变压器电感量与匝数计算
- 格式:doc
- 大小:75.00 KB
- 文档页数:2
变压器初级和次级线圈匝数比的计算正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D确定之后,根据(1-77)式就可以计算出正激式开关电源变压器的初、次级线圈的匝数比:Uo = Ua =nUi× Ton/T = Upa×D ——整个周期(1-77)由(1-77)可以求得:n=Uo/Ui*T ——变压器匝数比(1-97)上式中,n为正激式开关电源变压器次级线圈与初级线圈的匝数比,即:n = N2/N1 ;Uo为输出直流电压,Ui为变压器初级输入电压,D为控制开关的占空比。
在正常输出负载的情况下,正激式开关电源控制开关的占空比D较好取值为0.5左右。
这样,当负载比较轻的时候,占空比D会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占空比D会大于0.5,此时流过储能滤波电感的电流为连续电流,输出电流增大,储能滤波电容充电的时间增加,放电的时间缩短,因此,电容两端产生的电压纹波也不会增大很多。
因此,如果正激式开关电源电路中的储能滤波电感和储能滤波电容充电以及控制开关占空比,三者取得合适,输出电压纹波会很小。
正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组与初线圈N1绕组的匝数比n一般为1 :1 ,即:N3/N1 = 1。
如果n大于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会增强,但流过反馈线圈N3绕组和整流二极管D3的电流也会增大,从而会增加损耗;如果n小于1,反馈线圈N3绕组与整流二极管D3的限幅保护作用就会减弱,尖峰脉冲很容易把电源开关管击穿。
正激式开关电源变压器次级反电动势能量吸收反馈线圈N3绕组匝数的计算与限幅稳压二极管的计算方法是很相似的,不过线圈匝数与稳压二极管的击穿电压正好相反,击穿电压取得越高限幅保护的作用反而越弱。
开关变压器第三讲变压器线圈电感量计算..康佳集团彩电技术开发中心总体技时间:2009-07-03 6566次阅读【网友评论2条我要评论】收藏在进行电路计算的时候,一般都采用SI国际单位制,即导磁率采用相对导磁率与真空导磁率的乘积,即:,其中相对导磁率是一个没有单位的系数,真空导磁率的单位为H/m。
1、圆截面直导线的电感圆截面直导线如图2-32所示,其电感为:2、同轴电缆线的电感同轴电缆线如图2-33所示,其电感为:3、双线制传输线的电感双线制传输线如图2-34所示,其电感为:4、两平行直导线之间的互感两平行直导线如图2-34所示,其互感为:5、圆环的电感5、矩型线圈的电感矩形线圈如图2-36所示,其电感为:6、螺旋线圈的电感螺旋线圈如图2-37所示,其电感为:7、多层绕组线圈的电感多层绕组线圈如图2-38所示,其电感为:【说明】上式是用来计算多层线圈绕组、截面为圆形的空心线圈的电感计算公式。
长冈系数k可查阅表2-1,系数c可查阅表2-2。
当线圈内部有磁芯时,有磁芯线圈的电感是空心线圈电感的倍,是磁芯的相对导磁率。
相对导磁率的测试方法很简单,只需把有磁芯的线圈和空心线圈分别进行测试,通过对比即可求出相对导磁率的大小。
8、变压器线圈的电感变压器线圈如图2-39所示,其电感为:【说明】上式是用来计算变压器线圈电感的计算公式。
由于变压器铁芯的磁回路基本是封闭的,变压器铁芯的平均导磁率相对来说比较大。
铁芯的导磁率一般在产品技术手册中都会给出,但由于大多数开关电源变压器的铁芯都留有气隙,留有气隙的磁回路会出现磁场强度以及磁感应强度分布不均匀,因此,(2-108)式中的导磁率只能使用平均导磁率,技术手册中的数据不能直接使用。
在这种情况下,最好的方法是先制作一个简单样品,例如,在某个选好的变压器铁芯的骨架上绕一个简单线圈(比如匝数为10),然后对线圈的电感量进行测试,或者找一个已知线圈匝数与电感量的样品作为参考。
