波导中:TEmn 模:m 和n 皆可取0,但又不能同时为0 TMmn 模。显然,m,n 皆不可能为0,故最低阶模为TM11 其中:m 表示电磁场沿波导宽边a 分布的半波数的个数,n 表示电磁场沿波导窄边b 分布的半波数的个数。 当m 和n 取非零值时,TMmn 模和TEmn 模具有相同的截止参数,这种现象称为模式简并,相应的模式称为简并模式。例如,TM21模和TE21模是简并模式。 4. 波长 ①工作波长λ:定义:微波振荡源所产生的电磁波的波长。 v f λ= = 若填充空气,则8310/v c m s ===? 若填充r ε 的介质,则v = ②波导波长λg :在波导内,合成波沿的等相位面在一个周期内所走过的路程定义为波导波长λg 。 2g π λβ = = ③截止波长λc :电磁波处于能传输与不能传输的临介状态,此时对应的波长称为截止波长,对应的频率叫截止频率,fc.(或定义为:导行波不能在波导中传输时所对应的最低频率称为截止频率,该频率确定的波长称为截止波长。) g λλ >

c c v f λ= = c c v f λ= 5.传播速度 若填充空气,则8310/v c m s ===? ,若填充r ε 的介质,则v = ①相速度vp :定义 p v ω β = = 或 p g v f λ= p v v > ②群速度vg :群速度(能速)就是电磁波所携带的能量沿波导纵轴方向(z 轴)的传播速度。 g v = 2p g v v v = g v v < 6.色散现象:传播速度与频率有关的现象 时延失真:波导传输频带内各不同频率的信号传输时间不等,造成信号失真,这种失真称为时延失真。 7. 波阻抗:波导中某种波型的阻抗简称为波阻抗。定义为波导横截面上该波型的电场强度与磁场强度的比值。 TM 波的:x TM y E Z H ==TE 波 : TE Z =

矩形波导模式和场结构分析毕业设计论文

毕业设计(论文)题目:矩形波导模式和场结构分析

目录 第一章绪论 (1) 1.1 选题背景及意义 (3) 1.2 国内外研究概况及发展趋势 (3) 1.3 本课题研究目标及主要内容 (4) 1.4 本章小结 (6) 第二章矩形波导的基本原理 (7) 2.1 导波的一般分析 (7) 2.1.1规则矩形波导内的电磁波 (7) 2.1.2波导传输的一般特性 (8) 2.2 矩形波导的分析 (8) 2.2.1矩形波导电磁场解 (8) 2.2.2矩形波导中的波型及截止波长 (11) 2.3 本章小结 (12) 第三章矩形波导的设计 (13) 3.1 创建矩形波导模型 (13) 3.2 求解设置 (20) 3.3 设计检查和运行仿真 (22) 3.3.1设计检查 (22) 3.3.2运行仿真分析 (23) 3.4 本章小结 (24) 第四章HFSS仿真结果及其分析 (25) 4.1 HFSS软件仿真原理 .............................. 错误!未定义书签。 4.2 HFSS仿真实现 (26) 4.3 仿真结果分析 (32) 4.4 本章小结....................................... 错误!未定义书签。第五章小结与展望 .. (33) 5.1 工作总结 (33) 5.2 工作展望 (33) 参考文献 (33) 致谢 (35) 附录 A 常用贝塞尔函数公式错误!未定义书签。

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了截止波长的概念。瑞利得到了矩形波导中主模的场方程组,这是雷达中最常用的模式,

