当前位置:文档之家› 燃烧器火焰调节原则

燃烧器火焰调节原则

燃烧器火焰调节原则
燃烧器火焰调节原则

Basic Principles of Flame Shaping火焰形状调节基本原理

Reading the mass flow meters and manometers indication, at every step of the adjustment, will allow the operator to perform an easier and more organized procedure. 操作员在每个调整过程中通过流量和压力表变化作为依据,这样才能更容易和更有依据的对火焰形状进行调整。

With the high flexibility new main burner, the basic principles of flame shaping must be noted at all times, in order to prevent damage to the kiln refractory lining. For this procedure, the operator must always start up with a long and narrow flame and then begin shortening the flame, also noting that kiln shell temperature response is not immediate and therefore adjustments should be made with the appropriate time delay. 新型燃烧器调整起来非常灵活,所以火焰形状调节过程中要全时严格遵守调节原理,防止损坏回转窑内耐火砖。在调节火焰形状过程中,操作员必须总是以细长火焰作为初始状态,然后开始对火焰形状进行调节,在调节过程中注意回转窑筒体温度是否有变化,同时还要注意回转窑筒体温度的变化不会随着火焰调节后会立即改变,筒体温度有一定的时间滞后,因此调整时一定要注意延迟时间。

External Air 外风

The external air increases the overall turbulence level of the flame, increases the participation of axial velocity components in the primary airflow and increases the secondary air infiltration (external recirculation) into the flame. 外风增加会增加火焰整体的紊流强度,同时增加一次风比例和轴流风速度,同时加强了二次风(外部循环风)到吸到火焰中去。

Except during the first hours of kiln heat up, the external air valve will be 100% opened. 除了回转窑刚点火升温的第一个小时外,外风阀门要开到100%。

An increase of the external air flowrate will make the flame narrower and, due to its peripheral position, will also give the flame more rigidity and stability. 增加外风流量会使火焰变窄,由于燃烧器周围风速变化,火焰会更硬更稳定。

Tangential Air 切向风

The tangential air increases the participation of the tangential (swirl) velocity components in the primary airflow. The tangential air makes the flame wider and shorter, thus it is important to follow the shell temperatures when using high tangential air flow.切向风主要增加一次风的切向(旋流)风速度。切向风会使火焰更短更粗,因此在增加切向风的同时一定要注意回转窑筒体温度的变化。

It increases the presence of the fuel at the flame recirculation zone and burning zone that is poor in oxygen and rich in reduction species. When the tangential air flow is used, there is a better control of the NOX generation for a same amount of swirl, when compared to Dispersion air. 增加切向风会使燃料在火焰的回旋区和燃烧区的处于缺氧和还原气氛。与分散风相比,使用切向风时,可以在同样旋流风量的情况下更好的控制NOx的生成。

Dispersion Air 分散风

The dispersion air promotes a better dispersion of the fuel cloud and increases the contact between the fuel and the hot secondary air improving the flexibility on the flame adjustment. The dispersion air also promotes an oxygenation of the flame core. 分散风可以促进燃料更好的分散,并加强燃料与二次空气的接触,改善火焰的可调节性。分散风还可以火焰中心的含氧量。

Due to both reasons described above, the use of dispersion air is more efficient to promote the dispersion of fuel

cloud and to accelerate the combustion. 由于上述两个原因,分散风的可以加强燃料的分散和燃烧。

As well as the tangential air, the dispersion air is used to widen and to shorten the flame. This situation can promote extremely high temperatures at the burning zone, thus it is important to follow the shell temperatures when using high dispersion air flow.不管是切向风还是分散风,会使火焰发散和变短。增加切向风和分散风会使燃烧区温度更高,因此在增加切向风的同时一定要注意回转窑筒体温度的变化。

Cooling Air 冷却风

The cooling air is used to cool the burning tip and improve the solid wastes dispersion. The cooling air promotes an oxygenation in the root of the flame, increases turbulence level, internal recirculation and increases the participation of axial velocity components in the primary airflow. 冷却风用于冷却燃烧器端部和改进固体燃料的分散性。冷却风改善火焰根部的含氧量,增加扰动,内部循环和增加一次风的轴向风速。

If the flame is already intense, an increase of the cooling air flowrate will shorten the flame, because in this situation the thermal effect of combustion acceleration (by the better mixture between fuel and air) will be predominant to the aerodynamic effect of the increase of axial velocity components (which otherwise would make the flame longer). 如果火焰燃烧已经很剧烈,增加冷却风流量会使火焰变短,因为在这种情况下燃烧热效应会更好(使得燃料和空气更好的混合),增加轴流风速会使空气动力学效应更好(否则会使火焰更长)。

Typical cases of flame adjustment 典型的火焰调整

The reading of the pressure transmitters and flowmeters installed in the external, tangential and internal air circuit allow an easy and organized procedure during the burner adjustment. The indications below are qualitative only. A table with the burner settings for kiln heat-up and normal operation will be made in the start up assistance of an engineer from GRECO. 分别安装在外风,切向风和内风管路上的压力变送器和流量计,可以在燃烧器火焰调解过程中方便读取和进行调节。下面内容只是定性的方法。厂家工程师在回转窑升温和正常运行时会提供提供针对该项目使用燃烧器的调整表

How to Obtain a Short and Narrow Flame如何获得短细火焰

The tangential and dispersion airflows must be moderate in order to guarantee the minimum required level for internal recirculation (to keep the flame close to the burner tip) and the external airflow must be high enough to proportionate high turbulence and external recirculation that provides secondary air infiltration into the flame. 切向风和分散风一定要适中,确保火焰内部循环风量最小(保持火焰靠近燃烧器喷嘴)和外风流量足够大,使得火焰紊流加强,外部循环量增大,增加二次风与火焰的混合。

外风100%;切向风37.5%;分散风37.5%。

This kind of flame is usually used during the normal operation. 这种火焰形状一般用于正常运行。

To obtain this kind of flame, the burning zone and the secondary air must be hot enough and the clinker discharge must be normal. 获得这种火焰形状,烧成带和二次风必须温度足够高,熟料出窑量正常。

Getting the Flame Longer 如何获得长火焰

A reduction of primary airflow (decreasing the blower speed), keeping the proportionality between the shaping air (external, tangential and dispersion air), makes this effect due to the reduction of the overall turbulence level and increasing the combustion time. 减少一次风流量(减少风机转速),保持各影响火焰形状风的比例不变(外风,切向风和分散风),这种调节可以减少紊流强度和增加燃烧时间。

外风75%;切向风25%;分散风25%。

To Shorten the Flame如何获得短焰

It’s possible to increase the amount of dispersion air, keeping the same flows at the others shaping air channels. This action changes the speed combustion in the flame core, reducing the combustion duration and shortening the flame. 增加分散风流量,保持其他影响火焰形状一次风通道的流量。这种调节改变焰心的燃烧速度,减少燃

料燃烧时间和缩短火焰长度。

外风75%,切向风25%,分散风50%。

This procedure is suggested when it’s desirable to remove a possible combustion ring located at the burning zone.

