当前位置:文档之家› 固体物理讲义第六章

固体物理讲义第六章

固体物理讲义第六章
固体物理讲义第六章

第六章金属电子论

主要内容:金属自由电子气的量子理论

●电子气的能量状态

●费米-狄拉克统计

●电子气的热容量

●金属电导率、功函数、热电子发射

金属电导和热导的宏观规律

●欧姆定律(1821年):

●维德曼-弗兰茨定律(1853年)

在不太低的温度下,金属的热导率和电导率的之比正比于温度,其

比例常数的值不依赖于具体的金属(该常数称为洛伦茨常数)

6.1自由电子气的量子理论

金属由两部分构成:

●位于晶格的离子实(ion core,由原子核和内层电子构成,在形成晶体时,离子实的

变化可以忽略)

●价电子(valence electron),价电子游历于固定的离子实周围,弥散于金属内部的全

部空间,构成自由电子气(electron gas)

自由电子气模型的基本假定:

①独立电子假设:忽略电子与电子之间的库仑排斥相互作用。

②自由电子假设:忽略电子和离子之间库仑吸引相互作用。

③金属中传导电子是服从量子力学规律费米子,其能态由薛定谔方程决定。电

子在每个能态上的分布由费米-狄拉克统计决定。

一、电子气的能量状态

索末菲提出,金属中传导电子能量状态(称为单电子的本征态),可以从在一定深度的势阱中运动的粒子的能态估算。为了计算方便,通常设势径的深度是无限的(即金属外电子的势能为无穷大)

E j

σ=

几个定性的结论

●在T=0K时,k空间费米球中的量子态全部被电子占满,费米球外的量子态是空态。

●当温度T>0K时,由于热激发,费米面附近的电子可能跃迁到费米球以上的空态。

●只有费米面附件的电子才能导电和导热,

●决定金属许多性质只是在费米面附近的那一小部分电子。

(在绝对零度时,波矢空间费米球中的量子态全部被电子占满,费米球外的量子态全部是空态。由于泡利原理和没有激发能量,所有电子都被限制在费米面以下,有时形象地描述为电子被冻结在费米海中。

费米球深处的电子由于泡利原理的限制,如果没有足够的能量是不可能跃迁到费米球以上的。

或者说参与导电和导热的电子,其能量约等于费米能量,速度约等于费米速度。)

量子自由电子气模型的局限性

量子自由电子气体模型在金属的导电性及导热性的解释上取得了很大的成功,模型给出的一些公式,至今仍广泛应用

但它无法说明为什么有些元素是金属,而有些元素是绝缘体和半导体,无法解释金属电导率随温度的变化等

自由电子气模型的主要问题出在对于固定的离子与电子相互作用的处理上

基本要求:

?熟练掌握自由电子气的索末菲模型(量子自由电子气的能量状态:E~k关系)

?理解并掌握:k空间,费米狄拉克分布、态密度、费米球(面)、费米能量、

费米波矢的概念

?会推导能态密度(一维、二维、三维)

固体物理学》概念和习题 答案

《固体物理学》概念和习 题答案 The document was prepared on January 2, 2021

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体 积,则致密度ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为, , 4 33a V r a= =晶胞内包含2个原子,所以 ρ=π π 8 3 ) ( * 2 3 3 4 3 3 4 = a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ=6 2)( *4334234 ππ=a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23232c r a == 晶胞体积 V = 222 360sin ca ca =ο, 一个晶胞内包含两个原子,所以 ρ=ππ62) (*2223 3234 =ca a .