矩形波导中场结构模拟实验

实验 矩形波导中场结构模拟实验 一、实验目的要求: 1.通过实验编程及图像动态演示,形象具体的了解电磁波在波导中传播特性。 2.通过编写Matlab 程序,加深矩形波导中电磁波公式推导以及单模电磁波在矩形波导中的传播理解。 二、实验内容: 电磁场本身比较复杂和抽象,是涉及空间和时间的多维矢量场,需要具有较强的空间想象能力来理解它。 1.实验原理: 矩形波导是截面形状为矩形的金属波导管,如图一所示。 波导内壁面位置坐标设为:x=0和x=a ;y=0和y=b 。波导中填充介电常数为ε、磁导率为μ、电导率为σ的媒质,通常波导内填充理想介质(σ=0)。由于波导内没有自由电荷和传导电流,所以传播的电磁波是正弦电磁波。理想导电壁矩形波导中不可能传输TEM 模,只能传输TE 模或TM 模。对于矩形波导中TE MN 模的电场强度E 、磁场强度H 场分量表达式为: (02cos sin j t z x c j n m n E H x y e k b a b )ωβωμπππ???????=???????????? (1) (02sin cos j t z y c j m m n E H x y e k a a b )ωβωμπππ???????=???????????? (2) (3) 0z E =

(02sin cos j t z x c j m m n H H x y e k a a b )ωββ πππ???????=???????????? (4) (02cos sin j t z y c j n m n H H x y e k b a b )ωββπππ???????=???????????? (5) (0cos cos j t z z m n H H x y e a b )ωβππ?????=???????? (6) 其中:ω为微波角频率;m 和n 值可以取0或正整数,代表不同的TE 波场结构模式,称为TE 模,波导中可有无穷多个TE 模式;k c 为临界波束,k c 2=(m π/2)2+(n π/b )2;β为相 位常数,β= 。 波导中的一个重要参数为截止频率f c ,有 c f = (7) 当工作频率低于截止频率f c 时,电磁场衰减很快,不可能传播很远,所以波导呈现高通滤波器的特性,只有工作频率高于截止频率f c 时电磁波才能通过。具有最低截止频率的模式,成为最低模式,也称为主模,其他模式都成为高次模式。在矩形波导内传输 的所有模型中,TE 10模为主模。 2. 实验步骤: 设置矩形波导宽边a =22.86mm ,窄边b =10.16mm ,波导内媒质为空气,当工作频率f 为9.84GHz 时,波导中只能传输TE 10模。 利用Matlab 显示矩形波导TE10模的电磁场分布的程序设计过程: (1)根据已知参数m ,n ,a ,b 和f 编程计算kc ,β和ω角频率等参数。 Matlab 中代码实现: a=22.86*1e-3; b=10.16*1e-3; f=9.84*1e9; m=1; n=0; miu=4*pi*1e-7; eps=8.854*1e-12; %E=2.71828; kc=((m*pi/a)^2+(n*pi/b)^2)^0.5; w=2*pi*f; beta=(miu*eps*w^2-kc^2)^0.5; (2)根据式1-6定义的各场强变量,以电场强度、磁场强度各分量为因变量,以时间t 为自变量。 Matlab 中代码实现: ngrid=20; x=[0:a/ngrid:a];y=[0:b/2:b]; z=[0:0.04/ngrid:0.04];%定义x ,y ,z 坐标空间矩阵 %公式表示 for p=0:ngrid%执行循环p 赋初值0,循环步长为1,总步长ngrid for q=0:2 for r=0:ngrid%三层循环,赋值ex 、ey 、ez 、hx 、hy 、hz 空间上的数值 ex(p,q,r)=j*(w*miu/kc^2)*(n*pi/b)*cos((m*pi/a)*x(p))*sin((n*pi/b)*y(q))*exp(j*(

