当前位置:文档之家› SRT-基于个体优势遗传算法的水稻生长模型参数优化研究

SRT-基于个体优势遗传算法的水稻生长模型参数优化研究

SRT-基于个体优势遗传算法的水稻生长模型参数优化研究
SRT-基于个体优势遗传算法的水稻生长模型参数优化研究

国家大学生创新性实验计划

项目申请书

项目名称: 基于个体优势遗传算法的水稻生长模型参数优化研究

申请者:

学院:

专业:

指导教师: 职称:

20年月日

项目研究内容摘要

将智能优化算法与水稻生长模型耦合可以简化模型参数估计过程,实现模型参数的自动率定。针对遗传算法后期收敛速度慢等问题,已提出了个体优势遗传算法(IAGA),并成功应用于水稻生育期子模型的遗传参数估算研究,提高了模型参数自动估测精度和计算效率。但随着水稻模型模拟过程的扩展,模拟过程复杂度变高,待估算遗传参数和目标变量个数增加,有必要进一步研究和验证IAGA算法对模拟过程和多目标优化的适应性。

本研究以RiceGrow水稻生长模型为应用对象,研究多优化目标的适应度函数权重范围,完善IAGA算法与水稻生长模型耦合策略;通过多地点、多品种、多目标的组合优化实验,验证个体优势遗传算法对水稻生长模拟过程和多目标优化的收敛性与稳定性。研制水稻生长模型参数优化软件系统,进一步提高RiceGrow水稻生长模型参数的自动率定性能。

二、立论依据

(包括项目的研究意义、现状分析,并附主要参考文献及出处)

研究意义:

水稻生长模型是以水稻生长发育内在规律为基础,对水稻生理过程与环境和管理技术之间的关系加以理论概括和量化分析的数学模型,是数字水稻研究与发展的关键技术[1]。随着水稻生长模型对水稻生长与环境变化规律的不断揭示,正确并快速估算模型遗传参数有助于模型检验与评价。目前常用的模型参数的确定方法主要有手工试错法[2]、循环迭代法[3-5]等数学方法以及智能优化方法[6]。手工试错法费时费力,对农学知识和经验要求较高。循环迭代法存在“维数灾”问题,搜索效率不高,求解精度和步长的取值有关。

作物模型参数优化的实质是通过比较模型模拟值与观测值之间的误差,寻找一组最优解,属于非线性、多参数组合优化问题。智能优化算法是一类启发式的全局搜索算法,具有自组织、自学习等特征,可以在一定迭代次数内找到最优解或者近似最优解,在解决组合优化问题上具有一定优势。因此,研究如何利用改进型智能优化算法估算作物模型参数,明确遗传算法与作物生长模型的耦合方法,简化模型参数估计过程,实现模型参数的自动率定,具有较强的理论研究和实际应用价值。

现状分析:

水稻生长模型的应用与评价必须以模型参数的准确性和可靠性为前提。由于模型复杂性和机理性的不断增强,使得模型遗传参数的估算具有一定的困难。至今为止,与水稻生长模型相匹配的参数优化方法仍不完善。华东师范大学的戴春妮[7-8]嵌套了两级GA,提出了多层次物种竞争消亡算法,引入了小生境进化思想和分等级公平竞争原则,更好地保持了个体多样性,提高了温室黄瓜生长模型的参数估算能力。刘铁梅[9]使用遗传模拟退火算法快速获取了大麦叶面积指数模拟模型参数。任建强[10]与靳华安[11]利用复合形混合演化算法同化遥感数据,获得了区域尺度上作物模型参数。本研究课题组充分利用精英个体信息改进遗传算法,提出了个体优势遗传算法(Individual Advantages Genetic Algorithm,IAGA)。

该算法在传统遗传算法的基础上引入个体优化算子,并改进了变异算子及种群更新策略。以完全嵌入方式耦合RiceGrow和ORYZA2000水稻生育期模型,通过实验验证该算法应用到水稻生育期模型遗传参数估算中的有效性,实现了生育期模型参数的自动率定[12]。然而,水稻生长模型在模拟过程中涉及复杂的植物生理过程。生育期模拟过程是水稻潜在生产过程中的一个子环节。随着水稻模型模拟过程的扩展,模拟过程复杂度变大,遗传参数个数增加,目标变量个数增加,有必要进一步研究和验证IAGA算法对模拟过程和多目标优化的适应性问题,提出更加具有广普性的IAGA算法与水稻生长模型耦合策略,促进IAGA算法在作物生长模拟领域的应用。

参考文献:

[1] 曹卫星,朱艳,田永超等.数字农作技术研究的若干研究进展与发展方向.中国农业科学,2006,39(2):281-288.

[2] 房全孝.根系水质模型中土壤与作物参数优化及其不确定性评价.农业工程学报,2012,28(10):118-123.

[3] 陈雷.水稻生产力的基因型与播期效应模拟研究[D].南京:南京农业大学,2011.

[4] 汤亮,朱艳等.油菜生育期模拟模型研究[J].中国农业科学,2008,41(8).

[5] 史春林,冯慧慧,金之庆等.水稻发育期模型的比较[J].中国水稻科学,2010,24(3):303-308.

[6] 王凌.智能算法及其应用[M].北京:清华大学出版社,2001.

[7] Chunni Dai, Meng Yao. Parameter optimization for growth model of greenhouse crop using genetic algorithms [J]. Applied Soft Computing,2009:13-19.

[8] 戴春妮,姚萌等.一种新的进化计算算法模型——种群竞争消亡算法[J].计算机应用,2005,5(1):224-225.

[9] 刘铁梅,王燕,邹薇等.大麦叶面积指数模拟模型.应用生态学报,2010, 21(1):121-128.

[10] 任建强,陈仲新,唐华俊等.基于遥感信息与作物生长模型的区域作物单产模拟.农业工程学报,2011,27(8):257-264.

[11] 靳华安,王锦地,柏延臣等.基于作物生长模型和遥感数据同化的区域玉米产量估算.农业工程学报,2012,28(6):162-173.