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52体心立方3π/ 8 ≈0.68面心立方2π/ 6 ≈0.74六方密 排2π/ 6 ≈0.74金刚石3π/16 ≈0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r 金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有 1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。 证明:体心立方格子的基矢可以写为

面心立方格子的基矢可以写为 根据定义,体心立方晶格的倒格子基矢为 同理 与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。根据定义,面心立方的倒格子基矢为 同理 而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。 证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为 即为平面的法线

根据定义,倒格子基矢为 则倒格子原胞的体积为 1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足 其中a 为立方边长。 解:根据倒格子的特点,倒格子 与晶面族(h, k,l)的面间距有如下关系 因此只要先求出倒格,求出其大小即可。 因为倒格子基矢互相正交,因此其大小为 则带入前边的关系式,即得晶面族的面间距。 1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。若立方边长为a ,写出最近邻和次近邻的原子间距。 答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于 次近邻原子数为6,次近邻原子间距为a ;

固体物理第四章总结1

第四章总结成员及分工 1:一维晶格以及三维晶格的振动 2:晶格热容的量子理论 3:简谐近似和简谐坐标 4:晶格的状态方程和热膨胀 5:离子晶体的长波近似 4-1 一维晶格以及三维晶格的振动一、知识脉络

二、重点 1.格波的概念和“格波”解的物理意义 (1)定义:晶格原子在平衡位置附近作振动时,将以前进波的形式在晶体中传播,这种波称为格波。 (2)物理意义:一个格波解表示所有原子同时做频率为ω的振动,不同原子之间有位相差。相邻原子之间的位相差为aq 。 (3) q 的取值范围:-(π/a)

2.一维单原子链的色散关系 22241[1cos ]sin ()2aq aq m m ββω= -= 把 ω 与q 之间的关系称为色散关系(disperse relation),也称为振动频谱或振动谱。 3.一维单原子链的运动方程 相邻原子之间的相互作用 βδδ-≈-=d dv F a d v d ???? ??=22δβ 第n 个原子的运动方程 11() (2) n n n n i t naq nq m Ae ωμβμμμμ?? +--=+-= 4.一维双原子链中两种原子的运动方程及其解 (1)运动方程( equation) )2(2221212n n n n M μμμβμ---=+++? ? )2(2221212n n n n M μμμβμ---=+++? ? (2)方程的解(solution) ])2([2q na t i n Ae -=ωμ ])12([12aq n t i n Be +-+=ωμ 5.声学波与光学波的概念与物理意义 (1)声学波与光学波的定义 }]sin )(41[1{2 /122 2aq M m mM mM M m +-++=+β ω }]sin ) (41[1{2/122 2aq M m mM mM M m +--+=-β ω ω+对应的格波称为光学波(optic wave )或光学支(optic branch) ;ω-对应的格 波称为声学波(acoustic wave)或声学支(acoustic branch ) (2)两种格波的振幅比 aq m A B cos 222 ββω-- =??? ??++ aq m A B cos 222 ββω-- =??? ??-- (3)ω+ 与ω- 都是q 的周期函数 )()(q a q --=+ωπ ω )()(q a q ++=+ωπ ω

《固体物理学答案》第一章晶体的结构

第一章、 晶体的结构 1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6π; (2)体心立方, ;8 3π (3)面心立方, ;62π (4)六角密积,;62 π (5)金刚石结构, ;16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体 积,则致密度ρ=V r n 3 34π (1) 对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积, 如图1.2所示,中心在1,2,3,4 处的原子球将依次相切,因为 ,,433a V r a == 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) (3 3 23 4π π= a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如 图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为 3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ= 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23 2 32c r a == 晶胞体积 V = 2 22 360sin ca ca = , 一个晶胞内包含两个原子,所以 ρ= ππ6 2)(*22 2 3 3 234= ca a .