Vin-min(V)Vin-max(V)工作频率F(Hz)输出电压Vo(V) 6616030000048
以上为根据电流纹波系数计算BUCK电路电感量L(uH)输出电流Io(A)磁通密度Bm(T)磁芯有效截面积Ae(mm~2)
34 6.50.2589.7
以上为根据电感量和磁芯截面积计算最电感量L(uH)磁芯有效截面积Ae(mm~2)匝数Nmin气隙大小lg(mm) 16919.18240.082105835
以上根据电感量、匝数、有效截面积计算输入电压(V)单相占空比D开关频率F(Hz)磁通密度Bm(T) 480.51500000.11
以上为推挽、桥式变压器原边匝数输入电压(V)单相占空比D开关频率F(Hz)磁通密度ΔB(T) 480.53000000.25
以上为正激变压器原边参数计算
输出电流Io(A)纹波系数K输出电感量L(uH)
6.50.534.46153846 CK电路电感量
最小匝数Nmin
9.855072464
计算最小匝数
积计算气隙大小
磁芯有效截面积Ae(mm~2)原边匝数
89.78.10783419
边匝数计算
磁芯有效截面积Ae(mm~2)原边匝数
89.7 3.56744705
数计算。
反激式开关电源变压器是这么计算的于法拉弟电磁感应定律,这个定律是在一个铁心中,当磁通变化的时候,其会产生一个感应电压,这个感应电压=磁通的变化量/时间T 再乘以匝数比,把磁通变化量换成磁感应强度的变化量乘以其面积就可以推出上式来,NP=90*4.7 微秒/32 平方毫米*0.15,得到88 匝0.15 是选取的值,算了匝数,再确定线径,一般来说电流越大线越热,所以需要的导线就越粗,需要的线径由有效值来确定,而不是平均值。
上面已经算得了有效值,所以就来选线,用0.25 的线就可以,用0.25 的线,其面积是0.049 平方毫米,电流是0.2 安,所以其电流密度是4.08,一般选定电流密度是4 到10 安第平方毫米。
若是电流很大,最好采用两股或是两股以上的线并绕,因为高频电流有趋效应,这样可以比较好。
第六步,确定次级绕组的参数、圈数和线径。
原边感应电压,就是一个放电电压,原边就是以这个电压放电给副边的,看上边的图,因为副边输出电太为5V,加上肖特基管的压降,就有5.6V,原边以80V 的电压放电,副边以5.6V 的电压放电,那么匝数是多少呢?当然其遵守变压器那个匝数和电压成正比的规律,所以副边电压=NS*(UO+UF)/VOR,其中UF 为肖特基管压降,这个副边匝数等于88*5.6/80,得6.16,整取6 匝,再算副边的线径,当然也就要算出副边的有效值电流,下图是副边电流的波形,有突起的时间是1-D,没有突起的是D,刚好和原边相反,但其KRP 的值和原边相同,这个峰值电流就是原边峰值电流乘以其匝数比,要比原边峰值电流大数倍。
第七步,确定反馈绕组的参数。
反馈是反激的电压,其电压是取自输出级的,所以反馈电压是稳定的,TOP。
反激变压器初级电感量计算
反激变压器是一种常用于电源和功率放大器中的电路,其主要作用是将直流电转换为交流电。
在设计和制造反激变压器时,需要对其初级电感进行计算,以确保电路的正常运行和性能稳定。
初级电感是指反激变压器中用于储存电能的电感元件,通常为线圈。
其大小和性能会直接影响反激变压器的输出电压、电流和效率等参数。
因此,准确计算初级电感是反激变压器设计中非常重要的一步。
初级电感的计算方法有多种,包括公式法、仿真法和试验法等。
其中,公式法最为简单和直接,通常用于初步估算电感大小。
其计算公式如下:
L = (Vin × D) / (f ×ΔI)
其中,L为初级电感;Vin为输入电压;D为占空比;f为开关频率;ΔI为电流脉宽。
需要注意的是,以上公式仅适用于理想情况下的反激变压器,实际电路中可能存在各种损耗和非线性因素,因此需要结合实际情况进行修正和调整。
总之,反激变压器初级电感的计算是反激变压器设计的基础,需要仔细考虑和合理选择,以确保电路的稳定性和可靠性。
- 1 -。