实验二矩形波导TE10的仿真设计与电磁场分析解读

实验二、矩形波导TE 10的仿真设计与电磁场分析 一、实验目的: 1、 熟悉HFSS 软件的使用; 2、 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3、 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、预习要求 1、 导波原理。 2、 矩形波导TE 10模式基本结构,及其基本电磁场分析和理论。 3、 HFSS 软件基本使用方法。 三、实验原理与参考电路 导波原理 3.1.1. 规则金属管内电磁波 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。为了简化起见, 我们作如下假设: ① 波导管内填充的介质是均匀、 线性、 各向同性的; ② 波导管内无自由电荷和传导电流的存在; ③ 波导管内的场是时谐场。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。 以电场为例子,将上式代入亥姆霍兹方程 ,并在直角坐标内展开,即有 22222 2222222222220T c E E E E k E k E x y z E E E k E x y E k E β????+=+++?????=+-+??=?+=式2 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 k 为自由空间中同频率的电磁波的波数。 00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式1220E k E ?+=22222222T c E E E x y k k β????=+?????=-?其中式3 222c x y k k k =+

第五章 动态电磁场与电磁波(4)

?? =??-z x E j y H ωε ??? -=+??x y z z H j E jk y E ωμ ? ?-=-y x z H j E jk ωμ ?? -=??-z x H j y E ωμ 可得 y H k k j E z z x ??-- =? ? 22 ωμ y H k k jk H z z z y ??-- =? ? 22 y E k k jk E z z z y ??-- =?? 22 y E k k j H z z x ??-= ?? 22 ωε 式中μεω=k 。 显然,平板波导是一种均匀传输线。然而,上式表明,该导波系统还可以导引其它形式的电磁波。也就是说,沿电磁波传输方向的纵向磁场可以产生横向电场和横向磁场,或沿电磁波传输方向的纵向电场可以产生横向磁场和横向电场。在传输方向仅存在纵向磁场的电磁波被称为横电波(简称TE 波)或磁波(简称H 波),在传输方向上仅存在纵向电场的电磁波被称为横磁波(简称TM 波)或电波(简称E 波)。因此,对于一个导波系统,可能存在三种波型,即TEM 波、TE 波和TM 波。 TE 波:由波动方程,得 0d d 2 222=+-? ?? z z z z H k H k y H 引入y 方向波数k y ,使其满足

μεω2222==+k k k z y 则纵向磁场分量为 y k B y k A H y y z cos sin +=? 进一步,得 )sin cos (y k B y k A k j E y y y x --=? ωμ 由图示边界条件知,当y =0和y =b 时,0=? x E ,代入上式,得 0=A , ? =0H B ,b n k y π = , n = 1,2,3,… k y 称为平板波导的特征值。所以,TE 波的电磁场为 z k z z y b n H z y H j 0e cos ),(-? ? π= z k x z y b n H n b j z y E j e -??ππ=sin ),(0ωμ z k z y z y b n H n bk j z y H j e -??ππ=sin ),(0 2 2221?? ? ??-=??? ??π-=b n b n k z λμεωμεω 需要注意的是,上式中,n ≠0。当n =0时,不存在电磁波。下图分别画出了n =1和n =2时的场图。 (a) TE 1 (n =1)波型 (b) TE 2 (n =2)波型 图 TE n 波型场图 从图示场图不难看出,在横向y 方向上电磁场呈驻波分布,n 为横向y 方向

矩形波导中电磁波截止波长的计算(1)(1)

