当前位置:文档之家› 大学物理试题及答案

大学物理试题及答案

大学物理试题及答案
大学物理试题及答案

第1部分:选择题

习题1

1-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +?时间内的位移为r ?,路程为s ?,位矢大小的变化量为r ?(或称r ?),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有( ) (A )r s r ?=?=?

(B )r s r ?≠?≠?,当0t ?→时有dr ds dr =≠ (C )r r s ?≠?≠?,当0t ?→时有dr dr ds =≠ (D )r s r ?=?≠?,当0t ?→时有dr dr ds == (2)根据上述情况,则必有( ) (A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=

1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即

(1)

dr dt ;(2)dr dt ;(3)ds

dt

;(4下列判断正确的是:

(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确

1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。对下列表达式,即

(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。 下述判断正确的是( )

(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( ) (A )切向加速度一定改变,法向加速度也改变

(B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变

*

1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边

运动。设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )

(A )匀加速运动,0

cos v v θ= (B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v

v θ

= (D )变减速运动,0cos v v θ=

(E )匀速直线运动,0v v =

1-6 以下五种运动形式中,a 保持不变的运动是 ( )

(A)单摆的运动. (B)匀速率圆周运动. (C)行星的椭圆轨道运动. (D)抛体运动. (E)圆锥摆运动.

1-7一质点作直线运动,某时刻的瞬时速度v=2m/s,瞬时加速度2

2/a m s -=-,则一

秒钟后质点的速度 ( )

(A)等于零. (B)等于-2m/s. (C)等于2m/s. (D)不能确定. 1-8 某物体的运动规律为

2dv

kv t dt

=-,式中的k 为大于零的常数.当t=0时,初速为v 0,则速度v 与时间t的函数关系是 ( ) (A)2012v kt v =+ (B)201

2

v kt v =-+ (C)201112kt v v =+ (D)20

1112kt v v =-+

答案:

1-8 B 、C , D , D , B , C, D, D , C 。

习题2

2-1 如图所示,质量为m 的物体用平行于斜面的细线连结并置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A )sin g θ (B )cos g θ (C )tan g θ (D )cot g θ

2-2 用水平力N F 把一个物体压着靠在粗糙的竖直墙面上保持静止。当N F 逐渐增大时,物体所受的静摩擦力f F 的大小( )

(A )不为零,但保持不变 (B )随N F 成正比的增大 (C )开始随N F 增大,达到某一最大值后,就保持不变 (D )无法确定

2-3 一段路面水平的公路,转弯处轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A

(B

(C

(D )还应由汽车的质量m 决定

2-4 一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则( ) (A )它的加速度的方向永远指向圆心,其速率保持不变 (B )它受到的轨道的作用力的大小不断增加 (C )它受到的合外力大小变化,方向永远指向圆心 (D )它受到的合外力大小不变,其速率不断增加 2-5 图示系统置于以1

4

a g =

的加速度上升的升降机内,A 、B 两物体质量相同均为m ,A 所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦并不计空气阻力,则绳中张力为( ) (A )

5

8

mg (B )12mg (C )mg (D )2mg

m

习题2-1图

2-6 质量分别为m和M的滑块A和B,叠放在光滑水平面上,如图A、B间的静摩擦系数为

s μ,滑动摩擦系数为k μ,系统原先处于静止状态.今将水平力F作用于B上,要使A、B

间不发生相对滑动,应有 ( )

(A)S F mg μ≤. (B)(1)S m F mg M

μ≤+.

(C)()S F m M g μ≤+. (D)k m M

F mg M

μ+≤

习题2-6图 答案:

1-6 D , A , C , B , A , C 。

习题3

3-1 对质点组有以下几种说法: (1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关; (3)质点组机械能的改变与保守内力无关。 下列对上述说法判断正确的是( )

(A )只有(1)是正确的 (B )(1)、(2)是正确的 (C )(1)、(3)是正确的 (D )(2)、(3)是正确的

3-2 有两个倾角不同、高度相通、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有

a

习题2-5图

两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则( ) (A )物块到达斜面低端时的动量相等 (B )物块到达斜面低端时动能相等

(C )物块和斜面(以及地球)组成的系统,机械能不守恒 (D )物块和斜面组成的系统水平方向上动量守恒 3-3 对功的概念有以下几种说法:

(1)保守力作正功时,系统内相应的势能增加; (2)质点运动经一闭合路径,保守力对质点作的功为零;

(3)作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零。下列对上述说法判断正确的是( )