这种调节建议用于消除烧结区域的结圈。

It’s possible to increase the amount of cooling air, keeping the same flows at the others shaping air channels. This

action changes the speed combustion in the flame core, reducing the combustion duration and shortening the

flame. This is more effective when burning solid wastes. 有必要增中心加冷却风量,保持其他影响火焰形状一

次风通道的流量。这种调节改变焰心燃烧速度,减少燃料燃烧时间和缩短火焰长度。这种调节对燃烧固体回收燃料比较有效。

How to Obtain a Short and Wide Flame 如何获得短粗火焰

The tangential airflow must be high enough and the external and dispersion airflows must be moderate to avoid a too wide flame. 切向风必须达到一定程度流量,外风和分散风流量必须适量,避免出现太粗的火焰。

外风75%,切向风50%,分散风50%。

Specifically, this procedure is used in case of kiln cool down (“pushing”). This adjustment avoids not prepared material to cross the burning zone and when it’s not suitable a high external airflow due to the infiltration of “cold” secondary air into the flame. Also, this setting helps to shorten the time to heat up the burning zone again. 具体来说,这种调节适用于回转窑停窑/保温状况。这种火焰形状用于煅烧带物料较少(或没有),入窑二次风温度低的情况。同时,可以缩短停窑后烧成带温度降低后的快速升温。

This kind of flame could be too aggressive to the bricks and must be performed only by experienced personal and for short time. 这种火焰有可能扫到耐火砖,必须由有经验人员进行调整,而且不要长时间直接烧耐火砖。

How to Obtain a Long and Narrow Flame 如何获得细长火焰

The tangential airflow must be low enough and the external airflow must be high enough. 切向风必须足够少,外风足够多。

外风87.5%,切向风12.5%,分散风12.5%。

This setting can be used when there are hot spots on kiln shell between 5 and 30 m from discharge end. 这种火焰

调节适用于窑头5至30米红窑情况。

燃烧器工作原理及调整方法

燃烧器工作原理及调整方法 窑头燃烧器对窑内熟料的煅烧有着举足轻重的作用,其性能好坏调整是否合理直接影响窑内的煅烧情况以及窑衬的使用寿命。合理调整燃烧器的外风、内风和中心风的蝶阀开度,提高煤粉着火前区域局部煤粉浓度,加强燃烧器高温气体的内、外,回流,强化一次风充分混合达到完全燃烧。但必须注意,内风不能调整太大,否则可能导致煤粉在着火前就已被稀释,这样反倒不利于着火,或者可能引起高温火焰,冲刷窑皮,导致窑皮脱落,不利于保护耐火砖。内风也不能调整过小,否则煤粉着火后不能很快与空气混合,就会导致煤粉反应速率降低,引起大量的一氧化碳不能及时地氧成二氧化碳,造成窑内还原气氛。另外:外风也不宜调整过大,否则会造成烧成带火焰后移,窑内窑尾部分结厚窑皮或在过渡带附近出现结圈、结蛋现象,外风也不要太小,否则不能产生强劲的火焰,不利于煅烧出好质量的熟料。因此应根据具体情况选择合理的操作参数,根据煤质的好坏、 细度、水分、二次风温度、窑内情况以及圣路易烧性的好坏而定,通过调整最佳的外风、内风和中心风的比例关系,及燃烧器在窑口附近的合理位置,确定适宜的煅烧制度。 1.燃烧器的定位,许多公司的燃烧器采用“光柱法”定位,控制准确,但操作不方便。最好采用位置标尺在窑头截面上定位,一般

控制在窑头截面X轴稍偏右位置或稍偏第四象限的位置效果较好。在特殊工艺情况下可做少许微调。 2.火焰形状对煅烧的影响燃烧器设计的最佳火焰形状是轴流风和旋流风在(0.0)位置(此时各风道管通风量最大),这时的火焰形状完整而有力。燃烧器横向分布. 调整火焰的形状是通过调整各风道的通风截面积来实践的。在(0.0)位置时,轴流风和旋流风的通风截面积达到最大。火焰形状是通过旋流风和轴流风的相互影响、相互制约而得到,火焰形状的稳定是通过中心风来实现的,中心风的风量不能过大,也不能过小。一般中心风的压力应该控制在6-8KPa 之间比较理想,旋流风在24-26KPa,轴流风在23-25KPa,各风道的通风截面积不小于90%的情况下,对各参数进行调整。要想得到火焰形状的改变需要有稳定的一次风出口压力来维持,通过稳定燃烧器上的压力,改变各支管道的通风截面积来达到改变火焰形状的目的。具体火焰形状的变化。在调整火焰形状的时候,要杜绝走极端的现象,当火焰过粗的时候,此时也会很长、很软。当火焰过细的时候,火焰又会太短,烧成带要求火焰的形状完整、活泼、有力,这就需要我们长期的观察和总结经验。 3.煤质变化对火焰形状的影响: (1)当煤灰分变高时,煤粉的燃烧速度变慢,火焰变长,火焰燃烧带变长,应该:①提高二次风温度或利用更多的二次风,加强一次风和二次风与煤粉的混合程度;②降低煤粉的细度和水分;③改变轴

燃烧器控制器LFL1说明

我国天然气和煤制气(原料为煤)资源丰富,且属于洁净能源,顾有着良好的社会经济效益。燃气燃烧机符合我国产业政策,市场前景很好,大有发展前途。然而在燃气燃烧机研制设计中,燃气特性 — 易燃、易爆及毒性,安全控制的首要问题。下面介绍一下燃气燃烧机的安全控制要求:根据燃气在炉膛内的燃烧特性,对其安全控制要求内容主要有预吹风、自动点火、燃烧状态监控、点不着火的保护、熄火的保护、燃气压力高低限保护、空气压力不足保护、断电保护、预防燃气泄漏事故的措施等。 1.预吹风 燃烧机在点火前,必须有一段时间的预吹风,把炉膛与烟道中余气吹除或稀释。因为燃烧机工作炉膛内不可避免地有余留的燃气,若未进行预吹风而点火,有发生爆炸的危险.必须把余气吹除干净或稀释,保证燃气浓度不在爆炸极限内。预吹风时间与炉膛结构及吹风量有关一般设置为15-60秒 2.自动点火 燃气燃烧机宜采用电火花点火,便于实现自动控制。可用高压点火变压器产生电弧点火,要求其输出能量为:电压≥3.5K V、电流≥15mA,点火时间一般为:2~5秒。 3.燃烧状态监控 燃烧状态必须予以动态监控,一旦火焰探测器感测到熄火信号,必须在极短时间内反馈到燃烧机,燃烧机随即进人保护状态,同时切断燃气供给。火焰探测器要能正常感测火焰信号,既不要敏感,也不要迟钝。因为敏感,燃烧状态如有波动易产生误动作而迟钝,反馈火焰信号滞后,不利于安全运行。一般要求从熄火到火焰探测器发出熄火信号的响应时间不超过0.2秒。 4.点不着火的保护 燃烧机点火时,通入燃气,燃气着火燃烧。点火动作要求发生在燃气通入前,先形成点火温度场,便于着火燃烧。如果点不着火,火焰探测器感测不到火焰信号,燃烧机进入保护状态。从点火到进入保护状态的时间要适当,既不能过短也不能过长。若过短,来不及形成稳定火焰;过长,点不着火时造成大量燃气时入炉膛。一般要求在通入燃气2-3秒,燃烧机对火焰探测器感测的火焰信号进行判断,未着火则进入保护状态,着火则维持燃烧。 5.熄火保护