变压器初、次级线圈匝数比的计算
变压器初、次级线圈匝数比的计算
正激式开关电源输出电压一般是脉动直流的平均值,而脉动直流的平均值与控制开关的占空比有关,因此,在计算正激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D,把占空比D 确定之后,根据(1-77)式就可以计算出正激式开关电源变压器的初、次级线圈的匝数比:
Uo = Ua =nUi 乘以Ton/T = Upa 乘以D 整个周期(1-77)
由(1-77)可以求得:
n=Uo/Ui*T 变压器匝数比(1-97)
上式中,n 为正激式开关电源变压器次级线圈与初级线圈的匝数比,即:n = N2/N1 ;Uo 为输出直流电压,Ui 为变压器初级输入电压,D 为控制开关的占空比。
在正常输出负载的情况下,正激式开关电源控制开关的占空比D 最好取值为0.5 左右。
这样,当负载比较轻的时候,占空比D 会小于0.5,虽然储能滤波电感会出现断流,储能滤波电容充电时间缩短,放电时间增加,但由于输出电流比较小,储能滤波电容充、放电的电流也很小,所以在电容两端产生的电压纹波不会增大,反而减小;当输出负载比较重的时候,控制开关的占空比D 会大于0.5,此时流过储能滤波电感的电流为连续电流,输出电流增大,储能滤波
电容充电的时间增加,放电的时间缩短,因此,电容两端产生的电压纹波也不会增大很多。
因此,如果正激式开关电源电路中的储能滤波电感和储能滤波电容充电以及控制开关占空比,三者取得合适,输出电压纹波会很小。
正激式开关电源变压器次级反电动势能量吸收反馈线圈N3 绕组与初线圈N1 绕组的匝数比n 一般。
开关电源反激式变压器计算公式与方法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]原边电感量:Lp =(Dmax * Vindcmin)/ (fs * ΔIp)开关管耐压:Vmos =Vindcmax+开关管耐压裕量(一般用150V)+Vf*反激电压(Vf)的计算: Vindcmin * Dmax = Vf *(1- Dmax)原边与副边的匝比:Np / Ns = Vf / Vout原边与副边的匝比:Np / Ns = (Vdcmin * Dmax)/ [Vout * (1-Dmax)]原边电流:[1/2 * (Ip1 + Ip2)] * Dmax * Vindcmin = Pout / η磁芯:AwAe = (Lp * Ip2^2 * 10^4 / Bw * Ko * Kj) *原边匝数:Np = (Lp * Ip^2 * 10^4 )/ (Bw * Ae)气隙:lg = π * Np^2 * Ae * 10^-8 / LpLp:原边电感量, 单位:HVindcmin:输入直流最小电压,单位:VDmax:最大占空比: 取值~Fs:开关频率 (或周期T),单位:HzΔIp:原边电流变化量,单位:AVmos:开关管耐压,单位:VVf:反激电压:即副边反射电压,单位:VNp:原边匝数,单位:T)Ns:副边匝数,单位:T)Vout:副边输出电压,单位:Vη:变压器的工作效率Ae:磁芯截面积,单位:cm2Ip2:原边峰值电流,单位:ABw:磁芯工作磁感应强度,单位:T 取值~Ko:窗口有效用系数,根据安规的要求和输出路数决定,一般为~Kj:电流密度系数,一般取395A/ cm2(或取500A/cm2)Lg:气隙长度,单位:cm变压器的亿裕量一般取150V什么是反激电压假定原副边的匝比为n,在原边开关管截止时,开关管的高压端电压为Vin(dc)+nVo, nVo即为反激到原边的电压。
环形电感高频变压器计算
环形电感和高频变压器是电子电路中常见的组件,它们在电路
设计中起着重要的作用。
首先,让我们来看看环形电感的计算。
环
形电感通常用于滤波、阻抗匹配和能量存储等应用中。
它的电感值
可以通过其线圈的结构、材料和匝数来计算。
一般来说,环形电感
的电感值可以通过下面的公式来计算:
L = (μ N^2 A) / l.