(A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的

3-4 如图所示,质量分别为1m 和2m 的物体A 和B ,置于光滑桌面上,A 和B 之间连有一轻弹簧。另有质量为1m 和2m 的物体C 和D 分别置于物体A 和B 之上,且物体A 和C 、B 和D 之间的摩擦系数均不为零。首先用外力沿水平方向相向推压使弹簧被压缩,然后撤掉外力,则在A 和B 弹开的过程中,对A 、B 、C 、D 以及弹簧组成的系统,有 (A )动量守恒,机械能守恒 (B )动量不守恒,机械能守恒 (C )动量不守恒,机械能不守恒 (D )动量守恒,机械能不一定守恒

3-5 如图所示,子弹射入放在水平光滑地面上静止的木块后而穿出。以地面为参考系,下列说法中正确的说法是( )

(A

)子弹减少的动能转变为木块的动能 (B )子弹-木块系统的机械能守恒

(C )子弹动能的减少等于子弹克服木块阻力所作的功 (D )子弹克服木块阻力所作的功等于这一过程中产生的热

习题3-4图

习题3-5图

3-6一质点受力2

3F x i =(SI )作用,沿X 轴正方向运动。从x=0到x=2m 过程中,力F 作功为( )

(A ) 8J (B ) 12J (C ) 16J (D ) 24J

3-7、质量为m 的铁锤竖直落下,打在木桩上并停下,设打击时间为Δt ,打击前铁锤速率为v,则在打击木桩的时间内,铁锤所受平均合外力的大小为( )

(A )

mv t (B ) mv mg t - (C ) mv mg t + (D ) 2mv t

3-8 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是 ( ) (A)不受外力作用的系统,其动量和机械能必然同时守恒. (B)所受合外力为零,内力都是保守力的系统,其机械能必然守恒.

(C)不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒. (D)外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒.

答案:

1-8 C , D , C , D , C ,A ,A , C 。

习题4

4-1 有两个力作用在一个有固定转轴的刚体上:

(1)这两个力都平行于轴作用时,它们对轴的合力距一定是零; (2)这两个力都垂直于轴作用时,它们对轴的合力距可能是零; (3)当这两个力的合力为零时,它们对轴的合力距也一定是零; (4)当这两个力对轴的合力距为零时,它们的合力也一定为零。 对上述说法,下述判断正确的是( )

(A )只有(1)是正确的 (B )(1)、(2)正确,(3)、(4)错误 (C )(1)、(2)、(3)都正确,(4)错误 (D )(1)、(2)、(3)、(4)都正确 4-2 关于力矩有以下几种说法:

(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度; (2)一对作用力和反作用力对同一轴的力矩之和必为零;

(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同。

对于上述说法,下述判断正确的是( )

(A )只有(2)是正确的 (B )(1)、(2)是正确的 (C )(2)、(3)是正确的 (D )(1)、(2)、(3)都是正确的

4-3 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的事( ) (A )角速度从小到大,角加速度不变 (B )角速度从小到大,角加速度从小到大 (C )角速度从小到大,角加速度从大到小 (D )角速度不变,角加速度为零

4-4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计,如图射来两个质量相同、速度大小相同、方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,在子弹射入后的瞬间,对于圆盘和子弹系统的角动量L 以及圆盘的角速度ω则有( ) (A )L 不变,ω增大 (B )两者均不变 (C )L 不变,ω减小 (D )两者均不确定

4-5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( ) (A )角动量守恒,动能守恒

(B )角动量守恒,机械能守恒

(C )角动量不守恒,机械能守恒 (D )角动量不守恒,动量也不守恒 (E )角动量守恒,动量也守恒

4-6 关于力矩有以下几种说法: (1)对某个定轴而言,内力矩不会改变刚体的角动量. (2)作用力和反作用力对同一轴的力矩之和必为零.

(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中, ( )

(A)只有(2)是正确的. (B)(1)、(2)是正确的. (C)(2)、(3)是正确的. (D)(1)、(2)、(3)都是正确的

4-7 将细绳绕在一个具有水平光滑轴的飞轮边缘上,如果在绳端挂一质量为m的重物时,飞轮的角加速度为β1.如果以拉力2mg代替重物拉绳时,飞轮的角加速度将 ( ) (A)小于β1.(B)大于β1,小于2β1. (C)大于2β1. (D)等于2β1.

习题4-3图 O A

习题4-4图

4-8 两个均质圆盘A和B的密度分别为A ρ和B ρ,若A ρ>B ρ,但两圆盘的质量与厚度相

同,如两盘对通过盘心垂直于盘面轴的转动惯量各为JA 和JB ,则 ( ) (A)JA >JB . (B)JB >JA . (C)JA =JB D)JA 、JB 哪个大,不能确定.