[12] 庄嘉祥,姜海燕,刘蕾蕾等.基于个体优势遗传算法的水稻生育期模型参数优化[J].中国农业科学.(已录用)

三、研究方案

1. 项目研究的目标、内容和拟解决的关键问题

研究目标:

以个体优势遗传算法(IAGA)为基础,RiceGrow水稻生长模型的遗传参数估算为应用目标,通过多地点、多品种、多模拟过程组合的实验研究,明确影响IAGA算法应用的稳定性与收敛性因素,完善基于个体优势遗传算法的水稻生长模型参数优化方法,设计开发水稻生长模型参数优化软件系统,实现水稻生长模型遗传参数估算自动化。

研究内容:

(1)基于IAGA算法的水稻生长模型参数优化方法研究。

确定多目标变量权值范围,设计目标函数和适应度函数形式;

确定IAGA算法的编码方式。

(2)水稻生长模拟过程的扩展对模型参数优化效果的影响研究。

①在水稻生育期模拟过程基础上,增加水稻光合生产子过程,利用

物候期和生物量为优化目标变量,确定模型遗传参数收敛性。

②在前两个子模型的基础上,增加干物质分配模拟子过程,利用物

候期、生物量和产量为优化目标变量,确定模型遗传参数收敛性。

(3)基于IAGA的遗传参数优化稳定性研究。

确定参数调参的实测数据量大小以及不同年份的调参数据组合对模型

参数优化效果的影响。

(4)设计开发基于个体优势遗传算法的水稻生长模型参数优化软件系统,实现多格式数据文件的录入与管理,遗传参数和调参日志的保存与查询,

遗传参数自动估算,模型数据的图表查询等功能。

拟解决的关键问题:

(1)明确多目标变量权值范围,设计目标函数和适应度函数形式。

(2)确定影响RiceGrow水稻生长模型参数收敛性和稳定性的影响因素。

2. 拟采取的研究方法、技术路线、实验方案及可行性分析

研究方法:

(1)阅读相关文献、书籍以及学术论文等。 (2)收集实验品种和多地点气象数据。

(3)以RiceGrow 水稻生长模型为应用对象,对IAGA 算法进行大量的适应性

试验。

技术路线:

实验设计:

实验一:水稻生长模拟过程的扩展对模型参数优化效果的影响

① 在水稻生育期模拟过程基础上,增加水稻光合生产子过程。从每个水稻品 种六年实际观测数据中选取三年数据作为模型调参数据,以物候期和生物量为优化目标变量,利用IAGA 算法进行数据拟合获得RiceGrow 水稻生长模型参数,使用剩余三年实际观测数据验证模型参数的收敛性。

② 在前两个子模型的基础上,增加干物质分配模拟子过程,利用物候期、生

运行RiceGrow 水稻生长模型

模型参数适应性试验

开发基于IAGA 算法的水稻生长模型 参数优化软件系统

驱动数据

确定模型编码方式

确定应用于模型的目标函数和适应度函数

RiceGrow 水稻生长模型目标变量权值确定

查阅文献资料

多地点气象

实现品种早熟性、光周期敏感性、温度

敏感性、最大光合速率、LAI 相对生长 速率等遗传参数估算 多品种 物候期、生物量和产量 在水稻生育期模型的基础上增加光和生产子模型和干物质分配子模型

物量和产量为优化目标变量,重复①中的实验,验证模型参数的收敛性。

实验二:基于IAGA的水稻潜在生长模拟遗传参数优化稳定性研究

①为检验IAGA算法在不同调参数据量下拟合效果,在RiceGrow水稻生长模型下,分别取每个水稻品种的三年和六年观测数据作为调参数据,验证模型参数的稳定性。

②为了比较不同调参数据组合选取对模型参数结果的影响,设置了3个不同调参数据组合的对照试验。

组合1:前三年数据作为调参数据;

组合2:从第一年开始隔年选取调参数据;

组合3:隔年选取调参数据,而且调参数据需要包含全生长期天数最大值和最小值。

选取调参数据进行拟合试验获得模型参数,用剩余实测数据进行验证试验,验证模型参数的稳定性。

可行性分析:

(1)本项目应用对象是国家信息农业工程中心研制的RiceGrow水稻生长模型,该模型国内领先。可以获得完整代码和分析资料,为实验提供了基

础素材。

(2)个体优势遗传算法已成功应用到RiceGrow水稻生育期子模型,较其它遗传算法表现出强大的优势与潜力。

(3)项目指导教师姜海燕,具有农业信息学和计算机应用技术交叉学科背景,曾主持过多个国家级项目和省级项目。曾指导国家、省级SRT项目,取得了优秀成绩,为本研究深入开展奠定良好的工作基础与学术积累。

3. 本项目的创新之处

(1)完善个体优势遗传算法与水稻生长模型耦合的遗传参数优化方法。(2)研制了基于个体优势遗传算法的水稻生长模型参数优化软件系统。

4. 项目研究计划及预期进展

(1)2013年4月至2013年6月

系统学习个体优势遗传算法以及该算法与水稻生育期子模型的耦合

方法与关键环节。

(2)2013年7月至2013年9月

确定水稻生长模型参数范围,目标函数及适应度函数。

(3)2013年10月至2013年12月

利用个体优势遗传算法,对RiceGrow水稻生长模型参数进行适应性试

验。

(4)2014年1月至2014年 3月

设计开发基于个体优势遗传算法的水稻生长模型参数优化软件系统。(5)2014年4月

撰写研究报告,准备结题。

5. 预期研究成果

(1)完善个体优势遗传算法与水稻生长模型耦合的遗传参数优化方法。(2)开发基于个体优势遗传算法的水稻生长模型参数优化的软件系统。(3)撰写项目技术报告和投稿论文。

四、研究基础

1. 与本项目有关的研究工作积累和已有的研究工作成绩

(1)项目指导教师姜海燕,博士,现为南京农业大学计算机科学与技术系教授,主要从事作物系统模拟与智能系统、智能计算方面的教学与科研工作。研究小组已提出个体优势遗传算法,在作物生长模型系统开发技术方面有丰富经验。曾主持多个国家级、省级项目;指导大学生完成国家级、省级SRT项目,并取得了骄人的成绩,为本研究深入开展奠定良好的工作基础与学术积累。(2)本项目依托国家信息农业工程中心已研制的RiceGrow模型,该模型国内领先,分析资料完备。

(3)IAGA算法已应用于水稻生育期子模型的遗传参数调试中,已在《中国农业科学》上发表研究论文1篇。

2. 已具备的条件、尚缺少的条件和拟解决的途径(包括利用教学实验室、科研实验室和实习基地等的计划与落实情况)