燃烧器

燃烧器 一、燃烧机的工作原理 符合燃烧机工作条件时,鼓风机马达开始转动,带动同轴的风扇叶转动,因离心力的原理,空气被高速旋转的叶轮送出,因蜗壳式的风机原理,送出的空气被吹向燃烧机的前方出口,在混合室内和进入的燃料充分混合(燃料分为燃气和燃油)。而风量的控制是由风门驱动器带动风门挡板来完成,有的燃烧机风量挡板安装在鼓风机的吸入口进行控制,有的燃烧机安装在鼓风机的吹出口设置风挡进行控制。 当采用气体燃料时,燃气经过控制阀进入混合室,与空气混合,利用控制阀的开度来控制燃气量的多少;当采用燃油为燃料时,燃料通过电磁阀、油管进入喷油嘴,由喷油嘴喷出雾化状的燃油,在混合室内与空气混合,被空气进一步吹散、雾化,再进入炉膛内燃烧。油路系统中有节流阀或控制燃油的压力,来改变喷嘴的出油量,控制火焰的大小。 燃烧机无论是燃油还是燃气,在和空气充分混合后,送入炉膛内燃烧,都必须有点火系统,在燃烧器上装有升压变压器,当初级通入电源后,变压器次级产生高压(8000~14000V),通过高压电缆送到打火电极上,点火电极击穿空气进行放电,形成电弧,点燃送入混合好的燃料。分为两种形式,一种是两根,当通电时两根点火棒之间放电;另一种是一根,通电时,点火棒对地放电。 燃烧器上装有空气压力继电器,它用来感受风机风量的大小。当风量达不到预先设定的要求时,压力继电器断开电路,燃烧器上程控器显示故障,停止燃烧,保证安全运行。压力继电器分为两种,一种是采用负压的方式,在风机的进风口处装有一根管,管接至负压空气继电器,利用鼓风机风速大,抽力形成负压,使负压继电器动作;另一种采用正压,安装在风机出风的方向,装有一根管,连接至正压空气压力继电器上,当风机鼓风时,有风进入正压空气继电器,形成一个压力,使继电器动作。 燃烧机上还装有火陷监视系统,俗称电眼,在点火前进行检测和在点火后进行火焰监控。在应该检测到火焰时,若检测不到火焰,则燃烧机程控器显示障,并切断燃料供应系统,防止爆燃。 二、燃油燃气燃烧器的构成 1、空气供给系统:鼓风马达、鼓风机叶轮、防护网、风门挡板。 2、燃气燃烧机供给系统:专用球阀、过滤器、调压阀、燃气操纵阀、压力 继电器、燃气蝶阀等。 3、燃油燃烧机供给系统:油泵、油管路、油用电磁阀、喷油嘴、油压控制 器、离合器等。 4、点火系统:高压点火变压器、高压点火线、点火电极等。 5、保护系统:火焰检测器、空气压力继电器、燃气压力继电器等。 6、进给系统:伺服马达。 三、燃油燃气燃烧器控制程序

皮拉德最新型燃烧器工作原理

燃烧器工作原理 ROTA2 是一种专用于新一代回转窑燃烧器的新型加热设备。这种设备具备ROTAFLAM 燃烧器的高动量以及调节简单的优点。 ?保持空气动量恒定的情况下,通过改变旋流器的轴向位置进行旋流调节。 ?通过燃烧器的进口压力控制动量。 与ROTAFLAM 类似,ROTA2 的设计方案源自锅炉专用型“GRC”型Pillard (Pillard 专利号No. 71.03504)燃烧器的设计、使用经验。其特点为: ?采用中央孔的旋流效应。 ?外部轴向气流。 总布局原理 粉末状燃料(煤、石油焦、褐煤、无烟煤)通道的总布局——下称煤粉通道——位于中心空气与单通道空气之间(带有一个轴向出口与一个径向出口):?使火焰基部产生再循环空气漩涡,即使在回转窑冷态启动时这种状态也能保持良好的稳定性。 ?通过出口一次风流量使火焰宽度处于可控状态。 ?产生富燃火焰(按照空气动力学形式聚缩) 火焰中心达到这种状态后能够明显减少NOx 物质的形成。 轴向高动量原理 在外部轴向布置的一次风喷射口产生的强大脉冲激发下,可产生一个逐步与二次风混合的过程。这些轴向一次风喷口专用于在保持火焰直径可控的同时,优化二次风的吸收情况。 旋流调节原理 在保持一次风流量(因此,也可保持脉冲)恒定的情况下,通过特殊旋流调节器可调节火焰形状。

7.3 - 描述(图 1、2) ROTA2 燃烧器可在下列配置情况下工作: ? 采用粉末状燃料,如煤、石油焦、褐煤、无烟煤(包括一只点火枪) ? 采用油或者气体 ? 采用任何比例的混合燃料 ? 采用液体和/或固体替代燃料 根据燃料类型,ROTA 2 燃烧器通常用于消耗 7 – 11% 的纯一次风。消耗量将在燃烧器运行期间进行优化。 Rota 2 燃烧器包括: 图 1:燃烧器喷嘴 (1) 套管 (3) (2) (1)

燃烧器的点火装置

燃烧器的点火装置 目前燃烧器的点火一般采用自动点火,方式有小火点火、电火花点火、电热丝点火等,家用燃气具以电火花点火方式为主。 1.小火点火 小火点火是一种早期的简单点火装置。机理是由点火源向燃气混合物传递热量。小火点火装置结构简单、点火可靠。但有小火长明,即浪费燃气又有被风吹灭的可能。 2.电火花点火 电火花点火又称为火花点火,原理是由能量来控制点火,即高压电火花点火。因为从正常燃烧过程的时间来讲,火花的放热实际是瞬时的,所以火花点火则以“点火能量”来表示,燃气与空气混合物所需要点火能量不超过火花本身释放的能量就能点燃,否则不能点燃。 为产生可靠的火花点火,需要注意电压发生器的设计、电极的间隙及其几何形状和高压线路中用的导线。 电火花点火可分为直接点燃主燃烧器和先点燃长明火再引燃主 燃烧器。电火花点火系统按照电源类型又可分为以下几种: (1)压电陶瓷点火 压电陶瓷点火器一般应用到民用燃气具。它受到一机械压力而产生电压,该现象为“压电现象”。利用这个压电效应,发生火花,由此来使燃气燃烧,称为压电陶瓷点火。

压电陶瓷是50年代才被发现的一种新型无机材料,用这种材料制成的点火装置结构紧凑,点火率高,工艺简单,成本低,可靠性和稳定性都比较好。据实验,一只压电陶瓷元件可连续打火50000次左右,若按每天打火4次,命中率为80%计算,则一只压电陶瓷可连续使用20年。 压电陶瓷点火器由旋塞部件、高压电线、电极与引火口所组成,工作原理如下图所示。 当使用时,首先扭转旋塞的旋钮,这时旋塞上装的塞子将锤提起,同时渐渐打开旋塞,从引火口引出燃气。再扭转旋塞,提着锤的塞子脱落,锤利用螺旋弹簧的复原力,撞击由封入压电晶体的盒子的盖板。此时,压电晶体受到冲击发出高压电,再由高压导线引导到放电用电极(火花塞)上发出火花。因火花塞所引导的是正电,引火口本身为负导线,故在其间的空中放电而发生火花。这时从引火口流出的燃气已形成具有着火范围的混合气,因此被点燃。

(完整版)燃烧器技术协议(1版)

新疆黑山煤炭化工有限责任公司煤气发电项目2×65t/h锅炉低氮燃烧器及管路系统 技 术 协 议 买(需)方: 卖(供)方:

二O一五年八月

目录 一、总则 (1) 二、供货范围、设计界限及设备性能介绍 (4) 三、技术资料及交付进度 (15) 四、进度 (15) 五、包装和运输 (16) 六、监造、检查和性能验收试验 (16) 七、技术服务 (16) 八、安装、调试和验收方案 (17) 九、质量保证及售后服务承诺 (18) 十、其它 (19)