答案:

1-8 B , B , C , C , B , B , C , B 。

习题5

5-1 电荷面密度均为σ+的两块“无限大”均匀带电的平行平板如图(a )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线

为( )

5-2 下列说法正确的是( )

(A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零。

(D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。 5-3 下列说法正确的是( )

(A) -0

(B) 习题5-1(b )图

习题5-1(a )图

(A )电场强度为零的点,电势一定为零。 (B )电场强度不为零的点,电势也一定为零。 (C )电势为零的点,电场强度也一定为零。

(D )电势在某一区域内为零,则电场强度在该区域必定为零。

*

5-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极距P 的方向如图所示。当电偶

极子被释放后,该电偶极子将( )

(A )沿逆时针方向旋转直到电偶极距P 水平指向棒尖端而停止。

(B )沿逆时针方向旋转至电偶极距P 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C )沿逆时针方向旋转至电偶极距P 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动

(D )沿顺时针方向旋转至电偶极距P 水平指向方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动

5-5 如图所示,两个同心球壳.内球壳半径为R1,均匀带有电量Q;外球壳半径为R2,壳的厚度忽略,原先不带电,但与地相连接.设地为电势零点,则在内球壳里面,距离球心为r处的P点的场强大小及电势分别为: ( )

(A)

1040R Q

U E πε=

=, .

(B)

,210

1140R R Q

U E -=

=πε

(C)

r

Q U r

Q E πεπε442

0==

,.(D)

102

044R Q U r

Q E πεπε==

5-6 下列几个说法中哪一个是正确的? ( )

(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方 向. (B)在以点电荷为中心的球面上 , 由该点电荷所产生的场强处处相同.

(C)场强方向可由q F

E

=F 为试验电荷所受的电场力.

(D)以上说法都不正确. 答案:

1-6 B , B , D , B , B , C 。

习题5-4图

— — —

习题6

6-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,导体B 的电势将( ) (A )升高 (B )降低 (C )不会发生变化 (D )无法确定

6-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地 (D )N 上所有的感应电荷入地

6-3 如图所示将一个电荷量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。设无穷远处为零电势,则在导体球球心O 点有( ) (A )00,4q E V d

πε==

(B )2

00,44q q E V d d πεπε=

=

(C )0,0E V == (D )2

00,44q q E V d

R

πεπε==

6-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。下列推论正确的是

( ) (A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定理表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关

6-5 对于各向同性的均匀电介质,下列概念正确的是 ( ) (A )电介质充满整个电场并且自由电荷的分布不发生变化时,介质中的电场强度一定等于没有电介质时该点电场强度的1r 倍

(B )电介质中的电场强度一定等于没有介质时该点电场强度的1r 倍

习题6-2图 习题6-3图

(C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1r 倍

(D )电介质中的电场强度一定等于没有介质时该点电场强度的r ε倍

6-6 一空气平行板电容器,接电源充电后电容器中储存的能量为W 0.在保持电源接通的条件下,在两极板间充满相对介电常数为εr

的各向同性均匀电介质,则该电容器中储存的能

量W为: ( ) (A)

W W r ε=. (B)

r

W W ε/0=. (C)

)1(W W r ε+=. (D)

W W =.

6-7 一平板电容器充电后切断电源,若改变两极板间的距离,则下述物理量中哪个保持不变? ( ) (A)电容器的电容. (B)两极板间的场强. (C)两极板间的电势差. (D)电容器储存的能量 答案:

1-7 A , A , A , E , A , A , B 。

习题7

7-1 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,2R r =,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小

R B 、r B ,满足 ( )

(A )2R r B B = (B )R r B B = (C )2R r B B = (D )4R r B B =

7-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )2

2r B π (B )2

r B π (C )2

2cos r B πα (D )2

cos r B πα

7-3 下列说法正确的是 ( )

习题7-4图

1L 1P

L 2P

3

(a)

(b)

习题7-2图

(A )闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B )闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C )磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零

(D )磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 7-4 在图(a )和(b )中各有一半经相同的圆形回路1L 、2L ,圆周内有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则 ( ) (A )1

21

2,P P L L B dl B dl B

B ?=?=?? (B )1

21

2

,P P L L B dl B dl B

B ?≠

?=?? (C )

1

21

2

,P P L L B dl B dl B

B ?=?≠?? (D )1

21

2

,P P L L B dl B dl B

B ?≠

?≠??