(1)指导教师研究小组依据有IAGA算法和应用到生育期子模型的程序代码。(2)国家信息农业工程中心已具有完备的RiceGrow水稻生长模型算法。(3)本项目组成员品学兼优,GPA名列前茅,对高等数学,C语言,数据结构等专业课程都很精通,并对本研究项目报以极大的兴趣。

五、经费预算

支出科目金额

(元)

计算根据及理由

带GPU的PC服务器9000 利用优化算法调参的计算量大,计算时间长,需要有带有GPU的计算机调参试验,需购买内

含图形加速卡的计算设备

差旅费3000 为获得准确可靠的试验调参数据,需收集多地

点气象和农学数据资料文献费3000 技术资料查询、论文版面费

实验数据费4000 获取实验数据和测试数据分析费用

其它1000 移动存储设备(用于大量试验数据拷贝和分

发)、打印纸、文具、耗材等

合计20000

注:开支范围详见校教字(2003)134号《南京农业大学SRT计划项目管理办法》文件的第十三条。

六、审查意见

指导

教师

意见

指导教师签名:年月日

学院

意见

负责人签名、公章:年月日

学校

意见

负责人签名、公章:年月日备注

七、申请者承诺

我保证上述填报内容的真实性。如果获得资助,我与本项目组成员将严格遵守学校的有关规定,在不影响课程学习的同时,保证项目研究工作的时间,并按计划认真开展研究工作,在项目研究过程中或结束时,接受学校对本项目的中期检查和结题验收,并按时提交工作总结和结题报告。

申请者(签名):

年月日

八、指导教师承诺

本人郑重承诺,愿意作为该“国家大学生创新性实验计划”项目的指导教师,保证认真负责审阅项目内容,全程指导学生进行实践创新性实验,组织学生讨论交流及审查学生的研究结果,保证本项目的顺利实施及达到预期成果。

指导教师(签名):

年月日

既要通过参数优化改进模型-又要防止对参数优化过度拟合

既要通过参数优化改进模型,又要防止对参数优化过度拟合 A参数高原与参数孤岛 参数优化中一个重要的原则就是要争取参数高原而不是参数孤岛。所谓参数高原,是指存在着一个较宽的参数范围,模型在这个参数范围内都能取得较好的效果,一般会以高原的中心形成近似正态分布状。而所谓参数孤岛,是指只有在参数值处于某个很小的范围内时,模型才有较好表现,而当参数偏离该值时,模型的表现便会显著变差。 假设某交易模型内有两个参数,分别为参数1和参数2,当对两个参数进行遍历测试后,得到一张三维的绩效图。好的参数分布应当是参数高原示意图,即使当参数的设置有所偏移,模型的获利绩效依然能够得到保证。这样的参数因稳定性强,可以使得模型在未来实战中遇到各类行情时,具有较强的因应能力。但如果遍历参数后的绩效结果如参数孤岛示意图,当参数发生小的偏移时,模型的获利绩效就发生较大变动,那么这样的参数因适应性能差,往往难以应对实际交易中变化多端的市场环境。 一般来说,如果附近参数系统的性能远差于最优参数的性能,那么这个最优参数有可能是一个过度拟和的结果,在数学上可以认为是奇点解,而不是所要寻找的极大值解。从数学角度来说,奇点是不稳定的,在未来的不确定行情中,一旦市场特征发生变化,最优参数可

能会变为最差参数。 过度拟合与选取的样本有关系,如果选取的样本不能代表市场总体特征,只是为了使测试结果达到正的期望值而去调整参数,这种做法无疑是自欺欺人,所得到的参数值是过度拟合的无效参数值。例如,通过分析参数过度拟合,交易模型分别在数值35和63出现了收益率突增现象,如果模型中的相应指标选用35和63做参数,则模型的收益看上去很完美,但实际上却是典型的参数孤岛效应。 过度拟合与参数优化的主要矛盾在于,模型参数优化得到的最优参数只是建立在已经发生过的历史数据样本上,而未来的行情是动态变化的,与历史行情相比既有相似性,也有变异性。模型设计者可以找到模型在历史上表现最好的参数,但是这个参数在未来模型实际应用中未必表现最好,更有甚者历史上表现最好的模型参数,在未来模型实战中可能是表现很糟糕的参数,甚至带来大幅亏损。比如,筛选出了一个能抓住历史上一波大行情的一个参数,但设置这样参数值的模型,并不意味着模型在未来实战中也能有如此好的表现,这个历史上较佳的参数值可能在未来模型的应用中没有起到任何帮助。 此外,参数高原与参数孤岛往往还与交易次数存在较大关系。如果模型的交易次数较少,往往能找到一个合适的参数点,使得模型在这几次交易中都盈利,这种参数优化后的模型获利体现出较强的偶然性。如果模型的交易次数较多,模型获利的偶然性就会下降,更多地体现出获利的必然性和规律性,也就会存在一个参数高原。而这种参

快递员配送路线优化模型(完整资料).doc

【最新整理,下载后即可编辑】 快递员配送路线优化模型 摘要 如今,随着网上购物的流行,快递物流行业在面临机遇的同时也需要不断迎接新的挑战。如何能够提高物流公司的配送效率并降低配送过程中的成本,已成为急需我们解决的一个问题。下面,本文将针对某公司的一名配送员在配送货物过程中遇到的三个问题进行讨论及解答。 对于问题一,由于快递员的平均速度及在各配送点停留的时间已知,故可将最短时间转换为最短路程。在此首先通过Floyd 求最短路的算法,利用Matlab程序将仓库点和所有配送点间两两的最短距离求解出来,将出发点与配送点结合起来构造完备加权图,由完备加权图确定初始H圈,列出该初始H圈加点序的距离矩阵,然后使用二边逐次修正法对矩阵进行翻转,可以求得近似最优解的距离矩阵,从而确定近似的最佳哈密尔顿圈,即最佳配送方案。 对于问题二,依旧可以将时间问题转化为距离问题。利用问题一中所建立的模型,加入一个新的时间限制条件,即可求解出满足条件的最佳路线。 对于问题三,送货员因为快件载重和体积的限制,至少需要三次才能将快件送达。所以需要对100件快件分区,即将50个配送点分成三组。利用距离矩阵寻找两两之间的最短距离是50个配送点中最大的三组最短距离的三个点,以此三点为基点按照准则划分配送点。