固体物理第一章习题解答

固体物理学第一章习题解答 1、简述晶态、非晶态、准晶态、单晶、多晶的特征和性质。 答:晶态:内部质点在三维空间呈周期性重复排列的固体为晶体。其特征是原子排列具有周期性,表现为既有长程取向有序又有平移对称性。晶态的共性质:(1)长程有序;(2)自限性和晶面角守恒;(3)各向异性;(4)固定熔点。 非晶态特点:不具有长程序。具有短程序。短程序包括:(1)近邻原子的数目和种类;(2)近邻原子之间的距离(键长);(3)近邻原子配臵的几何方位(键角)。 准晶态是一种介于晶态与非晶态之间的新的状态。准晶态结构的特点:(1)具有长程的取向序而没有长程的平移对称序(周期性);(2)取向序具有周期性所不能容许的点群对称;(3)沿取向序对称轴的方向具有准周期性,由两个或两个以上不可公度的特征长度按着特定的序列方式排列。 晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2、什么是布喇菲格子?画出氯化钠晶体的结点所构成的布格子。说明基元代表点构 成的格子是面心立方晶体,每个原胞包含几个格点。 答:布喇菲格子(或布喇菲点阵)是格点在空间中周期性重复排列所构成的阵列。布喇菲格子是一种数学抽象,即点阵的总体,其特点是每个格点周围的情况完全相同。实际工作中,常是以具体的粒子(原子、离子等)做格点,如果晶体由完全相同的一种原子组成,则由这些原子所组成的格子,称为布喇菲格子。 NaCl晶体的结点构成的布格子实际上就是面心立方格子。每个原胞中包含一个格点。

3、指出下列各种格子是简单格子还是复式格子。 (1)底心六角(在六角格子原胞底面中心存在一个原子) (2)底心立方(3)底心四方 (4)面心四方(5)侧心立方 (6)边心立方 并指出它们分别属于十四种布拉菲格子中的哪一种? 答:要决定一个晶体是简单格子还是复式格子,首先要找到该晶体的基元,如果基元只包含一个原子则为简单格子。反之,则为复式格子。 (1)底心六角的原胞为AIBKEJFL所表示,它具有一个垂直于底面的四度旋转轴,它的原胞形状如图所示,是简单格子,属于单斜晶系。 (2)底心立方如下图所示,它的底面原子的排列情况可看出每个原子的周围情况都是相同的,因而都是等价的,所以它的基元也由一个原子组成,是简单格子,属于四角晶系。 (3)底心四方如下图所示,每个原子的周围情况完全相同,基元中只有一个原子,属于简单格子,属于四角晶系。

固体物理答案第章定稿版

固体物理答案第章 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

2.1证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=。 证:考虑到由两种一价离子组成的一维晶格的内能(相互作用能)仅与库仑势有关,可写作: 注:234111ln(1)234x x x x x +=-+-+。2是考虑左右离子对称。 2.2讨论使离子电荷加倍所引起的对NaCl 晶格常数及结合能的影响(排斥势看作不变)。 解:(1)晶格常数 电荷加倍前: 206()()4n n e b A B U N N r r r r απε=-+=-+ 由平衡条件:0 ()0r r U r r =?=?,可得 110()n nB r A -= 。 电荷加倍后: 2' 0464()()4n n e b A B U N N r r r r απε=-+=-+ 同样由平衡条件:'0 '()0r r U r r =?=?,可得 1'10()4n nB r A -= 所以 0011'04 r r r n ≈=--,即1>>n 时,晶格常数可认为不变。 (2)结合能 电荷加倍前: 20001()(1)4N e W U r r n απε=-=- 电荷加倍后: 22 ''' 1 01 '00100414()(1)4444n n n N e N e W U r W r n r ααπεπε---=-=-== 当1>>n 时,有W 'W 4=,结合能增加为原来的4倍。 2.3若一晶体两个离子间的相互作用能可表示为 ,晶体体积为3NAr V =(A 为常数,N 为原胞数目),试求:(1)平衡间距;(2)结合能W (单个离子的);(3)体弹性模量的表达式;(4)若取02,10,3m n r ===?,4W =eV,求,αβ值。

固体物理学答案详细版

《固体物理学》部分习题参考解答 第一章 1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少? 答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a : 对于面心立方,处于面心的原子与顶角原子的距离为:R f = 2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b a 那么, Rf Rb 31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1, a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何? 答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。 答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。分别如图所示: 1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100) (010)(213) 答:证明 设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此 123o o o a n hd a n kd a n id === ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°

黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答 黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考) 第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V= 3 r 3 4π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案 1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的? [解答] 自由电子论只考虑电子的动能。在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。 2. 晶体膨胀时,费米能级如何变化? [解答] 费米能级 3/222 )3(2πn m E o F = , 其中n 单位体积内的价电子数目。晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。 3. 为什么温度升高,费米能反而降低? [解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。 4. 为什么价电子的浓度越大,价电子的平均动能就越大? [解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。 价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必 然结果。在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。由式 3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能 就越大。这一点从3 /2220)3(2πn m E F =和3/222)3(10353πn m E E o F ==式看得更清楚。电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度3 2l n 。所以价电子的浓度越大,价电子的平均动能就越大。 5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么? [解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。在这种情况下,温度为1T 的金属高于费米能o F E 的电子数目,多于温度为2T 的金属高于费米能o F E 的电子数目。两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于o F E 的部分电子将流向温度为2T 的金属。温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。

固体物理答案

(1) 共价键结合的特点?共价结合为什么有“饱和性”和“方向性”? 饱和性和方向性 饱和性:由于共价键只能由为配对的电子形成,故一个原子能与其他原子形成共价键的数目是有限制的。N<4,有n 个共价键;n>=4,有(8-n )个共价键。其中n 为电子数目。方向性:一个院子与其他原子形成的各个共价键之间有确定的相对取向。 (2) 如何理解电负性可用电离能加亲和能来表征? 电离能:使原子失去一个电子所必须的能量其中A 为第一电离能,电离能可表征原子对价电子束缚的强弱;亲和势能:中性原子获得电子成为-1价离子时放出的能量,其中B 为释放的能量,也可以表明原子束缚价电子的能力,而电负性是用来表示原子得失电子能力的物理量。故电负性可用电离能加亲和势能来表征。 (3) 引入玻恩-卡门条件的理由是什么? 在求解原子运动方程是,将一维单原子晶格看做无限长来处理的。这样所有的原子的位置都是等价的,每个原子的振动形式都是一样的。而实际的晶体都是有限的,形成的键不是无穷长的,这样的链两头原子就不能用中间的原子的运动方程来描述。波恩—卡门条件解决上述困难。 (4) 温度一定,一个光学波的声子数目多呢,还是一个声学波的声子数目多? 对同一振动模式,温度高时的声子数目多呢,还是温度低的声子数目多? 温度一定,一个声学波的声子数目多。 对于同一个振动模式,温度高的声子数目多。 (5) 长声学格波能否导致离子晶体的宏观极化? 不能。长声学波代表的是原胞的运动,正负离子相对位移为零。 (6)晶格比热理论中德拜(Debye )模型在低温下与实验符合的很好,物理原因 是什么?爱因斯坦模型在低温下与实验存在偏差的根源是什么? 在甚低温下,不仅光学波得不到激发,而且声子能量较大的短声学波也未被激发,得到激发的只是声子能量较小的长声学格波。长声学格波即弹性波。德拜模型只考虑弹性波对热容德贡献。因此,在甚低温下,德拜模型与事实相符,自然与实验相符。 爱因斯坦模型过于简单,假设晶体中各原子都以相同的频率做振动,忽略了各格波对热容贡献的差异,按照爱因斯坦温度的定义可估计出爱因斯坦频率为光学支格波。在低温主要对热容贡献的是长声学支格波。 (7)试解释在晶体中的电子等效为经典粒子时,它的有效质量为什么有正、有负、无穷大值?带顶和带底的电子与晶格的作用各有什么特点? m F m m l +=* m F m v F m v F l ?+?=??* ])()[(1])()[(1电子给予晶格德外力给予电子德晶格给予电子德外力给予电子德-=+p p m p p m m p ????=?*当电子从外场获得的动量大于电子传递给晶格的动量时,有效质量为正; 当电子从外场获得的动量小于电子传递给晶格的动量时,有效质量为负; 当电子从外场获得的动量等于电子传递给晶格的动量时,有效质量为无穷。 (8)为什么温度升高,费米能级反而降低?体积膨胀时,费米能级的变化? 在温度升高时,费米面以内能量离约范围的能级上的电子被激发到之上约范围的能级。故费米球体积V 增大,又电子总数N 不变,则电子浓度减小,又,则费米半径变小,费米能级也减小。当体积膨胀时,V 增大,同理费米能级减小。 (9)什么是p 型、N 型半导体?试用能带结构解释。