7-5 半径为R 的圆柱形无限长载流直导线置于均匀无限长磁介质之中,若导线中流过的稳恒电流为I ,磁介质的相对磁导率为(1)r r μμ<,则磁介质内的磁化强度为( ) (A )(1)2r I μπγ-- (B )(1)2r I μπγ- (C )2r I μπγ (D )2r I πμγ 7-6 均匀磁场中放置三个面积相等并且通有相同电流的线圈,一个是圆形,一个是正方形,一个是三角形,下列哪个叙述是错误的? ( )

(A )每个线圈所受的最大磁力矩都相同 (B )每个线圈在均匀磁场中只转动而不移动 (C )三个线圈处于图示的位置时所受磁力矩最大 (D )三个线圈处于图示的位置时所受磁力矩均为零

7-7 空间内分布着相互垂直的均匀磁场和均匀电场如下图所示,今有一粒子α能够沿竖直方向穿过该空间,则 ( )

(A )α必带正电 (B )α必带负电 (C )α必不带电 (D )不能判断α是否带电

7-8 两长直导线载有同样的电流且平行放置,单位长度间的相互作用力为F ,

若将它们的电

流均加倍,相互距离减半,单位长度间的相互作用力变为F ',则大小之比/F F '为 ( ) (A )1 (B )2 (C )4 (D )8

答案:

1-8 C , D , B , C , B , D , D , D 。

习题8

8-1 一根无限长直导线载有I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图),则 ( ) (A )线圈中无感应电流 (B )线圈中感应电流为顺时针方向 (C )线圈中感应电流为逆时针方向 (D )线圈中感应电流方向无法确定

8-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则 ( ) (A )铜环中有感应电流,木环中无感应电流 (B )铜环中有感应电流,木环中有感应电流 (C )铜环中感应电场强度大,木环中感应电场强度小 (D )铜环中感应电场强度小,木环中感应电场强度大

8-3 有两个线圈,线圈1对线圈2的互感系数为21M ,而线圈2对线圈1的互感系数为12M 。若它们分别流过1i 和2i 的变化电流且

12di di

dt dt

<,并设由2i 变化在线圈1中产生的互感电动势为12ε,由1i 变化在线圈2中产生的互感电动势为21ε,则论断正确的是 ( ) (A )12212112,M M εε== (B )12212112,M M εε≠≠ (C )12212112,M M εε=> (D )12212112,M M εε=<

习题8-1图

I

8-4 对位移电流,下述说法正确的是

( ) (A )位移电流的实质是变化的电场

(B )位移电流和传导电流一样是定向运动的电荷 (C )位移电流服从传导电流遵循的所有定律 (D )位移电流的磁效应不服从安培环路定律 8-5 下列概念正确的是

( ) (A )感应电场也是保守场

(B )感应电场的电场线是一组闭合曲线

(C )m LI Φ=,因而线圈的自感系数与回路的电流成反比 (D )m LI Φ=,回路的磁通量越大,回路的自感系数也一定大

8-6 两无限长同轴薄圆筒导体组成的同轴电缆,其间充满磁导率为 μ的均匀介质。圆筒的内、外半径分别为)(2121R R R R < 该电缆单位长度的自感系数( C ) (A )因为单位长度电缆不构成闭合回路自感系数无法确定; (B )电缆不是线圈,自感系数为零;

(C )自感系数

12

ln

π

2R R L μ=

; (D )自感系数

12

ln

π

4R R L μ=

答案:

1-6 B , A , D , A , B , C 。

习题9

9-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2

A

-,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )

习题9-1图

(A) (C)

x

ω(D)

9-2 已知某简谐运动的振动曲线如图所示,则此简谐运动的运动方程(x 的单位为cm ,t 的单位为s )为( )

(A )222cos()33x t ππ=-(B )222cos()33x t ππ=+ (C )422cos()33x t ππ=-(D )42

2cos()33

x t ππ=+

9-3 两个同周期简谐运动曲线如图所示,1x 的相位比2x 的相位( )

(A )落后

2π (B )超前2

π

(C )落后π (D )超前π 9-4 当质点以频率ν作简谐运动时,它的动能的变化频率为( )

(A )2

ν

(B )ν (C )2ν (D )4ν

9-5 图中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )

(A )32π (B )12

π (C )π (D )0

习题9-2图

习题9-3图

习题9-5图

9-6一质点在x 轴上作简谐振动,已知:t=0时,00.01x m =-, 1

00.03v m s -=?,1

w -=,

则质点的简谐振动方程为( )。

(A )2)3x π=+

(B )4)3x π

=+

(C )2)3x π=+ (D )4)3

x π

=+

9-7 简谐运动中,0=t 的时刻是 ( )

(A )质点开始运动的时刻 (B )开始观察计时的时刻 (C )离开平衡位置的时刻 (D )速度等于零的时刻

9-8 将一个弹簧振子分别拉离平衡位置1cm 和2cm 后,由静止释放(弹性形变在弹性限度内),则它们作简谐运动时的 ( )

(A )周期相同 (B )振幅相同 (C )最大速度相同 (D )最大加速度相同

答案:

1-8 B , D , B , C , D , B , B , A 。

大学物理(下)期末考试试卷

大学物理(下)期末考试试卷 一、 选择题:(每题3分,共30分) 1. 在感应电场中电磁感应定律可写成?-=?L K dt d l d E φ ,式中K E 为感应电场的电场强度。此式表明: (A) 闭合曲线L 上K E 处处相等。 (B) 感应电场是保守力场。 (C) 感应电场的电力线不是闭合曲线。 (D) 在感应电场中不能像对静电场那样引入电势的概念。 2.一简谐振动曲线如图所示,则振动周期是 (A) 2.62s (B) 2.40s (C) 2.20s (D) 2.00s 3.横谐波以波速u 沿x 轴负方向传播,t 时刻 的波形如图,则该时刻 (A) A 点振动速度大于零, (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零. 4.如图所示,有一平面简谐波沿x 轴负方向传 播,坐标原点O 的振动规律为)cos(0φω+=t A y , 则B 点的振动方程为 (A) []0)/(cos φω+-=u x t A y (B) [])/(cos u x t A y +=ω (C) })]/([cos{0φω+-=u x t A y (D) })]/([cos{0φω++=u x t A y 5. 一单色平行光束垂直照射在宽度为 1.20mm 的单缝上,在缝后放一焦距为2.0m 的会聚透镜,已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.00mm ,则入射光波长约为 (A )100000A (B )40000A (C )50000A (D )60000 A 6.若星光的波长按55000A 计算,孔镜为127cm 的大型望远镜所能分辨的两颗星2 4 1

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =2.897×10?3m·K R =8.31J·mol ?1·K ?1 k=1.38×10?23J·K ?1 c=3.00×108m/s ? = 5.67×10-8 W·m ?2·K ?4 1n 2=0.693 1n 3=1.099 g=9.8m/s 2 N A =6.02×1023mol ?1 R =8.31J·mol ?1·K ?1 1atm=1.013×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212 121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5.

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理下册知识点总结(期末)

大学物理下册 学院: 姓名: 班级: 第一部分:气体动理论与热力学基础 一、气体的状态参量:用来描述气体状态特征的物理量。 气体的宏观描述,状态参量: (1)压强p:从力学角度来描写状态。 垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。单位 Pa (2)体积V:从几何角度来描写状态。 分子无规则热运动所能达到的空间。单位m 3 (3)温度T:从热学的角度来描写状态。 表征气体分子热运动剧烈程度的物理量。单位K。 二、理想气体压强公式的推导: 三、理想气体状态方程: 1122 12 PV PV PV C T T T =→=; m PV RT M ' =;P nkT = 8.31J R k mol =;23 1.3810J k k - =?;231 6.02210 A N mol- =?; A R N k = 四、理想气体压强公式: 2 3kt p nε =2 1 2 kt mv ε=分子平均平动动能 五、理想气体温度公式: 2 13 22 kt mv kT ε== 六、气体分子的平均平动动能与温度的关系: 七、刚性气体分子自由度表 八、能均分原理: 1.自由度:确定一个物体在空间位置所需要的独立坐标数目。 2.运动自由度: 确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度 (1)质点的自由度: 在空间中:3个独立坐标在平面上:2 在直线上:1 (2)直线的自由度: 中心位置:3(平动自由度)直线方位:2(转动自由度)共5个 3.气体分子的自由度 单原子分子 (如氦、氖分子)3 i=;刚性双原子分子5 i=;刚性多原子分子6 i= 4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为 1 2 kT 推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。 5.一个分子的平均动能为: 2 k i kT ε=

大学物理试题及答案

第2章刚体得转动 一、选择题 1、如图所示,A、B为两个相同得绕着轻绳得定滑轮.A滑轮挂一质量为M得物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮得角加速度分别为βA与βB,不计滑轮轴得摩擦,则有 (A) βA=βB。(B)βA>βB. (C)βA<βB.(D)开始时βA=βB,以后βA<βB。 [] 2、有两个半径相同,质量相等得细圆环A与B。A环得质量分布均匀,B环得质量分布不均匀。它们对通过环心并与环面垂直得轴得转动惯量分别为JA与J B,则 (A)JA>J B.(B) JA

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

2015大学物理(下)期末复习题答案

大学物理(下)期末复习题 一、选择题 [ C ] 2.关于可逆过程和不可逆过程的判断: (1) 可逆热力学过程一定是准静态过程. (2) 准静态过程一定是可逆过程. (3) 不可逆过程就是不能向相反方向进行的过程. (4) 凡有摩擦的过程,一定是不可逆过程. 以上四种判断,其中正确的是 (A) (1)、(2)、(3).(B) (1)、(2)、(4). (C) (2)、(4).(D) (1) 、(4) [ D ] 3. 理想气体卡诺循环过程的两个绝热下的面积大小(图中阴影部分) 分别为S1和S2,则两者的大小关系是 (A)S1>S2 ;(B)S1=S2 ;(C)S1