矩形波导中电磁波截止波长的计算 周和伟 物理与电子信息工程学院 07物理学 07234030 [摘要]:本文从麦克斯韦方程组出发,从理论上推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,截止波长大多属于厘米量级,说明波导管只适用于传播微波。 [关键词]:矩形波导电磁波截止波长 1 绪言 波导是一种用来约束或引导电磁波传输的装置,矩形波导是指横截面是矩形的波导,一般是中空的金属管。也有其他形式的波导装置,如介质棒或由导电材料和介质材料组成的混合构件[1]。因此,在广义的定义下,波导不仅是指矩形中空金属管,同时也包括其他波导形式如矩形介质波导等,还包括双导线、同轴线、带状线、微带和镜像线、单根表面波传输线等。根据波导横截面的形状不同还有其他形状波导,如圆波导等。尽管已存在很多不同波导形式,且新的形式还不断出现,但直到目前,在实际应用中矩形波导是一种最主要的波导形式。由于无线信号传输媒介,具有传输频带宽、传输损耗小、可靠性高、抗干扰能力强等特点,因此波导技术在电子技术领域运用非常广泛,主要用于铁氧体结环形器,窄壁缝隙天线阵[2],速调管矩形波导窗,高精度矩形弯铜波导管加工研究【3】等器件设备的制造生产,以及在地铁信号系统中的应用都很广泛。为了加深对波导传输特性的理解,本文从麦克斯韦方程组出发,推导了电磁场遵循的波动方程和时谐电磁波遵循的波动方程;根据边值关系从理论上求出了时谐电磁波在矩形波导中的解,并对矩形波导管中传播的电磁波波解进行了讨论;计算了不同尺寸的矩形波导管的截止波长,发现其截止波长都在厘米量级,说明波导管只适用于传播微波。

矩形波导的设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的内导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国内外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带内的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面和矩形截面“空柱”中的电磁振动, 它们对应后来的矩形波导和矩波导, 并引进了

微波技术与天线实验2利用HFSS仿真分析矩形波导

实验3:利用HFSS仿真分析矩形波导 一、实验原理 矩形波导的结构(如图1),尺寸a×b, a>b,在矩形波导内传播的电磁波可分为TE模和TM模。 图1 矩形波导 1)TE模,0 = z E。 cos cos z z mn m x n y H H e a b γ ππ - = 2 cos sin x mn c z n m x n y E H b a b j k eγ πππ ωμ- = 2 sin cos z y mn c j m m x n y E H e k a a b γ ωμπππ - =- 2 sin cos z x mn c m m x n y H H e k a a b γ λπππ - = 2 cos sin z y mn c n m x n y H H e k b a b γ λπππ - = 其中, c k22 m n a b ππ ???? ? ? ???? +mn H是与激励源有关的待定常数。 2)TM模 Z H=0,由 Z E的边界条件同样可得无穷多个TM模。注意:对于 mn TM和 mn TE 模,m, n不能同时为零,否则全部的场分量为零。

mn TM 和mn TE 模具有相同的截止波数计算公式,即 c k (mn TM )=c k (mn TE ) = 所以,它们的截止波长c λ和截止频率c f 的计算公式也是一样的,即 c λ(mn TM )=c λ(mn TE )= 2 2 2?? ? ??+??? ??b n a m c f (mn TM )=c f (mn TE ) 对于给定的工作频率或波长,只有满足传播条件(f >c f 或λ

矩形波导中电磁波的传播模式

矩形波导中电磁波的传播模式 [摘要]人类进入21世纪的信息时代,电子与信息科学技术在飞速发展,要求人们制造各种高科技的仪器。在电磁学领域,能约束或引导电磁波能量定向传输的传输线或装置是导波系统。?矩形波导适用于频率较高的频段,但当频率足够高的时候,可以使多个波导模式同时工作,所以我们有必要对波导中的电磁波传播模式参数进行研究 关键词:矩形波导TM波TE波 矩形波导由良导体制作而成,一般为了提高导电性能和抗腐蚀性能,在波导内壁镀上一层高电导率的金或银,它是最常见的波导,许多波导元件都是由矩形波导构成的。为了简化分析,在讨论中我们 将波导的良导电体壁近似为理想导电壁。 由前面的讨论我们知道,矩形波导中不能 传输TEM 波,只能传输TE波和TM波。 设矩形波导宽为a,高为b, (a>b)沿Z轴 放置,如图(1)所示。下面分别求解矩形波 导中传输的TE波和TM波 仃M波 对于TM波,H z=O, E z可以表示为; E z(x, y,z) = E°(x, y)e*z(1) 式中E o(x,y)满足齐次亥姆霍兹方程,故有 ' 2E o(x,y) k C?°(x,y) = O ⑵ 采用分离变量法解此方程,在直角坐标系中,令 E°(x,y)=X(x)Y(y) ⑶