其中,L是电感值,μ是材料的磁导率,N是匝数,A是截面积,l是磁路长度。
这个公式可以帮助我们计算出环形电感的电感值,
从而在电路设计中使用。
接下来,让我们来看看高频变压器的计算。
高频变压器通常用
于变换电压、隔离电路和适配器等应用中。
在设计高频变压器时,
需要考虑到匝数、磁芯材料、工作频率等因素。
变压器的设计需要
满足一定的电压变换比和功率传输要求。
计算高频变压器的关键参
数需要考虑到磁芯的磁导率、匝数比、工作频率等因素。
一般来说,可以通过以下公式来计算高频变压器的参数:
Vp/Vs = Np/Ns.
其中,Vp和Vs分别是主辅线圈的电压,Np和Ns分别是主辅线圈的匝数。
通过这个公式,可以计算出变压器的匝数比,从而满足设计要求。
总的来说,环形电感和高频变压器的计算涉及到电磁学、电路理论和材料科学等多个领域的知识。
在实际设计中,需要综合考虑这些因素,以确保电路的性能和稳定性。
希望这些信息能够帮助你更好地理解环形电感和高频变压器的计算方法。
一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数 VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比D≌0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。
磁环电感量和匝数关系1. 引言磁环电感量和匝数之间的关系是电磁学中一个重要的研究课题。
磁环电感量是指磁环在电流通过时所产生的磁场对电流的阻抗,而匝数则是指电流通过磁环的圈数。
了解磁环电感量和匝数之间的关系可以帮助我们更好地设计和优化电感器、变压器等电磁设备。
本文将详细介绍磁环电感量和匝数的定义、计算方法以及它们之间的关系。
2. 磁环电感量的定义和计算方法磁环电感量是指磁环在电流通过时所产生的磁场对电流的阻抗。
磁环电感量的计量单位为亨利(H)。
在计算磁环电感量时,需要考虑磁环的几何形状、材料特性以及电流的强度等因素。
2.1 磁环的几何形状磁环的几何形状对磁环电感量有很大的影响。
一般来说,磁环的形状可以分为圆形、方形、矩形等。
不同形状的磁环对电磁场的分布和磁感应强度有所差异,因此磁环电感量也会有所不同。
2.2 磁环的材料特性磁环的材料特性对磁环电感量同样起着重要的作用。
磁环的材料一般是铁氧体、镍铁合金等,这些材料具有较高的磁导率和磁饱和磁感应强度。
磁导率越高,磁环电感量越大;磁饱和磁感应强度越大,磁环电感量越小。
2.3 电流的强度电流的强度是计算磁环电感量的另一个重要因素。
电流的强度越大,磁环电感量也会越大;反之,电流的强度越小,磁环电感量也会越小。
2.4 磁环电感量的计算方法根据磁环的几何形状、材料特性和电流的强度,可以使用以下公式计算磁环电感量:L=μ0⋅μr⋅N2⋅Al其中,L表示磁环电感量,μ0为真空中的磁导率(4π×10−7 T⋅m/A),μr为磁环的相对磁导率,N为电流通过磁环的匝数,A为磁环的截面积,l为磁环的长度。
3. 匝数与磁环电感量的关系匝数是指电流通过磁环的圈数,它与磁环电感量之间存在着一定的关系。
下面将介绍匝数与磁环电感量之间的两种常见关系。
3.1 直线关系在一定范围内,匝数和磁环电感量之间呈直线关系。
当匝数增加时,磁环电感量也会相应增加;当匝数减少时,磁环电感量也会相应减少。