5. 一定量的的理想气体,其状态改变在P-T图上沿着直线一条沿着 一条直线从平衡态a改变到平衡态b(如图) (A)这是一个绝热压缩过程. (B)这是一个等体吸热过程. (C)这是一个吸热压缩过程. (D)这是一个吸热膨胀热过程. [D] 6.麦克斯韦速率分布曲线如图所示,图中A、B两部分面积相等, 则该图表示 (A)v0为最概然速率;(B)v0为平均速率; (C)v0为方均根速率; (D)速率大于和小于v0的分子数各占一半. [D] 7. 容器中储有定量理想气体,温度为T ,分子质量为m ,则分子速 度在x 方向的分量的平均值为:(根据理想气体分子模型和统计假设讨论) [ A ] 8. 设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振 60时,透射光强减为一半,试求部分偏振光中自然光和线偏振片由对应最大透射光强位置转过 光两光强之比为 (A) 2:1 .(B) 4:3.(C) 1:1.(D) 1:2.[ C ] 9.如图,一束动量为p的电子,垂直通过缝宽为a的狭缝,问距缝为D处的荧光屏上显示出的衍射图样的中央亮纹的宽度为 (A) 2ha/(Dp).(B) 2Dh/(ap).(C) 2a2/D.(D) 2ha/p.[ B ]10.一氢原子的动能等于氢原子处于温度为T的热平衡时的平均动能,氢原子的质量为m,则此氢原子的德布罗意波长为.

大学物理期末试卷(带答案)

大学物理期末试卷(A) (2012年6月29日 9: 00-11: 30) 专业 ____组 学号 姓名 成绩 (闭卷) 一、 选择题(40%) 1.对室温下定体摩尔热容m V C ,=2.5R 的理想气体,在等压膨胀情况下,系统对外所做的功与系统从外界吸收的热量之比W/Q 等于: 【 D 】 (A ) 1/3; (B)1/4; (C)2/5; (D)2/7 。 2. 如图所示,一定量的理想气体从体积V 1膨胀到体积V 2分别经历的过程是:A B 等压过程; A C 等温过程; A D 绝热过程 . 其中吸热最多的 过程 【 A 】 (A) 是A B. (B) 是A C. (C) 是A D. (D) 既是A B,也是A C ,两者一样多. 3.用公式E =νC V T (式中C V 为定容摩尔热容量,ν为气体摩尔数)计算理想气体内能 增 量 时 , 此 式 : 【 B 】 (A) 只适用于准静态的等容过程. (B) 只适用于一切等容过程. (C) 只适用于一切准静态过程. (D) 适用于一切始末态为平衡态的过程. 4气缸中有一定量的氦气(视为理想气体),经过绝热压缩,体积变为原来的一半,问气体 分 子 的 平 均 速 率 变 为 原 来 的 几 倍 ? p V V 1 V 2 A B C D . 题2图

【 B 】 (A)2 2 / 5 (B)2 1 / 5 (C)2 1 / 3 (D) 2 2 / 3 5.根据热力学第二定律可知: 【 D 】 (A )功可以全部转化为热, 但热不能全部转化为功。 (B )热可以由高温物体传到低温物体,但不能由低温物体传到高温物体。 (C )不可逆过程就是不能向相反方向进行的过程。 (D )一切自发过程都是不可逆。 6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央 明纹极大的位置,则此玻璃片厚度为: 【 B 】 (A) 5.0×10-4 cm (B) 6.0×10-4cm (C) 7.0×10-4cm (D) 8.0×10-4cm 7.下列论述错误..的是: 【 D 】 (A) 当波从波疏媒质( u 较小)向波密媒质(u 较大)传播,在界面上反射时,反射 波中产生半波损失,其实质是位相突变。 (B) 机械波相干加强与减弱的条件是:加强 π?2k =?;π?1)2k (+=?。 (C) 惠更斯原理:任何时刻波面上的每一点都可作为次波的波源,各自发出球面次波;在以后的任何时刻,所有这些次波面的包络面形成整个波在该时刻的新波面 (D) 真空中波长为500nm 绿光在折射率为1.5的介质中从A 点传播到B 点时,相位改变了5π,则光从A 点传到B 点经过的实际路程为1250nm 。 8. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长 的透射光能量。假设光线垂直入射,则介质膜的最小厚度应为: 【 D 】 (A)/n λ (B)/2n λ (C)/3n λ (D)/4n λ P O 1 S 2 S 6. 题图