技术协议 **有限公司(以下简称“买方”)与(以下简称“卖方”) 就新疆黑山煤炭化工有限责任公司兰炭尾气发电工程2×65t/h锅炉低氮燃烧器及管路的设计、制造、供货与技术服务相关事宜,经双方代表充分友好协商,达成以下技术协议。 一、总则 1.1本技术协议按锅炉相关技术参数及要求编写。 1.1.1燃烧系统设计能保证大于20%负荷时,低氮燃烧器不发生回火、 脱火、灭火事故。确保不发生煤气燃爆事故,不会造成停炉。 1.1.2低氮燃烧器设计能确保在各种工况下能稳定燃烧,并具有防止 回火功能。 1.1.3点火系统实现程控及安全联锁。 1.1.4为保证燃烧安全,留有火焰检测装置接口,配置有完备的火检 设备,并与煤气管道上的快速切断阀形成联锁控制,保证锅炉的 安全。 1.1.5低氮燃烧器喷嘴的使用寿命不低于设备经安装试验合格后三 年,且便于检修。 1.1.6低氮燃烧器在热态运行下,其调节装置不受热膨胀的影响而产 生卡涩现象,应灵活可靠。 的措施。 1.1.7低氮燃烧器的设计、布置考虑降低燃烧中产生NO X 1.1.8点火器装置在出厂前成套调试合格,并提供证明文件。 1.1.9就地安装柜及阀门均要求防爆。 1.1.10必须有同类产品运行业绩或型式试验证书。 1.2本技术协议中规定了最低限度的技术要求,并未规定所有的技术要求和 适用的标准,卖方将提供一套满足本技术协议和所列标准要求的高质 量产品及其相应服务。产品必须同时满足国家关于安全、环境保护的 强制性标准和规范要求。 1.3供方须执行本协议所列标准。有矛盾时,按较高标准执行。卖方在设备 设计和制造中所涉及的各项规程、规范和标准必须遵循现行最新版本 的标准。

NTFB燃烧器的基本原理及特征

操作维护手册 NTFB燃烧器的基本原理及特征 1.1版

目录 1. 绪论:燃烧器的三个主要功能 (1) 1.1 最小化过量空气系数下空气与燃料的混合。 (1) 1.2 形成与炉膛相匹配的稳定火焰 (1) 1.3 污染物排放的控制:氮氧化物、一氧化碳和颗粒 (1) 2. NTFB燃烧器的运行原理与特征 (2) 3. 燃烧空气动力学原理 (4) 4. 超低氮氧化物排放的超混合系统 (5) 5. NTFB燃烧器的显著特征: (5)

1. 绪论:燃烧器的三个主要功能 1.1 最小化过量空气系数下空气与燃料的混合。 燃烧器是将燃料和空气按所要求的速度,湍流度和浓度送入炉膛,并使燃料能在炉膛内保持着火和燃烧的一个或一组装置。 燃烧器的第一个功能是:确保燃料与空气均匀混合进而在一定的火焰区域内完全燃烧。一般认为,当特定体积的完全燃烧所需的过量空气量降低时,燃烧器的燃烧效率更高。为了得到期望的混合比率,需要一定的动力,此动力来自于燃烧空气流压降与燃料流压降之和。特定体积、特定流速的空气与燃料压降为燃烧器正常工作提供了有用的混合动力。燃烧器火焰区域内的产热有赖于空气与燃料的混合能力:混合愈佳,其火焰愈短。 1.2 形成与炉膛相匹配的稳定火焰 燃烧器的第二个功能是:便捷地点火以产生稳定的火焰,并且能形成与炉膛的形状和尺寸相匹配的火焰,这一点至关重要。通常,火焰形状可以由火焰长度与直径之比加以描述,稳定的火焰一方面取决于壁面效应或临界旋涡效应。另一方面取决于空气的动力学特性与燃料的输入方式。旋涡指输入燃烧器的流体的切向动量与轴向动量之比,旋涡是决定火焰形状的关键参数。为了获得良好的实际效果,必须使火焰形状与炉膛形状相协调,这在水管锅炉中尤为重要,水管锅炉(包括火管锅炉,尤其是快装锅炉)。如果在水冷壁上发生火焰撞击,在撞击点上产生不完全燃烧将导致一氧化碳和其他副产品的生成,并发生猛烈的重燃,使炉子产生振动, 同时水冷壁管也会过烧。 1.3 污染物排放的控制:氮氧化物、一氧化碳和颗粒 空气与燃料的混合比率及分布决定了炉膛内特定的温度和化学组分的浓度。燃烧器的形状、尺寸和流体输入方式对氮氧化物、一氧化碳和颗粒的形成有极大影响。污染物的排放也与燃烧室的结构和受热面的布置密切相关。显然,要有效降低特定炉子的污染物生成,就必须使燃烧器的结构与炉内流量场与温度场有良好地匹配。

燃烧器火焰的稳定性

燃烧器火焰的稳定性 对于预混式燃料气喷嘴,燃料气和空气的混合物从火孔喷出并被点燃后,不一定都能形成稳定的火焰。当流速很低时,火焰可能逆流传播进火孔,使燃烧在喷嘴内进行。这种现象称为回火。当流速很高或:;很大时,火焰将被吹离喷头,后面随之而流出的燃料气和空气混合物根本不能着火。这种现象称为脱火或吹熄。 嫩料气和空气混合物自火孔喷出时,其射流截面上的流速分布是中心高,四周低。而火焰传播速度都是均匀的(只有在靠近壁面的淬熄距离内火焰传播速度为零),有些地方混合物的流速正好等于火焰传播速度,那里就形成一个固定的火焰锋面,即作为整个火焰策源的所谓点火环。只有在这种情况下火焰才是稳定的。 当天然气和空气混合物以层流状态自火孔喷出时,其火焰特性如图7-5所示。从该图可以看出,α1≈1时,火焰稳定区域并不宽,尤其当。α1>1时,稳定区域更加狭窄。当α1略低于0.75时,火焰的稳定区域比较宽阔,运行比较可靠。当αt=0时,形成扩散火焰,它不可能回火,也不易脱火,火焰极为稳定。

管式炉上使用的气体燃烧器,燃料气和空气混合物在火孔出口处一般都处于流速很高的湍流状态,其流速远远超过上述层流状态的脱火区边界。虽然湍流火焰传播速度比层流的高得多,但仍需采取适当措施来防止火焰脱火。常用的措施有: (1)使燃烧在燃烧道内进行。至少在火焰根部设置然烧道。炽热的燃烧道耐火材料将连续地对可燃混合物进行强迫点燃。 (2)采用α1较低的半预混燃烧器,可以得到较稳定的火焰。 (3)采用多火孔互相交叉喷射,各火孔火焰可互相强迫点燃,保证火焰的稳定性。 (4)缩短燃料气和空气的预混合段长度,有意使其浓度场不均匀,则有些地方燃料气浓度稍高,出现局部区域具有较低α1的工况,可改善火焰稳定性。 (5)采用凹凸不平的燃烧道壁面或火焰附墙壁面,以便产生涡流和回流,使热烟