反激式开关电源变压器初级线圈电感量的计算
反激式开关电源与正激式开关电源不同,对于如图1-19的反激式开关电源,其在控制开关接通其间是不向负载提供能量的,因此,反激式开关电源在控制开关接通期间只存储能量,而仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。
在控制开关接通期间反激式开关电源是通过流过变压器初级线圈的励磁电流产生的磁通来存储磁能量的。
根据(1-98)式和(1-102)式,当控制开关接通时,流过变压
器初级线圈的最大励磁电流为:
(1-123)式就是计算反激式开关电源变压器初级线圈电感的公式。
式中,L1为变压器初级线圈的电感,P 为变压器的输入功率,Ton为控制开关的接通时间;I1m为流过变压器初级线圈的最大励磁电流,I1m= 2I 1,I1为流过变压器初级线圈的励磁电流(平均值,可用有效值代之)。
由此可知,在计算反激式开关电源变压器的参数时,不但要根据(1-120)式计算变压器初级线圈的最少匝数,还要计算变压器初级线圈的电感量。
当变压器初级线圈的最少匝数确定以后,变压器初级线圈的电感量就只能再由选择变压器铁心气隙的大小来决定,或由选择变压器铁心的导磁率来决定。
1-7-3-2-3.变压器初、次级线圈匝数比的计算
图1-19,反激式开关电源在控制开关接通期间是不输出功率的,仅在控制开关关断期间才把存储能量转化成反电动势向负载提供输出。
反激式开关电源变压器次级线圈输出端一般都接有一个整流二极管,和一个储能滤波电容。
由于储能滤波电容的容量很大,其两端电压基本不变,变压器次级线圈输出电压uo相当于被整流二极管和输出电压Uo进行限幅,因此,被限幅后的剩余电压幅值正好等于输出电压Uo的最大值U p,同时也等于变压器次级线圈输出电压uo的半波平均值Upa。
由于反激式变压器开关电源的输出电压与控制开关的占空比有关,因此,在计算反激式开关电源变压器初、次级线圈的匝数比之前,首先要确定控制开关的占空比D。
把占空比D确定之后,根据(1-110)式就可以计算出反激式开关电源变压器的初、次级线圈的匝数比。
根据(1-110)式
(1-110)式和(1-124)式中,Uo为反激式变压器开关电源的输出电压,Ui变压器初级线圈输入电压,D 为控制开关的占空比,n = N2/N1为变压器次级线圈与初级线圈的匝数比。
在正常输出负载的情况下,考虑到电源开关管的耐压问题,反激式开关电源控制开关的占空比D的最大值一般都小于0.5。
因此,反激式变压器开关电源变压器次级线圈大部分时间都是工作在断流状态,如图1-2 1。
当开关电源变压器次级线圈出现断流时,流过负载电流将全部由储能滤波电容来提供,电容两端产生的电压纹波会增大很多,并且输出电压也会降低。
因此,在考虑变压器次级线圈与初级线圈的匝数比的时候,也要把这个因数一同进行考虑,最好在变压器次级线圈与初级线圈的匝数比n的基础上再乘一个略大于1的系数K。
系数K一般取1.1~1.3,与占空比的取值有关,当占空比很小时,K值可取大一些。
这里顺便提一下,变压器线圈漆包线的电流密度一般取每平方毫米为2~3安培比较合适。
当开关电源的工作频率取得很高时,电流密度最好取得小一些,或者用多股线代替单股线,以免电流在导体中产生趋肤效应,增大损耗使导线发热。
另外,目前绕制变压器使用的漆包线大部分都不是纯铜线,因此电阻率相对比
较大,把这些因素一起考虑,电流密度更不能取高。