将(3)式代入(2)式中,并在等式两边同除以 X(χ)Y(y)得: XW Xiy) k 2 C x(χ) Y(y) 上式中第一项仅是X 的函数,第二项仅是Y 的函数,第三项是与X 、Y 无关的 常数,要使上式对任何 X 、Y 都成立,第一和第二项也应分别是常数,记为: X ''(X) k χJ X(X^ 0 ⑸ Y ''(y) k :Y(y 「0 ⑹ 2 2 2 k c = kχ + ky ⑺ 常微分方程(5)和(6)的通解为 Y(X)=C i cos(k χX) C 2Sin(k χX) Y(y) =C 3C0s(k y y) C 4Sin(k y y) 将(8)式和(9)式代入(3)式,再代入(1)式,就得到 E z 的通解为 E z (x, y, z) - C 1 cos(k χX) C 2 sin( k χX) IC 3 cos( k y y) C 4 sin( k y y) ^jkZZ 由矩形波导理想导电壁的边界条件 E = 0,确定上式中的几个常数,在4个理想 导电壁上,E Z 是切向分量,因此有: (1) 在X "的波导壁上,由E Z (X =O,y,z)=0得C 1 =0 ; (2) 在Y=0的波导壁上,由E z (x,y =0,z) =0得C^0; (3) 在X = a 的波导壁上,要使E z (x = a, y, z) = 0有Sin(k x a) = 0,从而必须有 k χa =m 二,其中m =1.,2,3^为整数,由此得 (4) 在 X = b 的波导壁上,要使 E z (x,y =b, z) =0有,Sin(k y b) =0 从而必定有 k y b = n 二,其中n =1.,2,3…也为整数,由此得 x ''(χ) X(χ) -k 这样就得到两个常微分议程和 Y ''(y) _ Y (y) 3个常数所满足的方程: (8) (9) k χ m? (10)

(整理)实验21微波波导管内电磁场分布测量.

实验2.1 微波波导管内的电磁场分布测量实验 §2.1.1实验目的 通过测量微波波导管内的电磁场分布,了解微波的产生、传播等基本特性,掌握微波测量的基本方法和技术。 §2.1.2实验原理与方法 一、微波与体效应微波振荡器 1、微波 按照国际电工委员会(IEC)的定义,微波(Microwaves)是“波长足够短,以致在发射和接收中能实际应用波导和谐振腔技术的电磁波”。实际应用中,微波通常指频率在300GHz到300MHz、波长范围1毫米到1米的电磁波,可分为分米波、厘米波、毫米波三个波段。 自上世纪40年代以来,微波科学技术表现出巨大的应用价值。例如, ? 雷达的诞生与成熟(1939一1945年); ? 微波波谱学与量子电子学的巨大进步(1944年-至今); ? 射电天文学大发展(1946—1971年); ? 微波能量利用及微波医学(1947年-至今); ? 卫星通信及卫星广播的建立与普及(1964年-至今); ? 遥感、气象监测等; ? 高功率微波武器。1984年美国国防部制定定向能发展计划(定向能包括高能激光、粒子束和高功率微波(HPM)三个方面)。“微波武器” 将在反卫星、反精确制导武器等方面发挥重要作用。 2、体效应微波振荡器 目前,常用的产生微波振荡器的有两大类,电真空器件与固体器件。其中,电真空器件主要包括微波电真空三极管、反射速调管、磁控管和返波管等;固体器件有晶体三极管、体效应二极管(也称耿氏二极管,由于体效应管中微波电流振荡现象是耿式(J.B Gunn)于1963年首先发现的)和雪崩二极管。由于固体器件具有体积小、重量轻、耗电省及便于集成等优点,近几十年来发展迅速,尤其在中小功率范围内它已经取代电真空器件。固体器件中,采用体效应振荡器制成的微波信号源具有噪声低、工作电压低和便于调谐的优点,目前在实验室中广泛采用该类微波信号源。 1)负阻效应 体效应管的工作原理是基于N型砷化镓(GaAs)的导电能谷——高能谷和低能谷结构,如图2.1-1所示,高低能谷间的能量差0.36eV。处于这两类能谷中的电子具有不同的有效质量和不同的迁移率。在常温下低电场时,大部分导电的电子处在电子迁移率高而有效质量较低的低能谷中,当随外加电场增大,许多电子被激发跃迁到高能谷中,在那里电子迁移率低而有效质量较大。因此,低电场时,导电率高,而在高电场时导电率低。这种效应的结果使电子迁移率急剧下降。这种随电场的增加而导致电流下降的现象称为负阻效应,如图2.1-2