燃烧器控制器LFL1说明

我国天然气和煤制气(原料为煤)资源丰富,且属于洁净能源,顾有着良好的社会经济效益。燃气燃烧机符合我国产业政策,市场前景很好,大有发展前途。然而在燃气燃烧机研制设计中,燃气特性 — 易燃、易爆及毒性,安全控制的首要问题。下面介绍一下燃气燃烧机的安全控制要求:根据燃气在炉膛内的燃烧特性,对其安全控制要求内容主要有预吹风、自动点火、燃烧状态监控、点不着火的保护、熄火的保护、燃气压力高低限保护、空气压力不足保护、断电保护、预防燃气泄漏事故的措施等。 1.预吹风 燃烧机在点火前,必须有一段时间的预吹风,把炉膛与烟道中余气吹除或稀释。因为燃烧机工作炉膛内不可避免地有余留的燃气,若未进行预吹风而点火,有发生爆炸的危险.必须把余气吹除干净或稀释,保证燃气浓度不在爆炸极限内。预吹风时间与炉膛结构及吹风量有关一般设置为15-60秒 2.自动点火 燃气燃烧机宜采用电火花点火,便于实现自动控制。可用高压点火变压器产生电弧点火,要求其输出能量为:电压≥3. 5K V、电流≥15mA,点火时间一般为:2~5秒。 3.燃烧状态监控 燃烧状态必须予以动态监控,一旦火焰探测器感测到熄火信号,必须在极短时间内反馈到燃烧机,燃烧机随即进人保护状态,同时切断燃气供给。火焰探测器要能正常感测火焰信号,既不要敏感,也不要迟钝。因为敏感,燃烧状态如有波动易产生误动作而迟钝,反馈火焰信号滞后,不利于安全运行。一般要求从熄火到火焰探测器发出熄火信号的响应时间不超过0.2秒。 4.点不着火的保护 燃烧机点火时,通入燃气,燃气着火燃烧。点火动作要求发生在燃气通入前,先形成点火温度场,便于着火燃烧。如果点不着火,火焰探测器感测不到火焰信号,燃烧机进入保护状态。从点火到进入保护状态的时间要适当,既不能过短也不能过长。若过短,来不及形成稳定火焰;过长,点不着火时造成大量燃气时入炉膛。一般要求在通入燃气2-3秒,燃烧机对火焰探测器感测的火焰信号进行判断,未着火则进入保护状态,着火则维持燃烧。 5.熄火保护

燃烧器介绍

燃烧器 - 介绍 燃烧器介绍: 将燃料与空气合理混合,使燃料稳定着火和完全燃烧的设备。燃烧器用于燃烧煤粉、液体燃料和气体燃料的锅炉和工业炉等。燃煤的小型锅炉一般采用层燃方式,不需燃烧器。燃烧器按所燃燃料的不同可分为煤粉燃烧器、油燃烧器和气体燃烧器3类。 煤粉燃烧器分旋流式和直流式两种。 ①旋流式煤粉燃烧器:主要由一次风旋流器、二次风调节挡板(旋流叶片或蜗壳)和一、二次风喷口组成(图1)。 它可以布置在燃烧室前墙、两侧墙或前后墙。输送煤粉的空气称为一次风,约占燃烧所需总风量的15~30%。煤粉空气混合物通过燃烧器的一次风喷口喷入燃烧室。燃烧所需的另一部分空气称为二次风。 二次风经过燃烧器的调节挡板(旋流叶片或蜗壳)后形成旋转气流,在燃烧器出口与一次风汇合成一股旋转射流。射流中心形成的负压将高温烟气卷吸到火焰根部。这部分高温烟气是煤粉着火的主要热源。一次风出口的扩流锥可以增大一次风的扩散角,以加强高温烟气的卷吸作用。 ②直流式煤粉燃烧器:一般由沿高度排列的若干组一、二次风喷口组成(图2),布置在燃烧室的每个角上。燃烧器的中心线与燃烧室中央的一个假想圆相切,因而能在燃烧室

内形成一个水平旋转的上升气流。每组直流式燃烧器的一、二次风喷口分散布置,以适应不同煤种稳定而完全燃烧的要求,有时也考虑减少氮氧化物的生成量。 油燃烧器 它由油喷嘴和调风器组成。油喷嘴安置在调风器轴心线上,将油雾化成细滴,以一定的扩散角(也称雾化角)喷入燃烧室内,与调风器送入的空气相混后着火燃烧。油喷嘴主要有压力雾化和双流体雾化两种。压力雾化油喷嘴由分流片、旋流片和雾化片组成。油压一般为2~3兆帕。油在旋流片内产生高速旋转运动,经中心孔喷出,在离心力的作用下破碎成细滴,经雾化后的油滴平均直径在 100微米以下。双流体雾化油喷嘴利用蒸汽或压缩空气作为雾化介质,使油加速而破碎雾化。用蒸汽作为雾化介质的Y型油喷嘴(图3),因蒸汽通道和油通道成 Y形斜交而得名,它具有负荷调节范围大、蒸汽消耗少的优点。 油燃烧器的调风器除与煤粉燃烧器相似的旋流式和直流式外,尚有一种部分旋流式,即在直流式调风器内布置一个稳焰器,使少量空气(10~20%)流经稳焰器后产生旋转运动,在调风器出口形成中心回流区,使油雾着火稳定,以达到低氧燃烧。 气体燃烧器主要有天然气燃烧器和高炉煤气燃烧器两类。大容量天然气燃烧器大多采用多枪进气平流式。天然气枪放在调风器的空气通道内。高炉煤气燃烧器因高炉煤气发热量较低,着火困难,常在炽热的通道内燃烧,而后喷入燃烧室。 燃气燃烧器介绍 燃气燃烧器介绍: 使燃气和空气分别或混合后进入燃烧区而实现稳定燃烧的装置。燃气燃烧器是民用燃气用具和燃气工业炉的基本组成部分。燃气燃烧器种类繁多。按一次空气系数(预先和燃气混合的助燃空气量与燃气完全燃烧所需的理论空气量之比)分类,有扩散式、大气式和无焰式燃烧器;按空气供给方式分类,有引射式和鼓风式燃烧器;按用气压力分类有低压(5千帕以下)、中压(5~300千帕)和高压燃烧器。 扩散式燃烧器 依靠燃气从火孔逸出后的扩散作用,实现燃气和空气的混合并稳定燃烧的燃烧器。燃气逸出火孔前不同空气预先混合,一次空气系数为0。扩散式燃烧器结构简单、使用方便、火焰稳定。但其燃烧速度较慢、火焰较长,为达到完全燃烧需要较多的过剩空气,因此燃烧温度较低。扩散式燃烧器适用于温度不高但要求温度比较均匀的工业炉和民用燃具。小型扩散式燃烧器也常用作点火器。 大气式燃烧器 预先混合部分空气的燃烧器。一次空气系数通常取0.4~0.7。燃气以一定压力自喷嘴喷出进入混合管(即引射器),借高速喷射形成的负压将周围一部分空气吸入,在混合管中混合后从燃烧器头部火孔逸出而燃烧。大气式燃烧器燃烧比较完全,使用方便,但负荷较大时结构较庞大笨重。多孔大气式燃烧器(图1)广泛用于民用燃具。

燃烧器基本介绍

燃烧器基本介绍

燃烧器常见故障现象的原因分析及排除方法 国内燃烧器由于利雅路,威索,百得,威特等众多国际化品牌的参与,使得使用和维护更加的复杂。所以我们整理了一些燃烧器常见故障现象的原因分析及排除方法和大家交流。 1.能够正常点火但着火几十秒钟后自行熄灭 这种故障现象的典型原因是燃烧器配件的火焰传感器脏污。火焰传感器是一个光敏电阻当受光照射时其自身电阻值下降呈低阻抗状态当无光照射时电阻值上升呈高阻抗状态。燃烧器中的控制器根据火焰传感器的电阻值来判断燃烧过程是否持续若燃烧停止火焰传感器呈高阻抗则立即停止供油以防止未燃烧的柴油积存。火焰传感器探头位于燃烧器的风道内,由于冒黑烟、回火、送风尘土等原因其表面很容易脏污从而失去感光功能。检查传感器探头,必要时用酒精或清洗剂清洁其表面。 2.着火正常但排气烟色不正常 喷入燃烧器的柴油是一边混合一边燃烧的当送风量合适时雾化CO2和水蒸气排气是无色的。当送风量不足时会造成柴油不完全燃烧生成CO和碳粒从而出现排气冒黑烟现象。但如果进风量过大强大的风力可能会把来不及燃烧的油雾吹走,形成白色烟雾排出。 排气冒黑烟的常见原因是燃烧的进风门开度过小,冒白烟的见原因是进风门开度过大,这两种情况均应重新调整进风门。调整时可一边观察排气烟色一边调节风门的开度直到排气烟色接近于无色。 排气冒黑烟还有一种原因是柴油雾化不良,油雾中含有较大的液滴,不能与空气充分混合由于局部燃烧不完全而产生黑烟。造成柴油雾化不良的原因有: 1)喷嘴老化或堵塞使其雾化量能力严重下降; 2)油泵出油压力过高或过低。油泵压力过低则喷嘴出油压力低当然雾化效果差,但油泵出油压力过高,也会造成喷油压力低。这是因为,油泵的输油量与输油压力是成反比的,油压过高,出油量必然降低由于喷嘴的量孔是不变的所以喷嘴两端的压力差减小,造成喷油 常伴有冒黑烟现象,这是因为供油雾化不良。可根据排气烟色对油泵的出油压力进行调节,顺时针拧动调压螺钉压力升高出油量下降;反之压力下降出油量上升。油泵压力的正常范围是0.98~1.18MPa,使用中不可随意调节。