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理波动学公式集

大学物理波动学公式集波动学 1.定义和概念 简谐波方程:x处t时刻相位 振幅 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′) 相位Φ——决定振动状态的量 振幅A——振动量最大值决定于初态x0=Acosφ 初相φ——x=0处t=0时相位(x0,V0)V0= –Aωsinφ 频率ν——每秒振动的次数 圆频率ω=2πν决定于波源如:弹簧振子ω=m k/ 周期T——振动一次的时间单摆ω=l g/ 波速V——波的相位传播速度或能量传播速度。决定于介质如:绳V=μ / T光速V=C/n 空气V=ρ / B 波的干涉:同振动方向、同频率、相位差恒定的波的叠加。 光程:L=nx(即光走过的几何路程与介质的折射率的乘积。 相位突变:波从波疏媒质进入波密媒质时有相位π的突变(折合光程为λ/2)。 拍:频率相近的两个振动的合成振动。 驻波:两列完全相同仅方向相反的波的合成波。 多普勒效应:因波源与观察者相对运动产生的频率改变的现象。 衍射:光偏离直线传播的现象。 自然光:一般光源发出的光 偏振光(亦称线偏振光或称平面偏振光):只有一个方向振动成份的光。 部分偏振光:各振动方向概率不等的光。可看成相互垂直两振幅不同的光的合成。 方法、定律和定理 x 旋转矢量法:

如图,任意一个简谐振动ξ=Acos(ωt+φ)可看成初始角位置为φ以ω逆时针旋转的矢量A ?在x方向的投影。 相干光合成振幅: A= φ?++cos 2212221A A A A 其中:Δφ=φ1-φ2–λπ2(r 2–r 1当φ1-φ2=0时,光程差δ=(r 2–r 1) 惠更斯原理:波面子波的包络面为新波前。(用来判断波的传播方向) I **布儒斯特定律: 当入射光以I p 入射角入射时则反射光为垂直入射面振动的完全偏振光。I p 称布儒斯特角,其满足: tg i p = n 2/n 1 公式 振动能量:E k =mV 2/2=E k (t) E= E k +E p =kA 2/2 E p =kx 2/2= (t) *波动能量:2221 A ρωω= I=V A V 222 1 ρωω=∝A 2 *驻波: 波节间距d=λ/2 基波波长λ0=2L 基频:ν0=V/λ0=V/2L; 谐频:ν=nν0 *多普勒效应: 机械波ννs R V V V V -+='(V R ——观察者速度;V s ——波源速度)

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理_刘果红_波动学基础

波动学基础 前言:许多振动系统都不是孤立存在的,它们的周围常有其它物质。当某个系统振动时,它将带动周围同它有一定联系的物体随之一起振动,于是该物体的振动就被周围的物质传播开来,形成波动过程。即:波动是振动的传播过程。 波可分为两大类:机械波、电磁波。这两类波虽本质不同,但都有波动的共同特征:具有一定的传播速度,都伴随着能量的传播,且都能产生反射、折射、干涉等现象 一、机械波的产生与传播 1、产生机械波的条件 (1)、波源——是一个在一定条件下的振动系统,是波动能量的供给者。 (2)、弹性媒质——是一种用弹性力相互联系着的质点系,它是形成机械波、传播机械波所不可缺少的客观物质。 2、波动的形成过程 首先有一振动系统——波源,在它周围有彼此以弹性力相联系的弹性媒质。波动形成时有三个要点: A、波动的传播是由近及远的(相对于波源而言),即有先后次序。 B、传播的是振动状态或周相,质点本身不向前运动。 C、波动在传播时,具有空间周期性和时间周期性 3、机械波与机械振动的关系 波动是振动的传播过程,而振动是产生波动的根源,这是两者的联系。 振动研究的是振动质点离开平衡位置的位移是如何随时间作周期性变化的,即y =f (t);波动研究的是弹性媒质中不同位置彼此以弹性力相联系的质点群,它们的位移(相对自己的平衡位置)随时间作周期性变化的情况,即y =f (,t)。对平面谐波而言,讨论的是波线上各质点的运动情况,故有y =f (x,t),这是两者的区别。 4、机械波的类型与波速 波动按其振动方式的不同,可分为两大类: 横波——波的传播方向与质点振动方向垂直。其图象的外形特征是有突起的波峰和凹下的波谷。各质点的振动情况形成一个具有波峰和波谷的正弦或余弦波形。 纵波——波的传播方向与质点振动方向相同。其外形特征是具有稀疏和稠密的区域,即各质点的振动形成一个具有密集和稀疏相间的完整波。若将纵波中各质点的位移逆时针转过90度,讨论情况就与纵波一致了。