有效折射率法求矩形波导色散曲线(附Matlab程序)知识讲解

有效折射率法求矩形波导色散曲线(附 M a t l a b程序)

光波导理论与技术第二次作业 题目:条形波导设计 姓名:王燕 学号: 201321010126 指导老师:陈开鑫 完成日期: 2014 年 03 月 19 日

一、题目 根据条形光波导折射率数据,条形波导结构如图1所示,分别针对宽高比d a :为1:1与1:2两种情形,设计: (1)满足单模与双模传输的波导尺寸范围;(需要给出色散曲线) (2)针对两种情况,选取你认为最佳的波导尺寸,计算对应的模折射率。(计算时假设上、下包层均很厚) 图1 条形波导横截面示意图 二、步骤 依题意知,条形波导参数为:5370.11=TE n ,5100.12=TE n ,444.13=TE n ; 5360.11=TM n ,5095.12=TM n ,444.13=TM n 。其中321n n n 、、分别代表芯心、 上包层、下包层相对于nm 1550=λ光波的折射率。 本设计采用有效折射率法作条形波导的归一化色散曲线,条形波导的横截面区域分割情况如图2所示:

图2 条形波导横截面分割图 对于x mn E 模式,x E 满足如下波动方程: [] 0),(2 2202 222=-+??+??eff x x n y x n k y E x E 由于导波模式在x 与y 方向上是非相干的,采用分离变量法后再引入)(220x N k 得到如下两个独立的波动方程: 0)()](),([) (22202 2=-+??y Y x N y x n k y y Y 0)(])([)(2 2202 2=-+??x X n x N k x x X eff 可以将条形波导等效成y 方向和x 方向受限的平板波导,先求y 方向受限平板波导的TE 模式,求得x N 后将其作为x 方向受限的平板波导的芯层折射率并求其TM 模式,得到的有效折射率eff n 就是整个条形波导的有效折射率。y 方向受限平板波导的TE 模式的色散方程为: 2 2124 222122222 1 0arctan arctan x x x x x N n n N N n n N n N n d k --+--+=-π (...2,1,0=n ) 其中1n 、2n 、4n 都是TE 模式的有效折射率从而x 方向受限平板波导的TM 模式的色散方程为: ??? ? ??--+???? ??--+=-2225 22522223 22 32 2 20arctan arctan eff x eff x eff x eff x eff x n N n n n N n N n n n N m n N a k π(...2,1,0=m )