关键字:Floyd算法距离矩阵哈密尔顿圈二边逐次修正法矩阵翻转 问题重述 某公司现有一配送员,,从配送仓库出发,要将100件快件送到其负责的50个配送点。现在各配送点及仓库坐标已知,货物信息、配送员所承载重物的最大体积和重量、配送员行驶的平均速度已知。 问题一:配送员将前30号快件送到并返回,设计最佳的配送方案,使得路程最短。 问题二:该派送员从上午8:00开始配送,要求前30号快件在指定时间前送到,设计最佳的配送方案。 问题三:不考虑所有快件送达的时间限制,现将100件快件全部送到并返回。设计最佳的配送方案。配送员受快件重量和体积的限制,需中途返回取快件,不考虑休息时间。 符号说明 D:n个矩阵 n V:各个顶点的集合 E:各边的集合 e:每一条边 ij w:边的权 ()e G:加权无向图 , v v:定点 i j

MATLAB实验遗传算法和优化设计

实验六 遗传算法与优化设计 一、实验目的 1. 了解遗传算法的基本原理和基本操作(选择、交叉、变异); 2. 学习使用Matlab 中的遗传算法工具箱(gatool)来解决优化设计问题; 二、实验原理及遗传算法工具箱介绍 1. 一个优化设计例子 图1所示是用于传输微波信号的微带线(电极)的横截面结构示意图,上下两根黑条分别代表上电极和下电极,一般下电极接地,上电极接输入信号,电极之间是介质(如空气,陶瓷等)。微带电极的结构参数如图所示,W 、t 分别是上电极的宽度和厚度,D 是上下电极间距。当微波信号在微带线中传输时,由于趋肤效应,微带线中的电流集中在电极的表面,会产生较大的欧姆损耗。根据微带传输线理论,高频工作状态下(假定信号频率1GHz ),电极的欧姆损耗可以写成(简单起见,不考虑电极厚度造成电极宽度的增加): 图1 微带线横截面结构以及场分布示意图 {} 28.6821ln 5020.942ln 20.942S W R W D D D t D W D D W W t D W W D e D D παπππ=+++-+++?????? ? ??? ??????????? ??????? (1) 其中πρμ0=S R 为金属的表面电阻率, ρ为电阻率。可见电极的结构参数影响着电极损耗,通过合理设计这些参数可以使电极的欧姆损耗做到最小,这就是所谓的最优化问题或者称为规划设计问题。此处设计变量有3个:W 、D 、t ,它们组成决策向量[W, D ,t ] T ,待优化函数(,,)W D t α称为目标函数。 上述优化设计问题可以抽象为数学描述: ()()min .. 0,1,2,...,j f X s t g X j p ????≤=? (2)

遗传算法与优化问题(重要,有代码)

实验十遗传算法与优化问题 一、问题背景与实验目的 遗传算法(Genetic Algorithm—GA),是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,它是由美国Michigan大学的J.Holland教授于1975年首先提出的.遗传算法作为一种新的全局优化搜索算法,以其简单通用、鲁棒性强、适于并行处理及应用范围广等显著特点,奠定了它作为21世纪关键智能计算之一的地位. 本实验将首先介绍一下遗传算法的基本理论,然后用其解决几个简单的函数最值问题,使读者能够学会利用遗传算法进行初步的优化计算.1.遗传算法的基本原理 遗传算法的基本思想正是基于模仿生物界遗传学的遗传过程.它把问题的参数用基因代表,把问题的解用染色体代表(在计算机里用二进制码表示),从而得到一个由具有不同染色体的个体组成的群体.这个群体在问题特定的环境里生存竞争,适者有最好的机会生存和产生后代.后代随机化地继承了父代的最好特征,并也在生存环境的控制支配下继续这一过程.群体的染色体都将逐渐适应环境,不断进化,最后收敛到一族最适应环境的类似个体,即得到问题最优的解.值得注意的一点是,现在的遗传算法是受生物进化论学说的启发提出的,这种学说对我们用计算机解决复杂问题很有用,而它本身是否完全正确并不重要(目前生物界对此学说尚有争议). (1)遗传算法中的生物遗传学概念 由于遗传算法是由进化论和遗传学机理而产生的直接搜索优化方法;故而在这个算法中要用到各种进化和遗传学的概念. 首先给出遗传学概念、遗传算法概念和相应的数学概念三者之间的对应关系.这些概念如下: 序号遗传学概念遗传算法概念数学概念 1 个体要处理的基本对象、结构也就是可行解 2 群体个体的集合被选定的一组可行解 3 染色体个体的表现形式可行解的编码 4 基因染色体中的元素编码中的元素 5 基因位某一基因在染色体中的位置元素在编码中的位置 6 适应值个体对于环境的适应程度, 或在环境压力下的生存能力可行解所对应的适应函数值 7 种群被选定的一组染色体或个体根据入选概率定出的一组 可行解 8 选择从群体中选择优胜的个体, 淘汰劣质个体的操作保留或复制适应值大的可行解,去掉小的可行解 9 交叉一组染色体上对应基因段的 交换根据交叉原则产生的一组新解 10 交叉概率染色体对应基因段交换的概 率(可能性大小)闭区间[0,1]上的一个值,一般为0.65~0.90 11 变异染色体水平上基因变化编码的某些元素被改变

1-切削参数优化模型的建立

切削参数优化模型的建立 1.1 优化变量确定 在数控切削加工中,切削速度c v 、进给量f 和切削深度sp a 称为切削用量三 要素[11]。这三要素是主要的优化变量,但由于切削深度对刀具耐磨度的影响较切削速度和进给量要小,而且在车削加工时,切削深度可根据工件余量和具体的加工要求来确定,本文视为已知量,不进行优化。因此,优化变量主要为切削速度v c 和进给量f 。 1.2 优化目标函数 本文主要从高效(加工时间短)、低碳(碳排放少)两大方面对加工过程进行优化,优化目标为时间和碳排放。 1.2.1 切削加工过程时间函数 一个工序加工过程的加工工时包括切削时间、换刀时间、工序辅助时间。最短加工工时的切削用量可实现最高的生产效率(高效)。加工过程时间函数的数学模型可表示为[13] ot t T m t ct t m t P T +?+= (1) sp V sp V m fa d L nfa L c 01000v t π?=?= (2) 泰勒广义刀具的耐用度计算公式为[14] z sp T a C T y c x f v = (3) 式中,m t 是工序切削时间,ct t 是换刀一次所用时间,ot t 是除换刀外其他辅助时间,T 是刀具寿命,W L 是加工长度,Δ是加工余量,n 是主轴转速,0d 是工件直径,c v 是切削速度,f 是进给量,sp a 是切削深度,T C 是与切削条件有关的常数,x,y,z 是刀具寿命系数,则加工过程时间函数为 ot T z sp y x c w ct sp c w P t C a f v L d t fa v L T +?+?=---10001000d 11100ππ (4) 1.2.2 切削加工过程碳排放函数 切削加工过程的碳排放主要包括加工过程消耗原材料引起的碳排放m C 、消耗电能引起的碳排放e C 、加工过程中所用辅助物料(如刀具使用产生的碳排放t C 和切削液使用产生的碳排放C C )以及由加工过程产生切屑的后期处理引起的碳排放S C ,如图1所示,