大学物理试卷及答案

2005─2006学年第二学期 《 大学物理》(上)考试试卷( A 卷) 注意:1、本试卷共4页; 2、考试时间: 120分钟; 3、姓名、序号必须写在指定地方; 4、考试为闭卷考试; 5、可用计算器,但不准借用; 6、考试日期: 7、答题答在答题纸上有效, 答在试卷上无效; b =×10?3m·K R =·mol ?1·K ?1 k=×10?23J·K ?1 c=×108m/s ? = ×10-8 W·m ?2·K ?4 1n 2= 1n 3= g=s 2 N A =×1023mol ?1 R =·mol ?1·K ?1 1atm=×105Pa 一.选择题(每小题3分,共30分) 1.在如图所示的单缝夫琅禾费衍射实验中,若将单缝沿透镜光轴方向向透镜平移,则屏幕上的衍射条纹 (A) 间距变大. (B) 间距变小. (C) 不发生变化. (D) 间距不变,但明暗条纹的位置交替变化. 2. 热力学第一定律只适用于 (A) 准静态过程(或平衡过程). (B) 初、终态为平衡态的一切过程. (C) 封闭系统(或孤立系统). (D) 一切热力学系统的任意过程. 3.假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的 (A) 角动量守恒,动能不变. (B) 角动量守恒,动能改变. (C) 角动量不守恒,动能不变. (D) 角动量不守恒,动量也不守恒. (E) 角动量守恒,动量也守恒. 4.质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧串联连接在水平光滑导轨上作微小振 动,则该系统的振动频率为 (A) m k k 212+π =ν. (B) m k k 2 121+π=ν . (C) 2 12 121k mk k k +π=ν. (D) )(212121k k m k k +π=ν 5. 波长? = 5500 ?的单色光垂直照射到光栅常数d = 2×10-4cm 的平面衍射光栅上,可能观 察到的光谱线的最大级次为 (A) 2. (B) 3. (C) 4. (D) 5. 6.某物体的运动规律为d v /dt =-k v 2t ,式中的k 为大于零的常量.当t =0时,初速为v 0,则

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

(完整版)大学物理下册期末考试A卷.doc

**大学学年第一学期期末考试卷 课程名称大学物理(下)考试日期 任课教师 ______________试卷编号_______ 考生姓名学号专业或类别 题号一二三四五六七总分累分人 签名题分40 10 10 10 10 10 10 100 得分 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 部分常数:玻尔兹曼常数 k 1.38 10 23 J / K , 气体普适常数 R = 8.31 J/K.mol, 普朗克常量h = 6.63 10×34 J·s,电子电量e 1.60 10 19 C; 一、填空题(每空 2 分,共 40 分) 1. 一理想卡诺机在温度为 27℃和 127℃两个热源之间运转。若得分评卷人 使该机正循环运转,如从高温热源吸收1200J 的热量,则将向低 温热源放出热量 ______J; 2.1mol 理想气体经绝热自由膨胀至体积增大一倍为止,即 V22V1则在该过程中熵增S_____________J/k。 3.某理想气体的压强 P=105 Pa,方均根速率为 400m/s,则该气 体的密度 _____________kg/m3。 4.AB 直导体长为 L 以图示的速度运动,则导体中非静电性场强大小 ___________,方向为 __________,感应电动势的大小为 ____________。

5 5.平行板电容器的电容 C为 20.0 μ F,两板上的电压变化率为 dU/dt=1.50 × 10V/s ,则电容器两平行板间的位移电流为___________A。 6. 长度为 l ,横截面积为 S 的密绕长直螺线管通过的电流为I ,管上单位长度绕有n 匝线圈,则管内的磁能密度w 为 =____________ ,自感系数 L=___________。 7.边长为 a 的正方形的三个顶点上固定的三个点电荷如图所示。以无穷远为零电 势点,则 C 点电势 U C =___________;今将一电量为 +q 的点电荷 从 C点移到无穷远,则电场力对该电荷做功 A=___________。 8.长为 l 的圆柱形电容器,内半径为R1,外半径为R2,现使内极 板带电 Q ,外极板接地。有一带电粒子所带的电荷为q ,处在离 轴线为 r 处( R1r R2),则该粒子所受的电场力大小F_________________;若带电粒子从内极板由静止飞出,则粒子飞到外极板时,它所获得的动能E K________________。 9.闭合半圆型线圈通电流为 I ,半径为 R,置于磁感应强度为B 的均匀外磁场中,B0的方向垂直于AB,如图所示。则圆弧ACB 所受的磁力大小为 ______________,线圈所受磁力矩大小为__________________。 10.光电效应中,阴极金属的逸出功为2.0eV,入射光的波长为400nm ,则光电流的 遏止电压为 ____________V。金属材料的红限频率υ0 =__________________H Z。11.一个动能为40eV,质量为 9.11 × 10-31 kg的电子,其德布 罗意波长为nm。 12.截面半径为R 的长直载流螺线管中有均匀磁场,已知 dB 。如图所示,一导线 AB长为 R,则 AB导线中感生 C (C 0) dt 电动势大小为 _____________,A 点的感应电场大小为E。

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

相关主题
文本预览
相关文档 最新文档