矩形波导地设计讲解

矩形波导模式和场结构分析 第一章 绪论 1.1选题背景及意义 矩形波导(circular waveguide)简称为矩波导,是截面形状为矩形的长方形的金属管。若将同轴线的导线抽走,则在一定条件下,由外导体所包围的矩形空间也能传输电磁能量,这就是矩形波导。矩波导加工方便,具有损耗小和双极化特性,常用于要求双极化模的天线的馈线中,也广泛用作各种谐振腔、波长计,是一种较常用的规则金属波导。 矩波导有两类传输模式,即TM 模和TE 模。其中主要有三种常用模式,分别是主模TE 11模、矩对称TM 01模、低损耗的TE 01模。在不同工作模式下,截止波长、传输特性以及场分布不尽相同,同时,各种工作模式的用途也不相同。导模的场描述了电磁波在波导中的传输状态,可以通过电力线的疏密来表示场得强与弱。 本毕业课题是分析矩形波导中存在的模式、各种模式的场结构和传播特性,着重讨论11TE 、01TE 和01TM 三个常用模式,并利用MATLAB 和三维高频电磁仿真软件HFSS 可视化波导中11TE 、01TE 和01TM 三种模式电场和磁场波结构。 1.2国外研究概况及发展趋势 由于电磁场是以场的形态存在的物质,具有独特的研究方法,采取重叠的研究方法是其重要的特点,即只有理论分析、测量、计算机模拟的结果相互佐证,才可以认为是获得了正确可信的结论。时域有限差分法就是实现直接对电磁工程问题进行计算机模拟的基本方法。在近年的研究电磁问题中,许多学者对时域脉冲源的传播和响应进行了大量的研究,主要是描述物体在瞬态电磁源作用下的理论。另外,对于物体的电特性,理论上具有几乎所有的频率成分,但实际上,只有有限的频带的频率成分在区主要作用。 英国物理学家汤姆逊(电子的发现者) 在1893 年发表了一本论述麦克斯韦电磁理论的书,肯定了矩金属壁管子(即矩波导) 传输电磁波的可实现性, 预言波长可与矩柱直径相比拟, 这就是微波。他预言的矩波导传输, 直到1936 年才实现。汤姆逊成为历史上第一位预言波导的科学家。这证明科学预言可以大大早于技术的发展, 同时也表明了应用数学的威力。英国物理学家瑞利在1897 年发表了论文, 讨论矩形截面

矩形波导TE10的仿真设计与电磁场分析

实验一、 矩形波导TE10的仿真设计与电磁场分析 班级: 学号: 姓名: 报告日期:2012.6.29 一、 实验目的: 1. 熟悉HFSS 软件的使用; 2. 掌握导波场分析和求解方法,矩形波导TE 10基本设计方法; 3. 利用HFSS 软件进行电磁场分析,掌握导模场结构和管壁电流结构规律和特点。 二、 实验原理(略) 2.1基本导波理论 对由均匀填充介质的金属波导管建立如图1 所示坐标系, 设z 轴与波导的轴线相重合。由于波导的边界和尺寸沿轴向不变, 故称为规则金属波导。 图1 矩形波导结构 本节采用直角坐标系来分析,并假设波导是无限长的,且波是沿着z 方向无衰减地传输,由电磁场理论, 对无源自由空间电场E 和磁场H 满足以下矢量亥姆霍茨方程: 00(,)(,)j z j z E E x y e H H x y e ββ--?=??=?? 式1 式中β为波导轴向的波数,E 0(x,y)和H 0(x,y)分别为电场和磁场的复振幅,它仅是坐标x 和y 的函数。以电场为例子,将上式代入亥姆霍兹方程22 0E k E ?+= ,并在直角坐标内展开, 即有由麦克斯韦方程组的两个旋度式,可以得到场的横向分量和纵向分量的关系式: 2222()() 2 ()() z z x c z z y c z z x c z z y c H E j E k y x H E j E k x y H E j H k x y H E j H k y x ωμβωμββωεβωε???=- +? ??? ??? =-? ??? ???? =-+? ??? ???=-+????式 k c 表示电磁波在与传播方向相垂直的平面上的波数,如果导波沿z 方向传播,则 222 c x y k k k =+;k 为自由空间中同频率的电磁波的波数。 根据两个纵向场分量Ez 和Hz 的存在与否,对波导中的电磁波进行分类。可将波导中的电磁波分成三类:

相关主题
文本预览
相关文档 最新文档