运输优化模型参考

运输 问题 摘要 本文根据运输公司提供的提货点到各个客户点的路程数据,利用线性规划的优化方法与动态优化模型——最短路径问题进行求解,得到相关问题的模型。 针对问题一 ,我们采用Dijkstra 算法,将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为: 109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文);最后再进一步优化所建的线性规划模型,为运输公 针对问题四,我们首先用Dijkstra 算法确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理 该方案得到运输总费用是645元。 关键字:Dijkstra 算法, prim 算法, 哈密顿回路 问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i 个客户

4遗传算法与函数优化

第四章遗传算法与函数优化 4.1 研究函数优化的必要性: 首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。 其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。 4.2 评价遗传算法性能的常用测试函数 在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括: ●连续函数或离散函数; ●凹函数或凸函数; ●二次函数或非二次函数; ●低维函数或高维函数; ●确定性函数或随机性函数; ●单峰值函数或多峰值函数,等等。 下面是一些在评价遗传算法性能时经常用到的测试函数: (1)De Jong函数F1: 这是一个简单的平方和函数,只有一个极小点f1(0, 0, 0)=0。

(2)De Jong 函数F2: 这是一个二维函数,它具有一个全局极小点f 2(1,1) = 0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。 (3)De Jong 函数F3: 这是一个不连续函数,对于]0.5,12.5[--∈i x 区域内的每一个点,它都取全局极小值 30),,,,(543213-=x x x x x f 。

程序化参数优化问题

如何解决在程序化交易中参数优化的问题程序化交易的书籍在市面上层出不穷,大多数打算进行程序化交易的朋友都会去阅读一两本或者更多。我敢肯定通过阅读大家会发现,这些书里面每一本都会提到交易模型的参数优化的问题。这是由于现代的计算机处理技术发展的同时也带来了一些困惑,程序化交易可以说是建立在计算机和通讯技术的基础之上的一种交易手段,如果没有这些基础设施,那么程序化交易也就不能存在。正是有了可以高速运行的CPU才使我们可以对参数进行优化。光凭技术手段并不足以解决所有交易的问题,这就是为什么说交易是一门艺术之所在,而我们使用机械的交易方法是为了尽可能的避免人为的判断和情绪对交易的不良影响,在我们没有形成自己的一套交易体系之前通过机械的方法来进行交易无疑可以少走很多弯路,把时间和金钱留给我们用来积累更多的经验,让我们首先确保在市场中生存,再去追求如何使交易变成艺术。因此作为一个力求以科学和规律的方法解决交易的问题的人,我试图通过本文来解决大家在程序化交易中参数优化这个矛盾的问题。 什么是参数优化 在这里首先我们介绍一下什么是参数优化,以便一些刚刚接触程序化交易的朋友阅读本文,已经了解这方面知识的朋友可以掠过本段。 对于一些模型来说会有一些参数,这些参数设置的主要含义可能是为模型提供一个周期,举个例子来说象n日均线上穿N日均线(n为短周期均线参数,N为长周期均线参数,一般短周期的移动平均要比长周期的变化要快,所以我们通过这两个不同周期的均线来制定交易计划),n和N参数的意义就是指定周期,一般来说参数的意义都与时间有关系(周期),但也有其他的用途。参数优化实际上就是利用计算机的处理能

路径成本优化模型

第 3 章港口集卡路径成本优化模型 3.1 港口集卡作业模式分析 3.1.1面向“作业路”的传统集卡作业模式 目前,我国大部分港口采用龙门吊装卸工艺,其中岸桥、集卡、龙门吊是完成集装箱装卸的主要机械设备,岸桥负责对到港的船舶进行装卸作业,龙门吊对堆场的集装箱进行进出场作业,集卡衔接码头前沿岸桥和后方堆场龙门吊的之间工作,是港口集装箱进口、出口、转堆作业过程中的重要运输设备,其主要在岸桥与堆场之间及堆场各箱区之间作水平运输。这些集装箱装卸设备只有相互协调、相互配合才能够保证集装箱装卸作业的顺利进行,否则会出现装卸设备等待现象和拥堵现象,降低设备资源的利用率和港口的物流能力。 但大部分港口目前仍采用传统的集卡作业模式,即面向“作业路” 的集卡作业模式。该模式可描述为:港口工作人员根据装卸集装箱的业务量配置岸桥,且按照一定的比例为每台岸桥分配一定数量的集卡,从而形成由几辆集卡所组成的一组固定集卡为某一台特定的岸桥服务。在整个集装箱的装卸作业过程中,集卡在预先设定的固定路线上行驶,岸桥、集卡和龙门吊形成固定作业线路运载集装箱。在集装箱的进口作业中,首先由岸桥将船舶上需进口的集装箱放到等待卸船的空集卡上,然后装载进口集装箱的集卡沿固定路线行驶,并到指定的堆场箱区卸下集装箱,最后空车行驶到岸桥下等待下一个卸船作业。同样在装船作业中,首先龙门吊将堆场箱区内的出口集装箱放在空集卡上,然后由集卡运输出口集装箱行驶到岸桥下等待装船作业,装船结束后集卡再空载行驶到堆场箱区进行下一个装船作业[56, 70]。 一般面向“作业路”的集卡作业模式会根据岸桥的配置数量安排需要服务的集卡数量,通常一台岸桥需要配置5~6 辆集卡,则所需集卡的总数量为装船和卸船岸桥总数的5 倍或6 倍[82]。这种面向“作业路”的传统集卡作业模式下司机操作简单、便于管理、沿固定作业路线不易出错,但是随着信息技术的进步、港口物流业的发展,这一模式逐渐暴露出缺点,阻碍港口物流效率的提高。其存在的弊端表现在以下几个方面:首先,如果某条作业路上集卡对岸桥的配置量是个已知的固定值,若集卡配置量少可能会导致岸桥等待集卡的现象,降低码头前沿的作业效率;相反,若集卡配置量过多又会产生资源的浪费、资源利用率低下;此作业路下可能会出现集卡排队等待的现象,而此时其它作业路可能集卡缺少,造成整个港口集卡资源的不合理利用,影响港口的整体运作效率。其次,在面向“作业路”的作业模式下,集卡为某一特定的岸桥服务,当集卡