燃烧器等燃烧设备的基本安全控制要求(正式)

编订:__________________ 单位:__________________ 时间:__________________ 燃烧器等燃烧设备的基本安全控制要求(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9664-87 燃烧器等燃烧设备的基本安全控制 要求(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 我国天然气和煤制气(原料为煤)资源丰富,且属于洁净能源,顾有着良好的社会经济效益。燃气燃烧器符合我国产业政策,市场前景很好,大有发展前途。然而在燃气燃烧器研制设计中,燃气特性—易燃、易爆及毒性,安全控制的首要问题。下面介绍一下燃气燃烧器的安全控制要求:根据燃气在炉膛内的燃烧特性,对其安全控制要求内容主要有预吹风、自动点火、燃烧状态监控、点不着火的保护、熄火的保护、燃气压力高低限保护、空气压力不足保护、断电保护、预防燃气泄漏事故的措施等。 1、预吹风 燃烧器在点火前,必须有一段时间的预吹风,把炉膛与烟道中余气吹除或稀释。因为燃烧器工作炉膛

内不可避免地有余留的燃气,若未进行预吹风而点火,有发生爆炸的危险.必须把余气吹除干净或稀释,保证燃气浓度不在爆炸极限内。 预吹风时间与炉膛结构及吹风量有关一般设置为15-60秒 2、自动点火 燃气燃烧器宜采用电火花点火,便于实现自动控制。可用高压点火变压器产生电弧点火,要求其输出能量为:电压≥3. 5K V、电流≥15mA ,点火时间一般为:2~5秒。 3、燃烧状态监控 燃烧状态必须予以动态监控,一旦火焰探测器感测到熄火信号,必须在极短时间内反馈到燃烧器,燃烧器随即进人保护状态,同时切断燃气供给。 火焰探测器要能正常感测火焰信号,既不要敏感,也不要迟钝。因为敏感,燃烧状态如有波动易产生误动作而迟钝,反馈火焰信号滞后,不利于安全运行。一般要求从熄火到火焰探测器发出熄火信号的响应时

燃烧器基本知识

燃烧器基本知识 燃烧器作为一种自动化程度较高的机电一体化设备,从其实现的功能可分为五大系统: 送风系统、点火系统、监测系统、燃料系统、电控系统。 一、送风系统 送风系统的功能在于向燃烧室里送入一定风速和风量的空气,其主要部件有: 壳体、风机马达、风机叶轮、风枪火管、风门控制器、风门档板、扩散盘。 1.壳体: 是燃烧器各部件的安装支架和新鲜空气进风通道的主要组成部分。从外形来看可以分为箱式和枪式两种,大功率燃烧器多数采用分体式壳体,一般为枪式。壳体的组成材料一般为高强度轻质合金铸件。 (如图1-1)顶盖上的观火孔有观察火焰作用 2.风机xx: 主要为风机叶轮和高压油泵的运转提供动力,也有一些燃烧器采用单独电机提供油泵动力。 某些小功率燃烧器采用单相电机,功率相对较小,大部分燃烧器采用三相电机,电机只有按照确定的方向旋转才能使燃烧器正常工作。有带动油泵及风叶作用,电机一般是2800转(如图1-2) 3.风机叶轮: 通过高速旋转产生足够的风压以克服炉膛阻力和烟囱阻力,并向燃烧室吹入足够的空气以满足燃烧的需要。它由装有一定倾斜角度的叶片的圆柱状轮子

组成,其组成材料一般为高强度轻质合金钢,所有合格的风机叶轮均具有良好的动平衡性能。 4.风枪火管: 起到引导气流和稳定风压的作用,也是进风通道的组成部分,一般有一个外套式法兰与炉口联接。其组成材料一般为高强度和耐高温的合金钢。有风速调节作用。 5.风门控制器: 是一种驱动装置,通过机械连杆控制风门档板的转动。一般有手动调节、液压驱动控制器和伺服马达驱动控制器三种,前者工作稳定,不易产生故障,后者控制精确,风量变化平滑。 6.风门档板: 主要作用是调节进风通道的大小以控制进风量的大小。其组成材料有合金,合金档板有单片、双片、三片等多种组合形式。 7.扩散盘: 又称稳焰盘,其特殊的结构能够产生旋转气流,有助于空气与燃料的充分混合,同时还有调节二次风量的作用。 二、点火系统 点火系统的功能在于点燃空气与燃料的混合物,其主要部件有: 点火变压器、点火电极、电火高压电缆。 8.点火变压器: 分电子式和机械(电感)式两种,是一种产生高压输出的转换元件,其输出电压一般为:25KV、26KV、27KV,输出电流一般为15~30mA。有EDI、丹佛斯、国产丹佛斯、飞达这几种。油机跟气机的区别是: 油机一般两个头气机一般一个头。分电子式和机械式两种

燃烧器基本介绍

燃烧器常见故障现象的原因分析及排除方法 国内燃烧器由于利雅路,威索,百得,威特等众多国际化品牌的参与,使得使用和维护更加的复杂。所以我们整理了一些燃烧器常见故障现象的原因分析及排除方法和大家交流。 1.能够正常点火但着火几十秒钟后自行熄灭 这种故障现象的典型原因是燃烧器配件的火焰传感器脏污。火焰传感器是一个光敏电阻当受光照射时其自身电阻值下降呈低阻抗状态当无光照射时电阻值上升呈高阻抗状态。燃烧器中的控制器根据火焰传感器的电阻值来判断燃烧过程是否持续若燃烧停止火焰传感器呈高阻抗则立即停止供油以防止未燃烧的柴油积存。火焰传感器探头位于燃烧器的风道内,由于冒黑烟、回火、送风尘土等原因其表面很容易脏污从而失去感光功能。检查传感器探头,必要时用酒精或清洗剂清洁其表面。 2.着火正常但排气烟色不正常 喷入燃烧器的柴油是一边混合一边燃烧的当送风量合适时雾化CO2和水蒸气排气是无色的。当送风量不足时会造成柴油不完全燃烧生成CO和碳粒从而出现排气冒黑烟现象。但如果进风量过大强大的风力可能会把来不及燃烧的油雾吹走,形成白色烟雾排出。 排气冒黑烟的常见原因是燃烧的进风门开度过小,冒白烟的见原因是进风门开度过大,这两种情况均应重新调整进风门。调整时可一边观察排气烟色一边调节风门的开度直到排气烟色接近于无色。 排气冒黑烟还有一种原因是柴油雾化不良,油雾中含有较大的液滴,不能与空气充分混合由于局部燃烧不完全而产生黑烟。造成柴油雾化不良的原因有: 1)喷嘴老化或堵塞使其雾化量能力严重下降; 2)油泵出油压力过高或过低。油泵压力过低则喷嘴出油压力低当然雾化效果差,但油泵出油压力过高,也会造成喷油压力低。这是因为,油泵的输油量与输油压力是成反比的,油压过高,出油量必然降低由于喷嘴的量孔是不变的所以喷嘴两端的压力差减小,造成喷油 常伴有冒黑烟现象,这是因为供油雾化不良。可根据排气烟色对油泵的出油压力进行调节,顺时针拧动调压螺钉压力升高出油量下降;反之压力下降出油量上升。油泵压力的正常范围是0.98~1.18MPa,使用中不可随意调节。 3.火焰不稳定常常灭火后又自动重燃