固体物理学概念和习题答案

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面?为什么? 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式?)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式)? 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。

《固体物理学》第一二章参考答案教学提纲

《固体物理学》第一二章参考答案

第一章 晶体结构 1.1、 解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞 的空间利用率, Vc nV x = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 3 4 π,Vc=a 3,n=1 ∴52.06r 8r 34a r 34x 3 333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 3 3 4a r 4a 3=?= n=2, Vc=a 3 ∴68.083)r 3 34(r 342a r 342x 3 3 33≈π=π?=π?= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=?= n=4,Vc=a 3 74.062) r 22(r 344a r 344x 3 3 33≈π=π?=π?= (4)对于六角密排:a=2r 晶胞面积:S=62 60sin a a 6S ABO ??=??=2 a 233 晶胞的体积:V=332r 224a 23a 3 8 a 233C S ==?= ? n=1232 1 26112+?+? =6个 74.062r 224r 346x 3 3 ≈π=π?= (5)对于金刚石结构,晶胞的体对角线BG=3 r 8a r 24a 3= ??= n=8, Vc=a 3

34.063r 3 38r 348a r 348x 3 3 3 33≈π=π?=π?= 1.2、试证:六方密排堆积结构中 633.1)3 8(a c 2 /1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R. 即图中NABO 构成一个正四面体。… 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。 证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):123()2()2()2a a j k a a i k a a i j ?=+?? ?=+?? ?=+?? r r r r r r r r r 由倒格子基矢的定义:1232()b a a π=?Ω r r r 3 1230, ,22 (), 0,224 ,,0 2 2 a a a a a a a a a a Ω=??==r r r Q ,223,,, 0,()224,,0 2 2 i j k a a a a a i j k a a ?==-++r r r r r r r r 213422()()4a b i j k i j k a a ππ∴=??-++=-++r r r r r r r 同理可得:232() 2() b i j k a b i j k a ππ=-+=+-r r r r r r r r 即面心立方的倒格子基矢与体心立方的正格基矢 相同。 所以,面心立方的倒格子是体心立方。

固体物理答案 第2章

2.1证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=。 证:考虑到由两种一价离子组成的一维晶格的内能(相互作用能)仅与库仑势有关,可写作: 2 20 000 (1)44(1)1112(1)2ln 2234n n n n q q U nr r n α πεπεα≠≠-= =--∴=-=-?-+-+-=∑∑ 注:234 111ln(1)234 x x x x x +=- +-+。2是考虑左右离子对称。 2.2讨论使离子电荷加倍所引起的对NaCl 晶格常数及结合能的影响(排斥势看作不变)。 解:(1)晶格常数 电荷加倍前: 206()()4n n e b A B U N N r r r r απε=-+=-+ 由平衡条件:0 () 0r r U r r =?=?,可得 110()n nB r A -= 。 电荷加倍后: 2' 0464()()4n n e b A B U N N r r r r απε=-+=-+ 同样由平衡条件: ' '()0r r U r r =?=?,可得 1' 10()4n nB r A -= 所以 001 1 '04r r r n ≈=-- ,即1>>n 时,晶格常数可认为不变。 (2)结合能 电荷加倍前: 20001 ()(1)4N e W U r r n απε=-=- 电荷加倍后: 22' '' 1 1' 001 0041 4()(1)4444 n n n N e N e W U r W r n r ααπεπε---=-=-== 当1>>n 时,有W 'W 4=,结合能增加为原来的4倍。 2.3若一晶体两个离子间的相互作用能可表示为 ,晶体体积为3NAr V =(A 为常数,N 为原胞数目),试求:(1)平衡间距;(2)结合能W (单个离子的);(3)体弹性模量的表达式;(4)若取02,10,3m n r ===?,4W =eV,求,αβ值。 解: (1)平衡间距 ()=-+m n αβ U r r r