数学建模路线优化问题

选路的优化模型 摘要: 本题是一个有深刻背景的NPC问题,文章分析了分组回路的拓扑结构,并构造了多个模型,从多个侧面对具体问题进行求解。最短树结构模型给出了局部寻优的准则算法模型体现了由简到繁,确保较优的思想而三个层次分明的表述模型证明了这一类问题共有的性质。在此基础上我们的结果也是比较令人满意的。如对第一题给出了总长为599.9,单项长为216的分组,第二题给出了至少分四组的证明。最后,我们还谈到了模型的优缺点及推广思想。 一、问题描述 “水大无情,人命关天”为考察灾情,县领导决定派人及早将各乡(镇),村巡视一遍。巡视路线为从县政府所在地出发,走遍各乡(镇),村又回到县政府所在地的路线。 1.若分三组巡视,试设计总路程最短且各组尽可能均衡的巡视路线。 2.假定巡视人员在各乡(镇)停留时间为T=2小时,在各村停留时间为t =1 小时, 汽车行驶速度为V=35公里/时,要在24小时内巡视完,至少分成几组;给出这 种分组下你认为最佳的巡视路线。 3.上述关于T,t和V的假定下,如果巡视人员足够多,完成巡视的最短时间是多 少?给出在这种最短时间完成巡视的要求下,你认为最佳的巡视路线。 4.巡视组数已定(如三组)要求尽快完成巡视,讨论T,t和V改变时最佳路线的 影响(图见附录)。 二、问题假设 1、乡(镇)村只考察一次,多次经过时只计算一次停留时间。 2、非本县村不限制通过。 3、汽车的行驶速度始终一致。 三、符号说明 第i 人走的回路Ti=vv i(i) v2(i)v n(i) Ti=00表示第i人在0点没移动 四、模型建立

在这一节里,我们将提出若干个模型及其特点分析,不涉及对题目的求解。 最简树结构模型 在这个模型中我们依靠利用最短树的特殊结构所给出的准则,进行局部寻优,在一个不大的图里,我们较易得到较优解。 (a)分片 准则1利用最短树的长度可大致的估算出路程长,在具体操作中,各片中 的最短路程长度不宜相差太大。 准则 2 尽可能将最短树连成一个回路,这可保证局部上路程是较短的。 (b)片内调整 a2 a3 a4 a5 a6假设a3 a4有路相连 细准1对于右图的最短树结构,最好的走法是a 若a3 a4 进去重复走的话,它与上述的走法路程差w(a3, a2)+w(a2 ,a5)+w(a4, a5)—w(a3, a4)。由两点间最小原则上式是大于0的优劣可见 细准2若有如图所示结构,一般思想是:将中间树枝上的点串到两旁树枝,以便连成回路。 五、模型求解 问题一该问题完全可以用均衡模型表述 用算法模型 1 经过局部优化手工多次比较我们能够给出的最佳结果为第一组路径为 0—P—28—27—26—N—24—23—22-17—16—1—15—1—18—K—21—20—25— M--0 长191.1 经5 镇6 村 第二组路径为 0—2—5—6—L—19—J—11--G—13—14—H—12—F—10—F—9—E—8—E—7—6—5—2—0 长216.5 经6 镇11 村第三组路径为O—2—3—D—4—D—3—C—B—1—A—34—35—33—31—32—30—Q—29 —R 长192.3 经6 镇11 村总长S=599.9 公里 由算法2 给出的为 1组0—P—29—R—31—33—A—34—35—32—30—Q—28—27—26—N—24—33—22—23—N—2 6—P—0 5 乡13 村长215.2 公里 2组0—M—25—21—K—17—16—I—15—I—18—K—21—25—20—L—19—J—11—G—13—14 —O 5 乡11 村长256.2 公里 3组 O—2—5—6—7—E—9--F—12--H--—12—F—10—F—9—E-8—4—0—7—6—M—5-2—3—L —13—1—0 8 乡11 村长256.3 公里 总长727.7 公里

TSP问题的遗传算法求解 优化设计小论文

TSP问题的遗传算法求解 摘要:遗传算法是模拟生物进化过程的一种新的全局优化搜索算法,本文简单介绍了遗传算法,并应用标准遗传算法对旅行包问题进行求解。 关键词:遗传算法、旅行包问题 一、旅行包问题描述: 旅行商问题,即TSP问题(Traveling Saleman Problem)是数学领域的一个著名问题,也称作货郎担问题,简单描述为:一个旅行商需要拜访n个城市(1,2,…,n),他必须选择所走的路径,每个城市只能拜访一次,最后回到原来出发的城市,使得所走的路径最短。其最早的描述是1759年欧拉研究的骑士周游问题,对于国际象棋棋盘中的64个方格,走访64个方格一次且最终返回起始点。 用图论解释为有一个图G=(V,E),其中V是顶点集,E是边集,设D=(d ij)是有顶点i和顶点j之间的距离所组成的距离矩阵,旅行商问题就是求出一条通过所有顶点且每个顶点只能通过一次的具有最短距离的回路。若对于城市V={v1,v2,v3,...,vn}的一个访问顺序为T=(t1,t2,t3,…,ti,…,tn),其中ti∈V(i=1,2,3,…,n),且记tn+1= t1,则旅行商问题的数学模型为:min L=Σd(t(i),t(i+1)) (i=1,…,n) 旅行商问题是一个典型组合优化的问题,是一个NP难问题,其可能的路径数为(n-1)!,随着城市数目的增加,路径数急剧增加,对与小规模的旅行商问题,可以采取穷举法得到最优路径,但对于大型旅行商问题,则很难采用穷举法进行计算。 在生活中TSP有着广泛的应用,在交通方面,如何规划合理高效的道路交通,以减少拥堵;在物流方面,更好的规划物流,减少运营成本;在互联网中,如何设置节点,更好的让信息流动。许多实际工程问题属于大规模TSP,Korte于1988年提出的VLSI芯片加工问题可以对应于1.2e6的城市TSP,Bland于1989年提出X-ray衍射问题对应于14000城市TSP,Litke于1984年提出电路板设计中钻孔问题对应于17000城市TSP,以及Grotschel1991年提出的对应于442城市TSP的PCB442问题。

遗传算法与组合优化.