旋流式燃烧器的工作原理

燃烧器的作用 燃烧器是煤粉炉燃烧设备的主要组成部分,它的作用是把煤粉和燃烧所需的空气送入炉膛,合理地组织煤粉气流,并良好地混合,促使燃料迅速而稳定地着火和燃烧。 一个良好的燃烧器应具备的确良基本条件是: (1)一二次风出口截面应保证适当的一二次风风速比; (2)出口气流有足够的扰动性,使气流能很好地混合; (3)煤粉气流的扩散角,能在一定范围内任意调节,以适应煤种变化的需要; (4)沿出口截面煤粉的分布应均匀; (5)结构应简单、紧凑,通风阻力应小。 旋流式燃烧器 1、旋流式燃烧器的工作原理 旋流式燃烧器由圆形喷口组成,燃烧器中装有各种型式的旋流发生器(简称旋流器)。煤粉气流或热空气通过旋流器时,发生旋转,从喷口射出后即形成旋转射流。利用旋转射流,能形成有利于着火的高温烟气回流区,并使气流强烈混合。 射出喷口后在气流中心形成回流区,这个回流区叫内回流区。内回流区卷吸炉内的高温烟气来加热煤粉气流,当煤粉气流拥有了一定热量并达到着火温度后就开始着火,火焰从内回流区的内边缘向外传播。与此同时,在旋转气流的外围也形成回流区,这个回流区叫外回流区。外回流区也卷吸高温烟气来加热空气和 图4-19旋转气流

煤粉气流。由于二次风也形成旋转气流,二次风与一次风的混合比较强烈,使燃烧过程连续进行,不断发展,直至燃尽。 2、旋流式燃烧器的类型 按照旋流器的结构,旋流式燃烧器可分为蜗壳式、轴向叶片式、切向叶片式三大类,常用的有以下几种: 厂单蜗壳式广蜗壳式y 双蜗壳式 三蜗壳式 旋流式燃烧器< 轴向叶轮式单调风 L切向叶片式{双调风 3、双调风旋流式燃烧器 双调风旋流式燃烧器是在单调风燃烧器的基础上发展出来的。双调风式燃烧 器是把燃烧器的二次风通道分为两部分,一部分二次风进入燃烧器的内环形通 道,另一部分二次风进入燃烧器的外环形通道。 图4-20双调风旋流燃烧器

低氮燃烧器分类

低氮燃烧器分类 燃烧器是工业炉的重要设备,它保证燃料稳定着火燃烧和燃料的完全燃烧等过程,因此,要抑制 NOx 的生成量就必须从燃烧器入手。根据降低 NOx 的燃烧技术,低氮氧化物燃烧器大致分为以下六大类: 第一.阶段燃烧器 根据分级燃烧原理设计的阶段燃烧器,使燃料与空气分段混合燃烧,由于燃烧偏离理论当量比,故可 降低 NOx

的生成。 第二.自身再循环燃烧器 一种是利用助燃空气的压头,把部分燃烧烟气吸回,进入燃烧器,与空气混合燃烧。由于烟气再循环, 燃烧烟气的热容量大,燃烧温度降低, NOx 减少。 低氮燃烧器、防磨护瓦、中心筒、风帽

有需要的可联系我 另一种自身再循环燃烧器是把部分烟气直接在燃烧器内进入再循环,并加入燃烧过程,此种燃烧器有 抑制氧化氮和节能双重效果。 第三.浓淡型燃烧器 其原理是使一部分燃料作过浓燃烧,另一部分燃料作过淡燃烧,但整体上空气量保持不变。由于两部 分都在偏离化学当量比下燃烧,因而

都很低,这种燃烧又称为偏离燃烧或非化学当量燃烧。 第四.分割火焰型燃烧器 其原理是把一个火焰分成数个小火焰,由于小火焰散热面积大,火焰温度较低,使“热反应 NO”有所 下降。此外,火焰小缩短了氧、氮等气体在火焰中的停留时间,对“热反应NO”和“燃料 NO”都有明显的 抑制作用。

第五.混合促进型燃烧器 烟气在高温区停留时间是影响 NOx 生成量的主要因素之一,改善燃烧与空气的混合,能够使火焰面的厚度减薄,在燃烧负荷不变的情况下,烟气在火焰面即高温区内停留时间缩短,因而使 NOx 的生成量降低。 混合促进型燃烧器就是按照这种原理设计的。

各种燃烧器介绍

燃烧器-燃烧器 燃烧器-正文 将燃料与空气合理混合,使燃料稳定着火和完全燃烧的设备。燃烧器用于燃烧煤粉、液体燃料和气体燃料的锅炉和工业炉等。燃煤的小型锅炉一般采用层燃方式,不需燃烧器。燃烧器按所燃燃料的不同可分为煤粉燃烧器、油燃烧器和气体燃烧器3类。 煤粉燃烧器 分旋流式和直流式两种。 ①旋流式煤粉燃烧器:主要由一次风旋流器、二次风调节挡板(旋流叶片或蜗壳)和一、二次风喷口组成(图1)。它可以布置在燃烧室前墙、两侧墙或前后墙。输送煤粉的空气称为一次风,约占燃烧所需总风量的15~30%。煤粉空气混合物通过燃烧器的一次风喷口喷入燃烧室。燃烧所需的另一部分空气称为二次风。二次风经过燃烧器的调节挡板(旋流叶片或蜗壳)后形成旋转气流,在燃烧器出口与一次风汇合成一股旋转射流。射流中心形成的负压将高温烟气卷吸到火焰根部。这部分高温烟气是煤粉着火的主要热源。一次风出口的扩流锥可以增大一次风的扩散角,以加强高温烟气的卷吸作用。 燃烧器

燃烧器 燃烧器 ②直流式煤粉燃烧器:一般由沿高度排列的若干组一、二次风喷口组成(图2),布置在燃烧室的每个角上。燃烧器的中心线与燃烧室中央的一个假想圆相切,因而能在燃烧室内形成一个水平旋转的上升气流。每组直流式燃烧器的一、二次风喷口分散布置,以适应不同煤种稳定而完全燃烧的要求,有时也考虑减少氮氧化物的生成量。 油燃烧器 它由油喷嘴和调风器组成。油喷嘴安置在调风器轴心线上,将油雾化成细滴,以一定的扩散角(也称雾化角)喷入燃烧室内,与调风器送入的空气相混后着火燃烧。油喷嘴主要有压力雾化和双流体雾化两种。压力雾化油喷嘴由分流片、旋流片和雾化片组成。油压一般为2~3兆帕。油在旋流片内产生高速旋转运动,经中心孔喷出,在离心力的作用下破碎成细滴,经雾化后的油滴平均直径在100微米以下。双流体雾化油喷嘴利用蒸汽或压缩空气作为雾化介质,使油加速而破碎雾化。用蒸汽作为雾化介质的Y型油喷嘴(图3),因蒸汽通道和油通道