固体物理第二章习题答案

2.1.证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=. 证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有 (1)1111 2[... ]234j ij r r r r r r α ±' ==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为 2 34 (1) (34) n x x x x x x +=-+-+ 当X=1时,有111 1 (2234) n - +-+= 2.3 若一晶体的相互作用能可以表示为()m n u r r r α β =- + 求 1)平衡间距0r 2)结合能W (单个原子的) 3)体弹性模量 4)若取 02,10,0.3,4m n r nm W eV ==== ,计算,αβ值。 解 1)晶体内能()()2m n N U r r r αβ= -+ 平衡条件 0r r dU dr == 1100 0m n m n r r αβ ++-+= 1 0()n m n r m βα-= 2) 单个原子的结合能01 ()2 W u r =- 0()()m n r r u r r r αβ ==-+ 1(1)(2m n m m n W n m β αα--=- 3) 体弹性模量0 202()V U K V V ?=?? 晶体的体积3 V NAr =—— A 为常数,N 为原胞数目 晶体内能()()2m n N U r r r αβ= -+ 112 1()23m n N m n r r NAr αβ++=- 22112 1[()]23m n U N r m n V V r r r NAr αβ++???=-??? 1112[1...]234α=-+-+n α∴=

固体物理第四章

Chapter 4 能带理论(energy band theory ) 一、简要回答下列问题(answer the following questions ) 1、波矢空间与倒格子空间有何关系?为什么说波矢空间内的状态点是准连续的? [答]波矢空间与倒格子空间处于统一空间,倒格子空间的基矢分别为321,,b b b ,而波矢空间的基矢分别为321332211,,;/,/,/N N N N N N b b b 分别是沿正格子基矢321,,a a a 方向晶体的原胞数目。 倒格空间中一个倒格点对应的体积为 *)(321Ω=??b b b 波矢空间中一个波矢点对应的体积为 N N N N *)(3 32 21 1Ω= ??b b b 即波矢空间中一个波矢点对应的体积, 是倒格空间中一个倒格点对应的体积的1/N 。由于N 是晶体的原胞数目,数目巨大,所以一个波矢点对应的体积与一个倒格点对应的体积相比是极其微小的。也就是说,波矢点在倒格子空间是极其稠密的。因此,在波矢空间内作求和处理时,可以把波矢空间的状态点看成是准连续的。 2、在布里渊区边界上电子的能带有何特点? [答]电子的能带依赖波矢的方向,在任一方向上,在布里渊区的边界上,近自由电子的能带一般会出现禁带。若电子所处的边界与倒格矢G h 正交,边界是G h 的中垂面,则禁带的宽度Eg=2|Vn|,Vn 是周期势场的付里叶级数的系数。 不论何种电子,在布里渊区的边界上,其等能面在垂直于在布里渊区的边界上的斜率为零,即电子的等能面与布里渊区的边界正交。 3、带顶和带底的电子与晶格的作用各有什么特点? [答]能带顶部是能带的极大值的位置,所以 022 ??k E ,晶格对电子作正功,有效质量大于零。 4、单电子理论是怎样将多体问题简化为周期场中的单电子问题的? [答]单电子理论是在经过几步近似之后,将多体问题转化为单电子问题,以单电子在周

黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质 思 考 题 1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率 [解答] 金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目 1/)(+=-T k E E B F e g n , g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数 11 )(/)(+=-T k E E B F e E f 是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率. 2.绝对零度时, 价电子与晶格是否交换能量 [解答] 晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数 11 /-=T k i B i e n ωη. 从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量. 3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的 [解答] 自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近. 4.晶体膨胀时, 费密能级如何变化 [解答] 费密能级 3/2220)3(2πn m E F η=, 其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低. 5.为什么温度升高, 费密能反而降低 [解答]

《固体物理学答案》第一章晶体的结构

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密 度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子 球占据的体积与晶胞体积的比值称为结构的致 密度, 设n为一个晶胞中的刚性原子球数,r表示 刚性原子球半径,V表示晶胞体积,则致密度 ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原 子以刚性球堆积,如图1.2所示,中心在1,2, 3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个 最近邻,若原子刚性球堆积,如图1.3所示,体 心位置O的原子8个角顶位置的原子球相切,

因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a 图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ = 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,

固体物理学概念和习题答案

固体物理学概念和习题 答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

《固体物理学》概念和习题固体物理基本概念和思考题: 1.给出原胞的定义。 答:最小平行单元。 2.给出维格纳-赛茨原胞的定义。 答:以一个格点为原点,作原点与其它格点连接的中垂面(或中垂线),由这些中垂面(或中垂线)所围成的最小体积(或面积)即是维格纳-赛茨原胞。 3.二维布喇菲点阵类型和三维布喇菲点阵类型。 4. 请描述七大晶系的基本对称性。 5. 请给出密勒指数的定义。 6. 典型的晶体结构(简单或复式格子,原胞,基矢,基元坐标)。 7. 给出三维、二维晶格倒易点阵的定义。 8. 请给出晶体衍射的布喇格定律。 9. 给出布里渊区的定义。 10. 晶体的解理面是面指数低的晶面还是指数高的晶面为什么 11. 写出晶体衍射的结构因子。 12. 请描述离子晶体、共价晶体、金属晶体、分子晶体的结合力形式。 13. 写出分子晶体的雷纳德-琼斯势表达式,并简述各项的来源。 14. 请写出晶格振动的波恩-卡曼边界条件。 15. 请给出晶体弹性波中光学支、声学支的数目与晶体原胞中基元原子数目之间的关系以及光学支、声学支各自的振动特点。(晶体含N个原胞,每个原胞含p个原子,问该晶体晶格振动谱中有多少个光学支、多少个声学支振动模式)

16. 给出声子的定义。 17. 请描述金属、绝缘体热容随温度的变化特点。 18. 在晶体热容的计算中,爱因斯坦和德拜分别做了哪些基本假设。 19. 简述晶体热膨胀的原因。 20. 请描述晶体中声子碰撞的正规过程和倒逆过程。 21. 分别写出晶体中声子和电子分别服从哪种统计分布(给出具体表达式) 22. 请给出费米面、费米能量、费米波矢、费米温度、费米速度的定义。 23. 写出金属的电导率公式。 24. 给出魏德曼-夫兰兹定律。 25. 简述能隙的起因。 26. 请简述晶体周期势场中描述电子运动的布洛赫定律。 27. 请给出在一级近似下,布里渊区边界能隙的大小与相应周期势场的傅立叶分量之间的关系。 28. 给出空穴概念。 29. 请写出描述晶体中电子和空穴运动的朗之万(Langevin)方程。 30. 描述金属、半导体、绝缘体电阻随温度的变化趋势。 31. 解释直接能隙和间接能隙晶体。 32. 请说明本征半导体与掺杂半导体的区别。 33. 请解释晶体中电子的有效质量的物理意义。 34. 给出半导体的电导率。 35. 说明半导体的霍尔效应与那些量有关。 36. 请解释德哈斯-范阿尔芬效应。

相关主题
文本预览
相关文档 最新文档