第四章 遗传算法与组合优化 4.1 背包问题(knapsack problem ) 4.1.1 问题描述 0/1背包问题:给出几个尺寸为S 1,S 2,…,S n 的物体和容量为C 的背包,此处S 1,S 2,…,S n 和C 都是正整数;要求找出n 个物件的一个子集使其尽可能多地填满容量为C 的背包。 数学形式: 最大化 ∑=n i i i X S 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 广义背包问题:输入由C 和两个向量C =(S 1,S 2,…,S n )和P =(P 1,P 2,…,P n )组成。设X 为一整数集合,即X =1,2,3,…,n ,T 为X 的子集,则问题就是找出满足约束条件∑∈≤T i i C X ,而使∑∈T i i P 获得最大的子集T ,即求S i 和P i 的下标子集。 在应用问题中,设S 的元素是n 项经营活动各自所需的资源消耗,C 是所能提供的资源总量,P 的元素是人们从每项经营活动中得到的利润或收益,则背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。 广义背包问题可以数学形式更精确地描述如下: 最大化 ∑=n i i i X P 1 满足 ,1C X S n i i i ≤∑= n i X i ≤≤∈1},1,0{ 背包问题在计算理论中属于NP —完全问题,其计算复杂度为O (2n ),若允许物件可以部分地装入背包,即允许X ,可取从0.00到1.00闭区间上的实数,则背包问题就简化为极简单的P 类问题,此时计算复杂度为O (n )。

4.1.2 遗传编码 采用下标子集T 的二进制编码方案是常用的遗传编码方法。串T 的长度等于n(问题规模),T i (1≤i ≤n )=1表示该物件装入背包,T i =0表示不装入背包。基于背包问题有近似求解知识,以及考虑到遗传算法的特点(适合短定义距的、低阶的、高适应度的模式构成的积木块结构类问题),通常将P i ,S i 按P i /S i 值的大小依次排列,即P 1/S 1≥P 2/S 2≥…≥P n /S n 。 4.1.3 适应度函数 在上述编码情况下,背包问题的目标函数和约束条件可表示如下。 目标函数:∑==n i i i P T T J 1 )( 约束条件:C S T n i i i ≤∑=1 按照利用惩罚函数处理约束条件的方法,我们可构造背包问题的适应度函数f (T )如下式: f (T ) = J (T ) + g (T ) 式中g (T )为对T 超越约束条件的惩罚函数,惩罚函数可构造如下: 式中E m 为P i /S (1≤i ≤n )i 的最大值,β为合适的惩罚系数。 4.2 货郎担问题(Traveling Salesman Problem ——TSP ) 在遗传其法研究中,TSP 问题已被广泛地用于评价不同的遗传操作及选择机制的性能。之所以如此,主要有以下几个方面的原因: (1) TSP 问题是一个典型的、易于描述却难以处理的NP 完全(NP-complete )问题。有效地 解决TSP 问题在可计算理论上有着重要的理论价值。 (2) TSP 问题是诸多领域内出现的多种复杂问题的集中概括和简化形式。因此,快速、有效 地解决TSP 问题有着极高的实际应用价值。 (3) TSP 问题因其典型性已成为各种启发式的搜索、优化算法的间接比较标准,而遗传算法 就其本质来说,主要是处理复杂问题的一种鲁棒性强的启发式随机搜索算法。因此遗传算法在TSP 问题求解方面的应用研究,对于构造合适的遗传算法框架、建立有效的遗传操作以及有效地解决TSP 问题等有着多方面的重要意义。

遗传算法优化的BP神经网络建模[精选.]

遗传算法优化的BP神经网络建模 十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。 遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。 目标: 对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。 步骤: 未经遗传算法优化的BP神经网络建模 1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。并将数据存储在data中待遗传算法中使用相同的数据。 2、数据预处理:归一化处理。 3、构建BP神经网络的隐层数,次数,步长,目标。 4、使用训练数据input_train训练BP神经网络net。 5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。 6、分析预测数据与期望数据之间的误差。 遗传算法优化的BP神经网络建模 1、读取前面步骤中保存的数据data; 2、对数据进行归一化处理; 3、设置隐层数目; 4、初始化进化次数,种群规模,交叉概率,变异概率 5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数; 6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值; 7、将得到最佳初始权值和阈值来构建BP神经网络; 8、使用训练数据input_train训练BP神经网络net; 9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理; 10、分析预测数据与期望数据之间的误差。 算法流程图如下:

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

动态路径优化算法及相关技术

》本文对在GIS(地理信息系统)环境下求解动态路径优化算法及相关技术 进行了研究。最短路径问题是网络分析中的基本的问题,它作为许多领域中选择 最优值的一个基本却又是一个十分重要的问题。特别是在交通诱导系统中占有重 要地位。本文分析了GIS环境下动态路径优化算法的特点,对GIS环境下城市 路网的最优路径选择问题的关键技术进行了研究和验证。 》考虑现实世界中随着城市路网规模的日益增大和复杂程度不断增加的情况,充分利用GIS 的特点,探讨了通过限制搜索区域求解最短路径的策略,大大减少了搜索的时间。 》另一方面,计算机技术的进步,地理信息系统(GIS)得到了飞速的发展。地理信息系统是采集、存储、管理、检索、分析和描述整个或部分地球表面与空间地理分布数据的空间信息系统。它是一种能把图形管理系统和数据管理系统有机地结合起来的信息技术,既管理对象的位置又管理对象的其它属性,而且位置和其它属性是自动关联的。它最基本的功能是将分散收集到的各种空间、非空间信息输入到计算机中,建立起有相互联系的数据库。当外界情况发生变化时,只要更改局部的数据,就可维持数据库的有效性和现实性[3][4],GIS为动态路径优化问题的研究提供了良好的环境。目前GIS带动的产业急剧膨胀,已经应用到各个方面。网络分析作为地理信息系统最主要的功能之一,在电子导航、交通旅游、城市规划以及电力、通讯等各种管网、管线的布局设计中发挥了重要的作用[5]。文献[6][7]说明了GIS 在城市道路网中的应用情况。而路网分析中基本问题之一是动态路径优化问题。所谓动态路径,不仅仅指一般地理意义上的距离最短,还可以应用到其他的参数,如时间、费用、流量等。相应的,动态路径问题就成为最快路径问题、最低费用问题等。 》GIS因为其强大的数据分析功能、空间分析功能,已被广泛应用于各种系统中与空间信息有密切关系的各个方面.各种在实际中的系统如电力系统,光缆系统涉及到最佳、最短抢修等问题都可以折合到交通网络中来进行分析,故而交通网络中最短路径算法就可以广泛的应用于其它很多的最佳、最短抢修或者报警系统中去[5]。最短路径问题是GIS网络分析功能的应用。最短路径问题可分为单源最短路径问题及所有节点间最短路径问题,其中单源最短路径更具有普遍意义[9]。 》2.1地理信息系统的概念 地理信息系统(Geographical Information System,简称GIS)是一种将空间位置信息和属性数据结合在一起的系统,是一种为了获取、存储、检索、分析和显示空间定位数据而建立的计算机化的数据库管理系统(1998年,美国国家地理信息与分析中心定义)[4]。这里的空间定位数据是指采用不同方式的遥感和非遥感手段所获得的数据,它有多种数据类型,包括地图、遥感、统计数据等,它们的共同特点都有确定的空间位置。地理信息系统的处理对象是空间实体,其处理过程正是依据空间实体的空间位置和空间关系进行的[25]。地理信息系统的外在表现为计算机软硬件系统,其内涵却是由计算机程序和地理数据组织而成的地理空间信息模型。当具有一定地理学知识的用户使用地理空间分析非空间分析等处理工具输入输出GIS数据库信息系统时,他所面对的数据不再是毫无意义的,而是把客观世界抽象为模型化的空间数据。用户可以按照应用的目的观测这个现实世界模型的各个方面的内容,取得自然过程的分析和预测的信息,用于管理和决策,这就是地理信息系统的意义。一个逻辑缩小的、高度信息化的地理系统,从视觉、计量和逻辑上对地理系统在功能上进行模拟,信息流动以及信息流动的结果,完全由计算机程序的运行和数据的变换来仿真。地理学家可以在地理信息系统支持下提取地理系统各个不同侧面、不同层次的空间和时间特征,也可以快速地模拟自然过程演变成思维过程的结果,取得地理预测或“实验”的结果,选择优化方案,用于管理与决策[26]。 一个完整的GIS主要有四个部分构成,即计算机硬件系统、计算机软件系统、地理数据(或空间数据)和系统管理操作人员。其核心部分是计算机系统(硬件和软件),地理数据反映

基于遗传算法的齿轮减速器优化设计

煤矿机械Coal Mine Machinery Vol.30No.12 Dec.2009 第30卷第12期2009年12月 0引言 工程机械中所用电动机的转速较高,为了满足工作机低转速的需要,一般在电动机和工作机之间安装减速器,用来降低电机的转速或增大转矩,减速器是一种机械传动装置,广泛地应用于运输机械、矿山机械和建筑机械等重型机械中。因此,减速器的设计非常重要。 遗传算法(GA)是模拟生物在自然界中优胜劣汰的自然进化过程而形成的一种具有全局范围内优化的启发式搜索算法。这种方法已在很多学科得到广泛的应用,为减速器的优化设计提供有力的保证。因此,本文采用遗传算法对两级齿轮减速器进行优化设计,并通过与惩罚函数法和模拟退火算法等优化方法计算结果进行比较,来探讨适合于减速器的优化设计方法。 1建立数学模型 两级齿轮传动减速器结构如图1所示。该减速器的总中心距 a∑=[m n1z1(1+i1)+m n2z3(1+i2)]/2cosβ(1)式中m n1、m n2—— —高速级与低速级的齿轮法面模 数; i1、i2—— —高速级与低速级传动比; z1、z3—— —高速级与低速级的小齿轮齿数: β—— —2组齿轮组的螺旋角。 1.1设计变量的确定 在进行两级齿轮传动减速器设计时,一般选择齿轮传动独立的基本参数或性能参数,如齿轮的齿数、模数、传动比、螺旋角等为设计变量。两级齿轮传动由4个齿轮组成,分别用z1、z2、z3、z4表示,高速级的传动比由i1表示,低速级传动比由i2表示,两组齿轮组的法面模数分别由m n1和m n2表示,2组齿轮的螺旋角用β表示,由于两级齿轮传动减速器的总传动比i0,在设计时会给出具体数据,并且满足i0=i1i2,可以得出i2=i0/i1,可以确定独立的参数有z1、z3、m n1、m n2、i1和β。因此,可以确定该设计变量X=[z1,z3,m n1,m n2,i1,β]T=[x1,x2,x3,x4,x5,x6]T。 图1减速器结构简图 1.2目标函数的建立 在对减速器进行优化设计时,首先要确定目标函数。确定目标函数的原则是在满足各种性能要求的前提下,使减速器的体积最小,这样设计的减速器既经济又实用,从而达到了优化的目的。要使减速器的体积最小,必须使减速器的总中心距最小。因此,以减速器的中心距最小建立目标函数为 a∑=[x3x1(1+x5)+x4x2(1+i0/x5)] 6 (2)1.3约束条件的确定 为使两级齿轮传动减速器满足强度、设计变量 基于遗传算法的齿轮减速器优化设计* 吴婷,张礼兵,黄磊 (安徽建筑工业学院机电学院,合肥230601) 摘要:对两级齿轮减速器优化设计进行了分析,建立了其优化设计的数学模型,确定了优化设计的约束条件,采用遗传算法对两级齿轮减速器进行优化设计,并通过实例说明,采用遗传算法对减速器进行优化,可以得到更加优化的设计结果。 关键词:减速器;遗传算法;优化设计 中图分类号:TH132文献标志码:A文章编号:1003-0794(2009)12-0009-03 Gear Reducer Optimal Design Based on Genetic Algorithm WU Ting,ZHANG Li-bing,HUANG Lei (School of Mechanical and Electrical Engineering,Anhui University of Architecture,Hefei230601,China)Abstract:T he optimal design of a gear reducer was analyzed,the mathematic model was established, and the restriction condition was confirmed.Design of the gear reducer was optimized with genetic algorithm and the examples showed that design of the gear reducer based on genetic algorithm can gain more optimized result. Key words:reducer;genetic algorithm;optimal design *安徽省教育厅自然基金项目(2006KJ015C) 轴1轴2轴3 z1z2 z3z4 9

相关主题
文本预览
相关文档 最新文档