几种几种常见燃烧器的特点

几种常见燃烧器的特点 为方便起见,按第一种分类叙述。 (一)扩散式燃烧器 空气在燃烧时供给,按空气供给方式,可分为自然供风式和鼓风式。自然引风式依靠 自然抽力或扩散供给空气,多用于民用。 优点:a.燃烧稳定,不回火; b.结构简单,制造方便; c.操作简单,易于点火,无需鼓风; d.可利用低压燃气,燃气压力为200-400 Pa时,仍正常工作。 缺点:a.燃烧热强度低,火焰大,需较大燃烧室; b.容易产生不完全燃烧,经济性差; c.过剩空气系数大,燃烧温度低。 鼓风式扩散燃烧器,只是所需空气由动力风机供给,其它方式仍与白然引风式扩散烧 器相似。 优点:a.结构紧凑,占地少; b.热负荷调节范围大,调节系数一般大于5; c.可预热燃气或空气,预热温度甚至可接近着火温度; d.要求燃气压力低; e.易实现燃气一煤粉、油一燃气混烧。 缺点:a.需鼓风,耗费电能; b.容积热强度较完全预混式小,火焰长,需大的燃烧室容积; c.本身不具备燃气与空气成比例变化的白动调节特性,最好配白动调节装 置(二)大气式燃烧器 大气式燃烧器又称引射式预混燃烧器,应用十分广泛。其燃烧所需空气与燃气在 燃气燃 烧前已有一定混合,燃烧同时又吸收扩散进来的空气。它由头部和引射器两部分组成。其工作原理是燃气在一定的工作压力下以一定流速从喷嘴喷出,依靠燃气动能产生的 引射作用吸入一次空气,在引射器内燃气与空气混合后,从排列在头部的火孔流出进 行燃烧。这种燃烧器的一次空气系数0

锅炉燃烧器安全措施

锅炉燃烧器使用过程中安全注意事项 燃气本身具有有毒,易燃易爆等特性,根据燃气在炉膛内的燃烧特性,在燃气锅炉燃烧器使用过程中,要注意各阶段的安全使用问题。 1.预吹风 燃烧机在点火前,必须有一段时间的预吹风,把炉膛与烟道中余气吹除或稀释。因为燃烧机工作炉膛内不可避免地有余留的燃气,若未进行预吹风而点火,有发生爆炸的危险.必须把余气吹除干净或稀释,保证燃气浓度不在爆炸极限内。预吹风时间与炉膛结构及吹风量有关一般设置为15-60秒。 2.自动点火 燃气燃烧机宜采用电火花点火,便于实现自动控制。可用高压点火变压器产生电弧点火,要求其输出能量为:电压≥3. 5K V、电流≥15mA,点火时间一般为:2~5秒。 3.燃烧状态监控 燃烧状态必须予以动态监控,一旦火焰探测器感测到熄火信号,必须在极短时间内反馈到燃烧机,燃烧机随即进人保护状态,同时切断燃气供给。 火焰探测器要能正常感测火焰信号,既不要敏感,也不要迟钝。因为敏感,燃烧状态如有波动易产生误动作而迟钝,反馈火焰信号滞后,不利于安全运行。 一般要求从熄火到火焰探测器发出熄火信号的响应时间不超过0.2秒。

4.点火失败后的保护 燃烧机点火时,通入燃气,燃气着火燃烧。点火动作要求发生在燃气通入前,先形成点火温度场,便于着火燃烧。如果点不着火,火焰探测器感测不到火焰信号,燃烧机进入保护状态。 从点火到进入保护状态的时间要适当,既不能过短也不能过长。若过短,来不及形成稳定火焰;过长,点不着火时造成大量燃气时入炉膛。一般要求在通入燃气2-3秒,燃烧机对火焰探测器感测的火焰信号进行判断,未着火则进入保护状态,着火则维持燃烧。 5.燃烧器熄火保护 燃烧机在燃烧过程中,若意外熄火,燃烧机进入保护状态。由于炉膛是炽热的.燃气进入易发生爆燃,故须在极短时间内进入保护状态,切断燃气供给。 从发生熄火到燃烧机进人保护状态,该过程的响应时间要求不超过1秒。 6.燃气压力高低限保护 燃气燃烧机稳定燃烧有一定范围,只允许燃气压力在一定范围内波动。限定燃气高低压的目的是确保火焰稳定性:不脱火、不熄火也不回火,同时限定燃烧机的输出热功率,保证设备安全经济运行。当燃气压力超出此范围,应锁定燃烧机工作。 燃烧机设计一般用气体压力开关感测压力信号,并输出开关量信号,用以控制燃烧机的相应工作。 7.空气压力不足保护

燃烧器火焰调节原则

Basic Principles of Flame Shaping火焰形状调节基本原理 Reading the mass flow meters and manometers indication, at every step of the adjustment, will allow the operator to perform an easier and more organized procedure. 操作员在每个调整过程中通过流量和压力表变化作为依据,这样才能更容易和更有依据的对火焰形状进行调整。 With the high flexibility new main burner, the basic principles of flame shaping must be noted at all times, in order to prevent damage to the kiln refractory lining. For this procedure, the operator must always start up with a long and narrow flame and then begin shortening the flame, also noting that kiln shell temperature response is not immediate and therefore adjustments should be made with the appropriate time delay. 新型燃烧器调整起来非常灵活,所以火焰形状调节过程中要全时严格遵守调节原理,防止损坏回转窑内耐火砖。在调节火焰形状过程中,操作员必须总是以细长火焰作为初始状态,然后开始对火焰形状进行调节,在调节过程中注意回转窑筒体温度是否有变化,同时还要注意回转窑筒体温度的变化不会随着火焰调节后会立即改变,筒体温度有一定的时间滞后,因此调整时一定要注意延迟时间。 External Air 外风 The external air increases the overall turbulence level of the flame, increases the participation of axial velocity components in the primary airflow and increases the secondary air infiltration (external recirculation) into the flame. 外风增加会增加火焰整体的紊流强度,同时增加一次风比例和轴流风速度,同时加强了二次风(外部循环风)到吸到火焰中去。 Except during the first hours of kiln heat up, the external air valve will be 100% opened. 除了回转窑刚点火升温的第一个小时外,外风阀门要开到100%。 An increase of the external air flowrate will make the flame narrower and, due to its peripheral position, will also give the flame more rigidity and stability. 增加外风流量会使火焰变窄,由于燃烧器周围风速变化,火焰会更硬更稳定。 Tangential Air 切向风 The tangential air increases the participation of the tangential (swirl) velocity components in the primary airflow. The tangential air makes the flame wider and shorter, thus it is important to follow the shell temperatures when using high tangential air flow.切向风主要增加一次风的切向(旋流)风速度。切向风会使火焰更短更粗,因此在增加切向风的同时一定要注意回转窑筒体温度的变化。 It increases the presence of the fuel at the flame recirculation zone and burning zone that is poor in oxygen and rich in reduction species. When the tangential air flow is used, there is a better control of the NOX generation for a same amount of swirl, when compared to Dispersion air. 增加切向风会使燃料在火焰的回旋区和燃烧区的处于缺氧和还原气氛。与分散风相比,使用切向风时,可以在同样旋流风量的情况下更好的控制NOx的生成。 Dispersion Air 分散风 The dispersion air promotes a better dispersion of the fuel cloud and increases the contact between the fuel and the hot secondary air improving the flexibility on the flame adjustment. The dispersion air also promotes an oxygenation of the flame core. 分散风可以促进燃料更好的分散,并加强燃料与二次空气的接触,改善火焰的可调节性。分散风还可以火焰中心的含氧量。 Due to both reasons described above, the use of dispersion air is more efficient to promote the dispersion of fuel

相关主题
文本预览
相关文档 最新文档